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ABSTRACT 

In order to utilize original sampling points as many as 

possible to construct a Latin Hypercube Sampling 

(LHS), a generation algorithm of LHS is proposed. The 

original sampling can be an arbitrary sampling and the 

new sampling is a LHS strictly. As the high structure of 

LHS, only part of original sampling points can be used 

for LHS. There are several problems including how to 

select the reserved original sampling points and 

generate the new ones if necessary. Matrices are used to 

describe the original sampling points and the original 

sampling points are reserved based on an adjacent 

matrix. The new sampling points are generated by a 

subtraction rule. Numerical experiments show that the 

generation algorithm is effective and saves a lot of 

running time for simulation systems. 

 

Keywords: Latin Hypercube Sampling; generation 

algorithm; adjacent matrix; subtraction rule. 

 

1. INTRODUCTION 

 

Design and analysis of experiments is an important 

method of science and technology. For simulation 

systems, we need to apply different experimental design 

methods for different analysis goals such as sensitivity 

analysis (Borgonovo Castaings Tarantola 2005, Storlie 

Swiler Helton and et al. 2009), variance analysis 

(Huang Lo and Lu 2013), uncertainty analysis (Zouaoui 

and Wilson 2003, Helton Davis and Johnson 2005, 

Braton Nelson and Wei 2013) and so on. All these 

procedures need sampling, i.e., running simulation 

system. However, simulation experiments may be time-

consuming to execute. There is a popular problem that 

one analysis cannot apply the sampling points of other 

analyses, which wastes a lot of original sampling points 

and needs too long time to run simulation system. For 

example, factorial design is used for sensitivity analysis 

at first and LHS is needed for uncertainty analysis. A 

new sample means a lot of simulation runs and LHS 

based on original points could reduce the running time. 

So this paper discusses how to utilize original sampling 

points for a new analysis. 

In 1979, Mckay proposed a stratified sampling 

algorithm named Latin Hypercube Sampling (LHS) 

(Mckay Beckman and Conover 1979). It is one of the 

most popular sampling methods, which has some 

advantages such as space filling effect, robustness and 

good convergence character. There have been some 

researches about the extension of LHS. They start with 

a LHS and generate a new LHS of a larger size that 

remains the original sampling points. Some multiple 

extension algorithms were proposed during the past 

decade (Tong 2006, Sallaberry Helton and Hora 2008, 

Wu and Chen 2011). Under this circumstance, the new 

LHS can contain all the original LHS points. There 

were two general extension algorithms in 2003 and 

2012 (Wang 2003, Wei 2012). But the general 

extension algorithm of LHS achieve a similar LHS 

finally, not a strict one. Therefore, recent researches 

focus on the generation algorithm of LHS based on a 

special sample, i.e. LHS. In this paper, we consider a 

general generation algorithm that achieves a strict LHS 

and the original sample can be any sample, such as a 

Monte Carlo sampling, a factorial design, an orthogonal 

array and so on. This algorithm can be applied for more 

circumstances, including normal analysis based on 

original sampling points and sequential simulation 

experiments. 

The remainder of this paper is organized as follows. 

In section 2, the generation problem and the generation 

algorithm of LHS are described. The locations of 

original sampling points in LHS are expressed by 

several matrices and the relationship of original 

sampling points in LHS is expressed by an adjacent 

matrix. Section 3 gives two applications of generation 

algorithm, Section 3.1 for illustration of algorithm and 

Section 3.2 for metamodeling. Section 4 gets the 

conclusion and the future research. 

 

2. LHS AND GENERATION ALGORITHM 

 

Before discussing the generation problem, the 

procedure of classical LHS is described in Section 2.1. 

The generation problem and correlation studies are in 

Section 2.2. Then, we give the steps of generation 

algorithm of LHS based on original sampling points in 

Section 2.3. 

 

2.1 Procedure of LHS 
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The input variables are noted as 
1 2, ,..., rx x x  and 

the range of 
ix  is [  ]i i iu , 1,2, ,i r . Then, 

LHS can be got as the steps below, which can ensure 

that each input variable has all intervals among its range. 

Step 1. divide the range 
iu  into n  equiprobable 

intervals 
1 2, , ,i i inu u u , 1,2, ,i r . So the intervals 

satisfy 
1 2i i in iu u u u , ij iku u  and 

( ) 1ijP x u n , where , 1,2, ,j k n。 

Step 2. for the j th interval of variable 
ix , the 

cumulative probability can be obtained as: 

   ( 1)ji jiProb j n r n   (1) 

where jir  is a uniform random number ranging from 0 

to 1. So all the probability values can be noted as 

( )ji n rProb= Prob . 

Step 3. transform the probability into the sample 

value jix  by the inverse of the distribution function 

( )F : 

  
1( )ji i jix F Prob    (2) 

Then, the sample matrix is  

11 12 1

21 22 2

1 2

r

r

n n nr

x x x

x x x
X

x x x

. 

Step 4. the n  values of each variables are paired 

randomly or in some prescribed order with the n  values 

of the other variables. Then the sample matrix of LHS 

can be written as: 

11 12 1

21 22 2

1 2

r

r

n n nr

x x x

x x x
X

x x x

 

where each row is a sample point. 

 

2.2 Research on key problems 

Assume that there is an original sampling noted as 

1 2{ , , , }mA a a a , where 
ia  is a sampling point, 

1,2,...,i m . The objective is to get LHS of size n  

noted as 
1 2{ , , , }nB b b b , where 1n  and n  is an 

integer. B  satisfies the constraint condition as shown in 

Eq. (3). 

   maxcard( )A B   (3) 

where card( )  denotes the number of elements in set. It 

means that the new sampling is a LHS strictly and 

maintains the most original sampling points.  

The first problem is how to indicate the location of 

original sampling points in the expected LHS, which is 

the base of selecting original points and adding new 

ones. In this paper, we use some matrices including 

sampling matrix 
m rX , cumulative probability matrix 

m rU 
 (Every element of 

m rU 
 is the cumulative 

probability of the corresponding element of 
m rX , that 

is the jiProb  in Eq. (1)), order matrix 
m rL 

 (Every 

element of 
m rL 

 is the interval number of the 

corresponding element of 
m rX ), random matrix 

m rR 
 

(Every element of 
m rR 

 is the random location among 

interval of the corresponding element of 
m rX ). 

Another problem is how to remain the most 

original points or delete the least ones. It is difficult 

because the relation of original sampling points is hard 

to express. We use an adjacent matrix 
m mA 

 to solve the 

problem. The element ija  of 
m mA 

 notes whether a 

variable value of the i th original point is in the same 

interval as the one of the j th original point, 1 for the 

existence and 0 for the other circumstance. Therefore, 

how to select original points is based on 
m mA 

. If 

0m mA    , there is no need to delete any remaining 

sampling points. 

The finally problem is how to add new sampling 

points if the remaining original ones are not enough. In 

this paper, we follow the subtraction rule (Wu and Chen 

2011). At the beginning, we generate a LHS randomly. 

And then, delete the interval number which is the same 

as remaining original sampling points. The rest of 

interval number is randomly combined and the location 

among the corresponding interval is also achieved 

randomly, which can ensure that the remaining points 

and the new points can construct a LHS that meets the 

requirement. 

 

2.3 Generation algorithm 

In Section 2.2, we solve the main problems of 

generation algorithm. This section mainly shows the 

step of generation algorithm of LHS based on original 

sampling points. 

Step 1. Compute the location of original sample 

points in LHS. 

a. Compute the cumulative probability matrix 
(1)

m rU 
 and the order matrix 

(1)

m rL 
 as shown in Eq. (4) and 

Eq. (5). 

    

( )

,(1)

,

old

i j j

i j

j j

x
u



 





   (4) 

 

( )

,

(1) ( )

, , ( )

,

1               ,   

,   

old

i j j

old

i j i j j old

j i j j

j j

x

l x
n x




 

 

 

  

   
  

 (5) 

where 1,2, ,i m , 1,2, ,j r ,     is a bracket 

function to get the maximum integer number which is 

more than the element inside. 

b. Get the random matrix 
(1)

m rR 
 as shown in Eq. (6). 
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(1) (1) (1)

, , , 1i j i j i jr u n l      (6) 

where 1,2, ,i m , 1,2, ,j r 。 

Step 2. Get the maximum remaining sample 

matrix
(2)

m rX 
 of the original Sampling. 

a. Get the adjacent matrix 
m mA 

 of the original 

sampling based on 
(1)

m rL 
 as shown in the equation 

bellow. If 0m mA   , there is no need to delete more 

sample points and go to step 3. Otherwise, go to step 2-

b. 
(1) (1)1,       [1 m], ,

0,      otherwise

iq jq

ij

q q Z l l
a

    
 


 

b. Get all the combinations of the original points, 

which is noted as 
T

1 2[ ]
q

D D D D  where 

every row of D  is a rank (If the original point is 

deleted, the element value is 1. Otherwise, the element 

value is 0) and the number of 0 in 
iB  is not less than 

jB  where 1 i j m   . Set 1p   and delete the 

point(s) corresponded with the element(s) of pD , then 

judge whether the remain adjacent matrix A  is equal to 

0 . If A= 0 , record the order of delete point(s) as pD  

that is the non-zero element of pD  and the dimension 

number of A  is noted as m  which is the number of 

remain points. Otherwise, set 1p p  , delete the 

points corresponded with the elements of pD  and 

follow the deleting procedure of step 2-b. 

c. Delete the rows of 
(1)

m rL 
, 

(1)

m rR 
, 

( )old

m rU 
 and 

( )old

m rX   according to the element of pD . The remain 

matrices are noted as 
(2)

( )m m rL   , 
(2)

( )m m rR   , 
(2)

( )m m rU    and 

(2)

( )m m rX   . If m n   , select n  sampling points 

randomly note as 
( )new

n rL  , 
( )new

n rR  , 
( )new

n rU   and 
( )new

n rX  . 

( )new

n rX   is the sampling matrix of LHS. If m n  , go to 

step 3. 

Step 3. Generate the new sample matrix 
(3)

( )n m rX   . 

a. Generate a new order matrix 
n rL 
  of size n r  

and every column of 
n rL 
  is a random rank of the 

integer number from 1 to n . 

b. For every column, delete the element that is the 

same as the corresponding column in 
(2)

m rL 
 and get the 

matrix 
(3)

( )n m rL   . 

c. Generate a random matrix 
(3)

( )n m rR    where ijr  is 

a uniform random number ranging from 0 to 1. 

d. Compute the cumulative probability matrix 
(3)

( )n m rU    as shown in Eq. (7). 

   

(3) (3)

, ,(3)

,

1i j i j

i j

l r
u

n

 
    (7) 

e. Compute the sample matrix 
(3)

( )n m rX    as shown 

in Eq. (2).  

Step 4. Get the order matrix 
( )new

n rL 
, the random 

matrix 
( )new

n rR 
, the cumulative probability matrix 

( )new

n rU 
 

and the sample matrix 
( )new

n rX 
 of LHS. 

  

(2)

( )

(3)

( )

m rnew

n r

n m r

L
L

L





 

 
  
  

, 

(2)

( )

(3)

( )

m rnew

n r

n m r

R
R

R





 

 
  
  

,  

  

(2)

( )

(3)

( )

m rnew

n r

n m r

U
U

U





 

 
  
  

, 

(2)

( )

(3)

( )

m rnew

n r

n m r

X
X

X





 

 
  
  

 

It is easy to be proved that the matrix 
( )new

n rX 
 is a 

sample matrix of LHS. 

 

3. NUMERICAL EXPERIMENTS AND 

RESULTS 

 

The generation algorithm of LHS based on original 

sampling points is illustrated by a simple example in 

Section 3.1. The effectiveness is demonstrated by an 

application in Section 3.2.  

 

3.1 Illustration of algorithm 

Assume that we have a Monte Carlo sampling of 

size 7 and there are two variables noted as 
1x  and 

2x . 

The sample matrix is 

( )

7 2

18.5813 33.9815

14.1254 37.8181

15.4463 39.1858

13.3452 30.9443

16.4734 22.7725

13.5714 22.9859

15.0299 25.1502

oldX 

 
 
 
 
 

  
 
 
 
 
 

 

1x  has a triangular distribution on [10, 20] with 

mode at 15 and 
2x  has a uniform distribution on [20, 

40]. The distribution function ( )F  is 

2

1
1

1 1 2

1
1

( 10)
,10 15

50
( )     

(20 )
,15 201

50

x
x

F x
x

x

 

2 2 2( ) 0.05 ( 20)F x x  

The inverse of the distribution function ( )F  is 

1 1 1 1

1

1 11 1

10 50 ( ) ,0 ( ) 0.5

,0.5 ( ) 120 50 (1 ( ))

F x F x
x

F xF x
 

2 2 220 ( ) 20x F x  

The objective is to get a LHS of size 5. The steps 

are as follows. 
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Step 1. Compute the distribution of original sample 

points in LHS. 

a. Compute cumulative probability matrix 
(1)

m rU 
 

and the order matrix 
(1)

m rL 
 as shown in Eq. (4) and Eq. 

(5). Fig. 1 shows the location of original sampling. 

(1)

7 2

0.9597 0.6991

0.3404 0.8909

0.5853 0.9593

0.2238 0.5472

0.7513 0.1386

0.2551 0.1493

0.5060 0.2575

U 

 
 
 
 
 

  
 
 
 
 
 

, 
(1)

7 2

5 4

2 5

3 5

2 3

4 1

2 1

3 2

L 

 
 
 
 
 

  
 
 
 
 
 

 

 
Fig. 1 Distribution of original sampling. 

b. Get the random matrix 
(1)

m rR 
 as shown in Eq. (6). 

(1)

7 2

0.7987 0.4954

0.7019 0.4545

0.9263 0.7965

0.1191 0.7361

0.7563 0.6931

0.2755 0.7465

0.5298 0.2875

R 

 
 
 
 
 

  
 
 
 
 
 

 

Step 2. Get the maximum sample matrix
(2)

m rX 
 of 

the original Sampling. 

a. Compute the adjacent matrix 
7 7A 

. 

7 7

0 0 0 0 0 0 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 0 0 1 0

0 0 0 0 0 1 0

0 1 0 1 1 0 0

0 0 1 0 0 0 0

A 

 
 
 
 
 

  
 
 
 
 
 

 

b. Get D . 

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 1 1 1 1 1 1

D

 
 
 
 
 
 
  

 

Set 1p   and delete the first sampling point. Then,  

0 1 1 0 1 0

1 0 0 0 0 1

1 0 0 0 1 0
0

0 0 0 0 1 0

1 0 1 1 0 0

0 1 0 0 0 0

A

 
 
 
 

   
 
 
 
  

 

Set 1 2p p   , delete the second sampling point. 

Then,  

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0
0

0 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 0

A

 
 
 
 

   
 
 
 
  

 

Repeat the step 2-b. When 46p  , A= 0 . At this time, 

[0 1 1 0 0 1 0]pD  , pD =[2 3 6] and m =4. 

c. Get the remain matrices are noted as 
(2)

4 2L 
, 

(2)

4 2R 
, 

(2)

4 2U 
 and 

(2)

4 2X 
.  

(2)

4 2

5 4

2 3

4 1

3 2

L 

 
 
 
 
 
 

, 
(2)

4 2

0.7987 0.4954

0.1191 0.7361

0.7563 0.6931

0.5298 0.2875

R 

 
 
 
 
 
 

,  

(2)

4 2

0.9597 0.6991

0.2238 0.5472

0.7513 0.1386

0.5060 0.2575

U 

 
 
 
 
 
 

, 

(2)

4 2

18.5813 33.9815

13.3452 30.9443

16.4734 22.7725

15.0299 25.1502

X 

 
 
 
 
 
 

 

4 5m n    , so go to step 3. 

Step 3. Generate the new sample matrix 
(3)

1 2X 
. 

a. Generate a new order matrix 
5 2L 
 . 

5 2

4 1

5 2

3 3

2 5

1 4

L 

 
 
 

  
 
 
  

 

b. Get the matrix 
(3)

1 2L  . 

(3)

1 2L 
=[1 5] 

c. Generate a random matrix 
(3)

1 2R 
. 

(3)

1 2R  =[0.3507 0.9390] 
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d. Compute the cumulative probability matrix 
(3)

1 2U 
 

as shown in Eq. (7). 
(3)

1 2U 
=[0.0701 0.9878] 

e. Compute the sample matrix 
(3)

1 2X 
 as shown in 

Eq. (2).  
(3)

1 2X 
=[11.8722 39.7560] 

Step 4. Get the order matrix 
( )

5 2

newL 
, the random 

matrix 
( )

5 2

newR 
, the cumulative probability matrix 

( )

5 2

newU 
 

and the sample matrix 
( )

5 2

newX 
 of LHS. The LHS is 

shown as Fig. 2. 

(2)

( ) 4 2

5 2 (3)

1 2

5 4

2 3

4 1

3 2

1 5

new L
L

L







 
 
  
   
  
 
  

, 

(2)

( ) 4 2

5 2 (3)

1 2

0.7987 0.4954

0.1191 0.7361

0.7563 0.6931

0.5298 0.2875

0.3507 0.9390

new R
R

R







 
 
  
   
  
 
  

, 

(2)

( ) 4 2

5 2 (3)

1 2

0.9597 0.6991

0.2238 0.5472

0.7513 0.1386

0.5060 0.2575

0.0701 0.9878

new U
U

U







 
 
  
   
  
 
  

, 

(2)

( ) 4 2

5 2 (3)

1 2

18.5813 33.9815

13.3452 30.9443

16.4734 22.7725

15.0299 25.1502

11.8722 39.7560

new X
X

X




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Fig. 2 Distribution of generated LHS 
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3.2 Application for metamodeling 

In this section, the generation algorithm is applied 

for metamodeling. There is a HLA-based 

electromagnetic gun simulation system, whose running 

time cannot be ignored. There is a sample of size 40, 

which is used for sensitivity analysis. We would like to 

use a metamodel-based simulation optimization method 

to optimize the system parameters for the best 

performance. In order to construct a metamodel, we 

want a LHS of size 90 and another LHS of size 40. LHS 

of 90 is the training set for constructing metamodel and 

evaluating the fitting effect. LHS of 40 is the predicting 

set for evaluating the predicting effect. For saving 

running time of simulation system, we choose the 

algorithm proposed in this paper to generate the training 

set. 

The algorithm is realized by MATLAB 2008a. 

There are 7 original sampling points to delete and 33 

original sampling points to remain. Another 57 new 

sampling points are got by running the electromagnetic 

gun simulation system. 

The evaluating index of metamodel is Multiple 

Correlation Coefficient (R
2
) as shown in Eq. (8). R

2
 is 

belonged in [0 1] and the more R
2 

is, the better 

metamodel is. 
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2 1

2

1

ˆ( )

R 1

( )

n

i i

i

n

i

i

y y

y y







 






  (8) 

Artificial Neural Network (ANN) is the metamodel 

and the result is shown in Fig. 3. R
2
=1 for training set 

and R
2
=0.9487 for predicting set.  

A contrast experiment is carried out, which use a 

classical LHS instead. In this case, R
2
=1 for training set 

and R
2
=0.9443 for predicting set. Therefore, the 

algorithm proposed in this paper achieves a LHS that 

have the similar result of classical LHS and remains 33 

original sampling points. It means LHS by proposed 

algorithm have a good space filling effect the same as 

classical LHS and shorten 36.7% time for getting 

training set, which is because that the algorithm gets a 

strict LHS and utilizes the most original sampling 

points. 
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Fig.3 output values of simulation system and metamodel 

4. CONCLUSION

As many simulation systems are costly to execute,

the original sampling points might be a precious 

resource of a new analysis. A generation algorithm of 

LHS based on original sampling points gives a method 

to construct LHS based on original sampling points. 

The original sampling can be a Monte Carlo, a LHS, an 

orthogonal array, a factorial design or any other 

sampling. Actually, the algorithm proposed in this paper 

is an expansion of LHS extension algorithm, which 

does not require the original sampling to be a LHS. 

Therefore, the generation algorithm can be applied in 

the same fields of the LHS extension algorithm such as 

adaptive metamodel building and sequential 

experiments design and analysis. 

For the future research, there are at least two 

suggestions. One is the improvement of the proposed 

algorithm. Step 2-b is an ergodic method and need lots 

of time to select remaining sampling points. When there 

are many original sampling points and variables, the 

time cost cannot be ignored. So a fast generation 

algorithm of LHS based on original sampling points is 

worth to research. The other suggestion is the research 

on the generation algorithm of other sampling method. 

Many analysis methods need special sampling method 

and generation algorithm of LHS is just one of them. 
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