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ABSTRACT
Modelling methodologies provide a good basis for the
integration of intelligent systems. Small, specialised
systems have a large number of feasible solutions, but
developing truly adaptive, and still understandable,
systems for highly complex systems require domain
expertise and more compact approaches at the basic
level. The nonlinear scaling approach extends the
application areas of linear methodologies to nonlinear
modelling and reduces the need for decomposition with
local models. The close connection to the fuzzy set
systems provides a good basis for understandable
models. Data-based methodologies are suitable for
developing smart adaptive applications. Complex
problems are solved level by level to keep the domain
expertise as an essential part of the solution.
Keywords: nonlinear systems, linguistic equations,
smart adaptive systems, statistical analysis

1. INTRODUCTION
Models are understood as relationships between
variables and used to predict of properties or behaviours
of the system. Variable interactions and nonlinearities
are important in extending the operation areas (Juuso
2014). Phenomenological models based on physics,
chemistry and mathematics require domain expertise
(Figure 1). Linear methodologies extended with principal
components (Jolliffe 2002; Gerlach et al. 1979) and
semi-physical models (Ljung 1999) provide a feasible
solution for many applications. Nonlinearities have been
handled commonly with interaction and quadratic terms
(Box and Wilson 1951). Artificial neural networks
(ANNs) starting from (Rummelhart et al. 1986) continue
this by using more complex architectures.
Knowledge-based information can be handled with fuzzy
set systems introduced by Zadeh (1965): numerous
methodologies have been developed, see (Takagi and
Sugeno 1985; Driankov et al. 1993; Dubois et al. 1999),
and combined with neural networks (Fullér 2000).
Different fuzzy approaches can be efficiently combined
(Juuso 2014).
First order ordinary differential equations are solved by
numerical integration and special solutions have been
developed for identification (Ljung 1999). These
approaches, which are also used in ANNs and fuzzy set
systems (Babuška and Verbruggen 2003), define
structures for hybrid dynamic models (Figure 1).
Local models need to be combined in complex systems
(Sontag 1981; Ljung 2008; Jardine et al. 2006).

The linguistic equation (LE) approach originates from
fuzzy set systems (Juuso and Leiviskä 1992): rule sets are
replaced with equations, and meanings of the variables
are handled with scaling functions which have close
connections to membership functions (Juuso 1999a). The
nonlinear scaling technique is needed in constructing
nonlinear models with linear equations (Juuso 2004c).
Constraints handling (Juuso 2009) and data-based
analysis (Juuso and Lahdelma 2010), improve
possibilities to update the scaling functions recursively
(Juuso 2011; Juuso and Lahdelma 2011). The LE
approach together with knowledge-based systems, neural
networks and evolutionary computation form the
computational intelligence part (Figure 1).
Three levels of smart adaptive systems (SAS) identified
in (Anguita 2001):

1. adaptation to a changing environment;
2. adaptation to a similar setting without explicitly

being ported to it;
3. adaptation to a new or unknown application.

Smart use of intelligence by integrating specific
intelligent systems is essential in development of
complex adaptive applications.

Figure 1: Methodologies and application types of
modelling and simulation, modified from (Juuso 2004b)

Technically, an automatic black box modelling could be
possible in various Big Data problems by using
combinations of these methodologies. The domain
expertise is an essential part in integrated solutions to
understand and assess the applicability.
This paper classifies modelling methodologies and
focuses on the nonlinear scaling and integrates the LE
approach in developing modelling applications for
complex systems. Various applications are shortly
discussed.
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2. MODELLING METHODOLOGIES
Steady-state modelling with linear and nonlinear
methodologies are the basis of modelling. Dynamic
modelling introduces additional model structures.
Decomposition is needed to extend the solutions to
multiple operating conditions.

2.1. Steady-state modelling
The steady-state simulation models can be relatively
detailed nonlinear multiple input, multiple output
(MIMO) models )(xFy rr

= ,  where  the  output  vector
),,,( 21 nyyyy K

r
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from the input vector ),,,( 21 mxxxx K= .

2.1.1. Linear methodologies
Statistical modelling in its basic form uses linear
regression for solving coefficients for a linear function.
Linear methodologies are suitable for large multivariable
systems. Linear methodologies can be extended to more
complex areas by handling inputs.  Principal components
compress the data by reducing the number of dimensions
with minor loss of information (Jolliffe 2002). Partial
least squares regression (PLS) is an extension of these
ideas (Gerlach et al. 1979). Semi-physical models of
inputs are important in linear modelling, see (Ljung
1999).

2.1.2. Nonlinear methodologies
Exponential and logarithmic functions are suitable for
the modelling of steep changes.
In the response surface method (RSM), the coefficients
of linear, interactive and quadratic terms are obtained by
the multiple regression for several input variables (Box
and Wilson 1951). The models can include several
multiple input, single output models.
Artificial neural networks (ANNs) are input output
models: the most popular architecture, multilayer
perceptron (MLP) has a very close connection to the
backpropagation learning (Rummelhart et al. 1986). The
response of a neuron is
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where
ijw is the weight factor of the element

jp in the
input vector of the neuron i and ib  a scalar bias. Linear
networks correspond to the models with linear terms in
RSM models.
Normalisation and principal components are essential in
various applications. Various extensions of the principal
component analysis (PCA) are referred in (Jolliffe 2002).
A function expansion
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with some basis functions ,,,1),( fk mkxF K
r

= provides
a flexible way to present several types of black box
models (Ljung 2008). The functions are generated from
one and the same function characterised by the scale
(dilation) parameters kb

r
 and location (translation)

parameters kg
r . The expansion can contain, for example,

radial basis functions, one-hidden-layer  sigmoidal
neural networks, neurofuzzy models, wavenets, least
square support vector machines (SVMs), see (Ljung
1999).

2.1.3. Knowledge-based methodologies
Zadeh (1965) presented the fuzzy set theory to form a
conceptual framework for linguistically represented
knowledge. Origins of the fuzzy logic are in approximate
reasoning and the connection of fuzzy rule-based
systems and expert systems is evident (Dubois et al.
1999). Membership functions provide a key to expand
expert systems. In linguistic fuzzy models, both the
antecedent and consequent are fuzzy propositions
(Driankov et al. 1993). In Takagi-Sugeno (TS) fuzzy
models, each consequent is a crisp function of the
antecedent variables~x, can be interpreted in terms of
local models (Takagi and Sugeno 1985). The extension
principle generalises arithmetic operations if the
inductive mapping is a monotonously increasing
function of the input. Type-2 fuzzy models introduced by
Zadeh in 1975 take into account uncertainty about the
membership function (Mendel 2007).
In neurofuzzy systems, fuzzy neurons combine the
weight factors and the inputs. The activation function is
handled with the extension principle from the fuzzy
input, which is obtained by the fuzzy arithmetics.
Different combinations with fuzzy and crisp weight
factors and elements can be used in these models (Fullér
2000). Neurofuzzy systems can be represented with (2).

2.2. Dynamic modelling
First order ordinary differential equations (ODEs),

),,( xtf
dt
dx

= (3)

are solved by integration:
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where T is the time period for integration and x0 the initial
condition. The function ),( xtf  can  be  linear  or
nonlinear. Additional algebraic equations are needed,
e.g. for handling material.
Linear methodologies are used in the time series
modelling is to fit the waveform data to a parametric time
series model and extract features based on this parametric
model. For parametric models, the output y at time t is
computed as a linear combination of past inputs u and
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past outputs y. The signal values should be chosen
according to the appropriate time delays. The time step
is not adapted in these models. The number of delayed
inputs and outputs is usually referred to as the model
order(s). Several types of models can be obtained from
the general parametric model
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where )(×qA , )(×qB , )(×qC , )(×qD  and )(×qF  are
polynomials of the delay operator 1-q .  The  orders  of

these polynomials are an , bn , cn , dn  and fn ,

respectively, and the number kn  is the number of delay
from input to output. Autoregressive (ARX) and
autoregressive moving average (ARMAX) models, both
with the exogeneous input u , are special cases of (3). If
the data are presented as a time series, which has no input
channels   and only one output channel y, then ARX and
ARMAX models become AR and ARMA models,
respectively. (Ljung 1999)
Fuzzy and neural models are based on the same
structures. The most common structure for the input-
output models is the NARX /Nonlinear AutoRegressive
with eXogenous input model, in which the input and
output values are chosen according to appropriate system
orders, as in the ARX model. The regressor vector
consists of a finite number of past inputs and outputs
(Babuška and Verbruggen 2003). Another possibility is
to use recurrent networks, e.g. the Elman networks are
two-layer feedforward networks, with the addition of a
feedback connection from the output of the hidden layer
to its input (Elman 1990).

2.3. Decomposition
Linear models are approximations of a nonlinear system
in different neighbourhoods. Composite local models
combine local linear models to construct a global model.
If the partitioning is based on a measured regime
variable, the partitioning can be used in weighting the
local models. Linear parameter varying (LPV) models,
where the matrices of the state-space model depend on
an exogeneous variable measured during the operation,
are close related to local linear models (Ljung 2008).
Piecewise affine (PWA) systems are based on local linear
models, more specifically in a polyhedral partition
(Sontag 1981). The models can be state-space models or
parametric models. The model switches between
different modes as the state variable varies over the
partition (Ljung 2008).
Gradual transitions between models can be done with
weight factors in function expansion (2) or with fuzzy
rules in TS fuzzy models. Common model structures are
beneficial in applications. In prognostics, calculations
can be based on a time-dependent proportional hazard
model (PHM)
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where changing operating conditions are handled with
exponential functions: )(0 th is a baseline hazard
function, mjtx j ,,1),( K= , are covariates which are
functions of time and mjj ,,1, K=h are coefficients.
The baseline hazard function )(0 th can be in non-
parametric or parametric form, e.g. a Weibull hazard
function, which is the hazard function of the Weibull
distribution. The covariates mjtx j ,,1),( K=   are any
condition variables such as health indicators and features
in condition monitoring. Maximum likelihood estimation
is  usually  used  to  build  a  PHM  from  event  data  and
condition monitoring data. Modelling a PHM is more or
less  like  the  process  of  regress  analysis:  a  set  of
significant covariates is finally found and only these
significant observations for the ‘‘dependent’’ variable
h(t), instead of observations, are available as event data.
(Jardine et al. 2006)
Cascade modelling divides the problem into sequential
parts to further alleviate the problem of parameters: TS
fuzzy models use fuzzy reasoning for weighting local
linear models; radial basis networks are linear
combinations of the outputs of the RBF; learning vector
quantization (LVQ) combines a competitive layer with a
linear model. Neurofuzzy systems can be constructed as
sequential combinations of neural and fuzzy parts.
Variable grouping is important in cascade model
structures.
The need for decomposition is evident since the
modelling methodologies have limitations, like operating
areas of linear methodologies and highly complex
structures of nonlinear systems. Fuzzy set systems are
natural tools in in the management of the decomposed
models. Several fuzzy modelling approaches are
combined in Figure 2: fuzzy arithmetics is suitable both
for processing the fuzzy inputs and outputs of the rule-
based fuzzy set system; fuzzy inequalities produce new
facts; fuzzy relations can be represented as sets of
alternative rules, where each rule has a degree of
membership (Juuso 2014).

Figure 2: Combined Fuzzy Modelling (Juuso 2014)
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3. LINGUISTIC EQUATION MODELS
The key of the linguistic equation (LE) methodology is
the nonlinear scaling developed to extract the meanings
of variables from measurement signals.

3.1. Nonlinear scaling
Normalisation or scaling of the data is needed since
measurements with considerably different magnitudes
cause problems in modelling. The nonlinear scaling
extends modelling to various statistical distributions and
allows recursive tuning.

3.1.1. Generalised norms
Arithmetic mean and standards deviation, which are the
key features in statistical analysis, are special cases of
generalised norms
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where the order of the moment ÂÎp   is non-zero. The
signal is measured continuously for the analysis is based
on consecutive equally sized samples. Duration of each
sample is called sample time, denotedt . The number of
signal values sNN t= , where sN  is the number of signal
values which are taken in a second. This norm, which has
the same dimensions as the signal

jx . The generalised
norms were introduced for condition monitoring
(Lahdelma and Juuso 2011a, 2011b). The norm values
increase monotonously with increasing order if all the
signals are not equal.

3.1.2. Scaling functions
Scaling is based on the z-score
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which is calculated about the arithmetic mean,

1

1
jj Mc t= , by the standard deviation

2

2
jj Mc t=D .

The arithmetic mean and standard deviation are optimal
if the data sample comes from a normal distribution. This
approach is sensitive to data entry errors, e.g. outliers.
The geometric mean and harmonic mean are useful when
the sample is distributed lognormal or heavily skewed.
The median and trimmed mean are two measures that are
resistant (robust) to outliers.
The z-score based linear solutions are extended to
asymmetric nonlinear cases by two second order
polynomials. The parameters of the polynomials are
defined with five parameters corresponding the operating
point

jc  and four corner points of feasible range
represented by a fuzzy number: core [ ]jhjl cc )(,)(  and
support [ ])max(),min( jj xx  (Juuso 2004c).

These points can be defined manually or obtained from
data by using generalised norms (7) and moments
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where the order k  is a positive integer. The kth moment
is generalised by calculating it about the generalised
norm (5), and normalised by the standard deviation

js
which is calculated about the origin. The operating point

jc  is the central tendency taken from the point, where the
skewness p

3g  changes from positive to negative, i.e.

03 =pg .  Then  the  data  set  is  divided  into  two  parts,  a
lower part and an upper part, and then the same analysis
is  done  for  these  two  data  sets.  The  estimates  of  the
corner points, ( ) jlc  and the operating point ( ) jhc , are the

points where the skewness goes to zero. The iteration is
performed with generalised norms (5) to get the
corresponding order of norm. (Juuso and Lahdelma
2010)
The shape of the second order polynomials are defined
by the ratios
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which are limited to the range úû
ù

êë
é 3,
3
1

by resizing the core

or the support. Then the scaling functions are
monotonously increasing throughout the feasible range.
(Juuso 2009).

3.1.3. Recursive tuning
The computation of the generalised norms can be divided
into the computation of equal sized sub-blocks, i.e. the
norm for several samples can be obtained as the norm for
the norms of individual samples. The same result is
obtained using the moments
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where SK  is the number of samples { }N

iix 1
)(

=
a . Each

sample has N  signal values. Weights can be introduced
by means of density functions. It is useful to calculate the
norms from short samples since the number of signal
values per second is quite high. The sample time t  is an
essential parameter in the calculation of moments and
norms. (Juuso and Lahdelma 2010)
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For the arithmetic mean, the calculation based on sub-
blocks is the normal practice in automation systems. This
approach can be extended to all generalised norms.

3.2. Interactions
The linguistic equation (LE) models are linear equations
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where
jX  is the linguistic level for the variable

mjj ...1, = . Each equation i has its own set of interaction
coefficients ....1, mjAij =  The bias term iB  was
introduced for fault diagnosis systems. (Juuso 2004c)
The scaled values can be used in the same way as any
other variables since the nonlinear scaling extends the
normalisation and the z-score approach. The
dimensionless variables are suitable for various
nonlinear methodologies discussed in Section 2.
However, linear methodologies have been sufficient in
various applications.

3.2.1. Steady-state LE models
A multiple input single output model is represented by
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where the functions jf and outf are scaling functions of
the variables j and out, respectively. An appropriate time
delay jn  needs to be taken into account for each variable.
The scaling functions can be understood as new type
basis functions to be used in expansion (2).

3.2.2. Dynamic LE models
The basic form of the linguistic equation (LE) model is a
static mapping in the same way as fuzzy set systems and
neural networks, and therefore dynamic models can
include several inputs and outputs originating from a
single variable (Juuso 2004c). External dynamic models
provide the dynamic behaviour, and LE models are
developed for a defined sampling interval in the same
way as in various identification approaches defined by
(5). Nonlinear scaling reduces the number of input and
output signals needed for the modelling of nonlinear
systems.
For the default LE model, all the degrees of the
polynomials become very low: 1=an , 1=bn , 0=cn ,

0=dn  and 0=fn  in the parametric models (3)
resulting

)()()1()( 11 tentUbtYatY k +-=-+ (14)

where Y and U are scaled variables and coefficients 1a
and 1b  coefficients of the polynomials )(×qA , )(×qB .
Alternatively, a new value for the derivative (3) can be
calculated with a LE model and then integrated by (4).
This approach allows the adaptation of the integration
step.

3.3. Uncertainty in LE models
The LE approach originates from the fuzzy set systems
which keeps the connections of the methodologies
strong. Compact LE models provide a good basis for
multimodel systems, where local LE models are
combined with fuzzy logic, to handle transitions between
models, some special situations and uncertainty with
fuzzy set systems. Fuzzy reasoning is an important part
of the LE based fault diagnosis and the decision making
in the recursive adaptation.
The coefficients of the model (12) and the parameters of
scaling functions can be represented as fuzzy numbers,
which are used in the calculations with the extension
principle and fuzzy arithmetics (Juuso 2014).

3.4. Smart adaptive LE models
Recursive updates of the norm values discussed in
Section 3.1.3 provide a real time solution to the
adaptation to a changing environment (SAS level 1).
Strong changes in statistical distributions can be taken
into account by obtaining the orders of the norm, which
realises the adaptation to a similar setting without
explicitly being ported to it (SAS level 2). Similar
settings are understood as unchanged interaction models.
The settings are based on the analysis of the interactions
(Section 3.2), which is the key in the adaptation to a new
or unknown application (SAS level 3).

4. APPLICATIONS
Nonlinear scaling forms the basis for the LE modelling:
an important benefit of the linear approach is that the
models can be inverted, technically to any direction. The
compact basic solution makes extensions to dynamic and
case-based systems possible. Complex models for
steady-state and dynamic systems can be built with the
cascade and interactive structures.

4.1. Steady-state LE models
Steady-state LE models are mainly used in adaptation
and feedforward control (Table 1). In most cases, the
models include only a single equation (13). The first LE
model developed for designing submerged arc furnaces
was an exception which used well known relations
represented by five equations (Juuso and Leiviskä 1992).
A steady-state LE model was developed in an early
control application from the process measurements of a
lime kiln (Juuso et al. 1997). The working point model
presented in (Juuso et al. 1998) is still an essential part of
the model-based LE control of a solar power plant (Juuso
and Yebra 2013). For continuous cooking, a LE model
has been developed for predicting the Kappa number,
which is widely used quality variable (Leiviskä et al.
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2001). Stress-cycle (S-N) curves, also known as Wöhler
curves, are represented by a linguistic equation (Juuso
and Ruusunen 2013).

Table 1: Steady-state LE model applications
Case Application area

Electric furnace Decision support for process
design

Lime kiln Feedforward control of fuel
feed for changing capacity

Solar collector field Adaptation based on steady-
state working point model

Continuous cooking Forecasting model for
quality control

Fatigue Stress contribution obtained
from LE based stress-cycle

curve
Water treatment Feedforward control

Wastewater
treatment

Forecasting

4.2. Dynamic LE models
The basic dynamic LE model is represented by (14). The
approach was first tested in a gas furnace data provided
by (Box & Jenkins 1970). The dynamic models of the
solar plant are based on test campaigns, which cannot be
planned in detail because of changing weather conditions
(Juuso 2003a). The basic dynamic flotation model is the
core of the quality indicator in water treatment (Ainali et
al. 2002, Joensuu et al. 2005). A dynamic LE model has
been used for fatigue prediction in (Juuso and Ruusunen
2013). In all these models, only one equation is needed.
The applications are indirect measurements and
controller tuning (Table 2).

Table 2: Dynamic LE model applications
Case Application area

Gas furnace Modelling
Solar collector field Controller tuning for oil

flow
Fatigue Forecasting fatigue risk from

stress contributions
Water treatment Water quality indicator

Controller tuning for two
chemicals

4.3. Decomposition in LE models
The multimodel LE system can include several
submodels and complex interactions (Table 3). All basic
models are represented by (14).
The model with a fuzzy decision module was first used
for a lime kiln (Juuso 1999b) and then for a solar thermal
power plant Juuso (2003a). The lime kiln model had six
operating areas defined by the production level and the
trend of the fuel feed (increasing, decreasing). The model
of the collector field includes four operating areas: start-
up, low, normal and high operation. For handling special
situations in the solar plant, additional fuzzy models have

been developed by using the Fuzzy–ROSA method
(Juuso et al. 2000).
Interactive dynamic models were needed in several
cases: batch cooking (Juuso 2003b), fluidised bed
granulator (Mäki et al. 2004), industrial fed-batch
fermenter (Saarela et al. 2003) and wastewater treatment.
Linguistic equations, neural networks and fuzzy
modelling with several variants have been compared by
using the process data obtained from the fed-batch
fermenter.

Table 3: Dynamic LE model applications
Case Application area

Lime kiln Fuel quality
Controller tuning by using

multiple models
Solar collector

field
Controller tuning for oil flow by

using multiple models
Batch cooking On-line forecasting by using

three interactive models: alkali,
lignin and dissolved solids

Fluidised bed
granulation

Forecasting by using three
interactive models: temperature,

humidity and granular size
Fed-batch

fermentation
On-line forecasting by using
submodels of three growth

phases, each including three
interactive models

Wastewater
treatment

Detection of operating
conditions and trend analysis by

using three submodels: load,
treatment and settling

Condition
monitoring

Prognostics with recursive
tuning

4.4. Distributed parameter LE models
In distributed parameter models, the solar collector field
is divided into modules, where the dynamic LE models
are applied in a distributed way (Juuso 2004b). The same
single equation model is used in all modules. Element
locations for partial differential equations (PDEs) are
defined by the flow rate. In cloudy conditions, the
heating effect can be strongly uneven.

5. CONCLUSIONS
The nonlinear scaling approach extends the application
areas of linear methodologies to nonlinear modelling: the
meanings of variables and interactions are analysed
sequentially. Local nonlinear models reduce the need for
decomposition with local models is needed. The close
connection to the fuzzy set systems provides a good basis
for understandable models. Data-based methodologies
are suitable for developing smart adaptive applications.
Big Data problems are solved level by level to keep the
domain expertise as an essential part of the solution. The
basic models are compact and additional properties,
including dynamics, uncertainty and decomposition are
included if needed.
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