
CEREBELLUM FUNCTION FOR MSAAS

Erdal Cayirci
(a)

, Hakan Karapinar
(b)

, Lutfu Ozcakir
(c)

(a)

 Electrical Engineering and Computer Science Department, University of Stavanger, Norway
(b),(c)

Simulation, Training and Test Systems Department, HAVELSAN, Turkey

(a)

erdal.cayirci@uis.no,
(b)

hakank@havelsan.com.tr,
(c)

ozcakir@havelsan.com.tr

ABSTRACT

Modelling and simulation as a service (MSaaS) offers

elasticity, better utilization, higher reusability and many

more advantages. However, MSaaS has a number of

challenges studied in the literature. One of these

challenges, namely time sensitivity of the services in an

MSaaS federation, is introduced. Our scheme, called

cerebellum function, is designed to address this new

challenge. The conditions related to time sensitivity and

the algorithm for the cerebellum function are also

presented.

Keywords: modelling and simulation as a service,

cloud, service, MSaaS, cerebellum function, quality of

service, QoS

1. INTRODUCTION

Modelling and Simulation as a Service (MSaaS) is a

model for provisioning, modelling and simulation

(M&S) services on demand from an MSaaS provider

(MP), which keeps the underlying infrastructure,

platform and software details hidden from the MSaaS

Customers (MC) (Cayirci, 2013a; Johnson, 2013). MP

is responsible for licenses, software upgrades, scaling

the infrastructure according to evolving requirements

and accountable to the MC for providing grade of

service (GoS) and quality of service (QoS) specified in

the service level agreements (SLA). MSaaS introduces

better utilization, ease in technical administration and

therefore cost reduction. It also implies a big paradigm

shift in computing and a long list of challenges related

to both its ecosystem and technical requirements.

Academia and industry have already tackled with many

of those challenges (Cayirci, 2013a; Cayirci, 2013b;

Cayirci, 2013c; Cayirci, 2014; Cayirci, 2015; Jensen,

2009; Subashini, 2012). In this paper, we focus yet

another challenge for MSaaS: delay sensitivity of some

M&S services, specifically military MSaaS; and present

the preliminary results from our research on a new

scheme that we call as cerebellum function for MSaaS.

A cloud can provide three basic service types (i.e.,

service models) as shown in Figure 1 (Ambrust, 2010;

Badger, 2012; Cayirci, 2013a):

 Infrastructure as a Service (IaaS),

 Platform as a Service (PaaS) and

 Software as a Service (SaaS).

There are also many other service types introduced in

literature, such as, Network as a Service (NaaS), Trust

as a Service, Authorization as a Service (Laborde 2013).

These are derivations of PaaS and SaaS in various

combinations and forms. MSaaS can be perceived as

one of these derivatives. MSaaS is in essence a special

form of SaaS. The inter-relations between MSaaS,

SaaS, PaaS and IaaS are depicted in Figure 1. We

consider three types of MSaaS:

 Modelling as a service,

 Model as a service and

 Simulation as a service.

An MC may develop models by using modelling as a

service, use previously developed models to run

simulations in their enterprise (i.e., model as a service)

or run simulations by using simulation as a service.

Figure 1: The Inter-relations of Cloud Services

Including MSaaS

Please note that a cloud (i.e., a cloud service provider)

typically maintains multiple data centers remotely

located from each other. A data center is a facility that

houses server pools and infrastructure to store, to

process and to communicate large volumes of data.

Physical Infrastructure

Software as a Service

(SaaS)

Modelling as a Service

Model as a Service

Simulation as a Service

Users

Conventional

Cloud

Services

MSaaS

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

445

mailto:erdal.cayirci@uis.no
mailto:hakank@havelsan.com.tr
mailto:ozcakir@havelsan.com.tr

Hence, MSaaS can be designed in one of the following

forms:

 Standalone MSaaS applications: Standalone

applications, such as business process

modelling and supply chain simulation (Rosetti

2012), are already available as simulation as a

service in the Internet.

 Federated standalone MSaaS applications:

Standalone MSaaS applications can be

federated. These applications can be from the

same data center or multiple data centers.

 Composed MSaaS: Not standalone

applications, but services and data that can be

integrated into a composite service are offered

as MSaaS.

 Automatically composed MSaaS: As the

technology and interoperability among the

services mature, composed MSaaS become

automatically discoverable and composable

with each other.

In this paper, we focus on composed and automatically

composed MSaaS. As explained in (Cayirci 2013a;

Cayirci 2013b), composing an MSaaS from the services

provided by multiple data centers is a challenging task.

In the literature, composed cloud services are called as

service mash-ups or service federations. We will use the

term “MSaaS federation” for a composed MSaaS, and

the term “federate” for each service that the federation

is composed of. Federation has a different meaning in

cloud computing from M&S. In cloud computing, the

term “federation” is used not only for federating models

but also for infrastructure or platforms, and therefore a

federation may also mean a cloud service that integrates

various resources in the form of IaaS (e.g., memory,

processor time, etc) from multiple data centers (Buyya,

2010; Cayirci, 2013b; Singhal, 2013; Toosi 2011). On

the other hand, in MSaaS domain, federations integrate

multiple MSaaS either in standalone application or

service module form. Please note that we do not imply

any architecture, such as high level architecture (HLA),

when we use the term federation, but integration of

various M&S services for composing an MSaaS. We

categorize MSaaS federations into four broad classes as

depicted in Table 1 (Cayirci 2013a):

 Type 0: Federation of standalone applications

located in the same data center (Toosi 2011)

 Type 1: Composite MSaaS of service modules

located in the same data center

 Type 2: Federation of standalone applications

from multiple data centers (Cayirci 2013b)

 Type 3: Composite MSaaS of service modules

from multiple data centers (Cayirci 2013b).

Table 1: Types of MSaaS Federations

Nature of Federates
Intra

datacentre

Inter

datacenter

Standalone applications Type 0 Type 2

Composed services (SOA) Type 1 Type 3

MSaaS intrinsically introduces a new challenge, namely

the physical distance and therefore the propagation

delay in between the user device and the cloud. This

challenge is exacerbated by the additional

computational delay due to service federating. In the

Internet, few hundred milliseconds of round trip times

(RTT) can be expected. Based on the physical distance

and other computational delays, RTT can be

significantly higher than few hundred milliseconds,

which may become an important issue for interactive

MSaaS. In this paper, we elaborate the dynamics of this

challenge, and introduce our new cerebellum function

for MSaaS scheme, which is developed to tackle with

that.

In the following section, we examine various potential

services for military MSaaS federations. Their quality

of service requirements are also discussed and listed

qualitatively. In Section 3, we explain our cerebellum

function scheme briefly and introduce a practical

algorithm for configuring and locating cerebellum

functions. We conclude our paper in Section 4.

2. POTENTIAL SERVICES IN A MILITARY

SERVICE ORIENTED MSAAS

In this Section, we will focus on the potential services

for a service oriented military MSaaS. Table 2 depicts a

preliminary list of services. We expect that this list will

have hundreds of services, and therefore, Table 2 is not

even close to be exhaustive. However, Table 2 includes

key MSaaS services which are already implemented by

various organizations including HAVELSAN. These

services can also be differentiated based on several

factors, such as, level of fidelity, level of resolution, the

type of simulation that they are designed for (i.e., live,

virtual and constructive). Therefore, Table 2 is only a

preliminary version of our work, and based on a focus

group study. We are currently developing a more

detailed and quantitative version of the same table.

In Table 2, we focus on four QoS parameters:

reliability, bandwidth, jitter and delay. All the services

in the Table are highly sensitive against reliability

because they are based on the transfer of digital data.

Bandwidth and jitter requirements/constraints are low

for almost all services. On the other hand, almost all of

these services have highly constrained delay

requirements. Especially, the sensitivity of interactive

visualization services (IVS) against delay is very high.

It is clear that one of the most challenging M&S

services with respect to the quality of service

parameters is IVS. Therefore, we use IVS as our

example in the later sections of this paper.

IVS is a key service for immersive M&S, which

visualizes the virtual environment including the

simulated entities (i.e., all objects including people)

interactively, such that the angle and point of projection

can be changed instantaneously based on user

commands. Its quality and responsiveness is paramount

for the immersion of the virtual simulation users, such

as, the trainees in the aircraft and tank simulators.

Moreover, the response time of IVS to the controls must

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

446

be the same as the real system. Otherwise, although the

virtual simulation provides a perfect immersion,

negative training can be given. For example, if a virtual

aircraft responds the controls more rapidly or slowly

than the real aircraft, the trainee may develop wrongly

conditioned reflexes.

Table 2: Potential Cloud Services for Military MSaaS

A cloud has two ends: front-end and back-end as shown

in Figure 2. The front-end is where the user interfaces

are. That is the only part of a cloud visible to the users,

and should not need any special hardware. The user sees

the back-end as a cloud without knowing any details

about its internal architecture. The back-end includes

various components (i.e., storage space, processors and

platforms) loosely coupled to each other through a

mechanism that allows elasticity. The delineation

between front and back ends introduce longer

propagation delays between the user interface and the

service comparing to conventional computation

schemes where user interface and server are physically

co-located. In addition to that, a composed MSaaS (i.e.,

an MSaaS federation) may have many MSaaS received

from multiple data centers. Even an MSaaS federation

may have a federate, which itself is a federation with

federates from the other data centers. This nested

architecture can definitely introduce jitter and delay,

which is not manageable for services like IVS.

Figure 2: An Example for Back-end and Front-end in

MSaaS (the services in the figure are just an example)

3. CEREBELLUM FUNCTION

Cerebellum function includes the part of an MSaaS

federation which is time sensitive in responding the user

commands (i.e., inputs). Please note that we do not

mean shortest delay by time sensitivity, but the delay

arranged the same as the delay in response by the real

system to the user commands. For example, if the delay

in real system dr is between 90 and 100 msec, the delay

in virtual system needs to be within exactly 90-100

msec window. It is expected that r is a random variable,

which (i.e., both distribution and parameters) may

change for various systems. Our scheme is based on the

idea that the maximum delay between the user interface

and cerebellum function dmax must be shorter than the

lower bound of the real life system delay rmin according

to a given confidence level . Hence, we can manage

the delay such that negative training is avoided and

immersion is maintained. The maximum delay dmax

includes not only the propagation delay pmax introduced

Service Reliability Bandwidth Jitter Delay

Weapon

Effects

High Low Low High

Exterior

Ballistics

High Low Low High

Common

Effects

High Low Low High

Synthetic

Environ.

High High Low Medium

Synthetic

Dynamic

Environme

nt

High Medium Low Medium

Weather High Low Low Medium

Geography/

Hydrograph

High High Low Medium

Line of

Sight

High Low Low Medium

Order

Translation

High Low Low Low

Autonomou

s Planning

High Low Low Low

Movement High Low Low Medium

Supply High Low Low Medium

Mainten. High Low Low Medium

Detection

and

Recognition

High Low Low High

Comms High Low Low Medium

Human/

Social

Behavior

High Low Low Medium

Troop/

Platform/U

nit

Behavior

High Low Low Medium

Threat

Network

High Low Low Medium

Recognized

Picture

High Medium Medium Medium

C4

Population

and

Stimulation

High Medium Medium Medium

Visualiz. High High High High

Interactive

Visualiz.

High High Very

High

Very

High

front-end

back-end

Data Center

Weather,

Geo

Services

Data Center

IVS,

Movement

Service

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

447

by the physical distance between two ends of a

communications link but also all sort of computational

delays cmax due to processes, such as encryption,

decryption, routing, service federating, etc. It is clear

that we need to treat also dmax as a random variable,

and make our computations based on the upper bound

according to the given confidence level .

Figure 3: Cerebellum Function

When the services are designed, the designer should

think about if a service is time sensitive, and if the time

sensitive part of the service can be separated from the

rest of the service. If there is a time sensitive part of a

service, that part needs to be designed decomposable.

Hence we do not need migrating all the service and data

closer to the front end but only the time sensitive part of

the service. For example, the part of IVS that fetches the

terrain data and weather conditions and creating three

dimensional virtual environments can be designed

separately from the part that makes the projections

based on the user commands. The later part, which is

time sensitive, becomes the cerebellum function for

IVS. Please note again that this is only a simplified

example to clarify what we mean by cerebellum

function. In some cases, not only the cerebellum

function of a service, but all of the service may be

treated as a cerebellum function depending on the

configuration of an MSaaS federation. If an input of

Service sa uses another Service sb, which has a part that

needs to be treated within the cerebellum function, sa as

a complete service has to be within the cerebellum

function. Moreover a cerebellum function may also

have a nested structure, which means that the inputs of a

cerebellum function may be coming from another

cerebellum function. Therefore, the location of a

cerebellum function is selected such that the conditions

in Equations 1 and 2 are met.

).()(max

1

maxmax  ckupkudn
n

k




 (1)

dnmax < u(rnmax). (2)

where n-1 is the number of cerebellum functions

preceding the cerebellum function n in the nested

structure.

Algorithm 1 is designed for configuring and locating

cerebellum functions. After selecting all the services in

an MSaaS Federation, a dependency tree is constructed

starting from the service that directly interacts with the

user. That is typically the user interface for an MSaaS

Federation. Then all the services in the service fan in

(the services used by the service) of each service are

inserted into the tree as a child node to the service.

Select all the services required for an MSaaS federation
Create dependency tree for the services in MSaaS
Federation
 Insert the top level service as the root node
 n=0
 Repeat until none of the services at level n has

another service in their service fan in
 Insert all the services in the service fan in of a

service at level n into the tree
 n=n+1
Run depth first traverse of the tree and create
cerebellum function structure
 If Service a has a cerebellum function
 If Service a has a parent Service b
 If u(ramax) < u(rbmax)
 Merge cerebellum functions
 Service a = Service a – Cerebellum a
 Cerebellum b = Service b + Cerebellum a

 u(rbmax) = u(ramax)
 Remove Cerebellum a

Locate the cerebellum functions according to their time
sensitivity

Algorithm 1: Cerebellum Function Configuration

Algorithm

When the dependency tree is complete, it is traversed in

the depth first order. If a cerebellum function of a

service has more stringent time sensitivity constraint

comparing to its parent service, all of the parent service

is treated as a cerebellum function together with the

cerebellum function of the child service. The time

sensitivity of the merged cerebellum function is

assigned with the time sensitivity parameter of the child

service. After the traverse of the tree and merging of the

cerebellum functions are complete, the cerebellum

back-end

front-end

MSaaS

Federation

d1max<r1min

Cerebellum 2

Cerebellum 1

d1max+d2max <r2min

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

448

functions are migrated to appropriate machines. A

cerebellum function can be located in any data center

that accepts the function and satisfies the constraints in

Equations 1 and 2 within the cloud or in the front end

machine itself if none of the data centers or servers in

the Cloud can provide the required conditions.

The cerebellum function for IVS can also support the

design of architectures that fulfil security constraints of

military MSaaS. Although the environmental data, and

specifications of military equipment, such as maximum

speed and altitude that a military aircraft can reach, are

unclassified, the turn rates and similar data about the

aircraft may be classified. Since the effects like turn

rates are time sensitive and therefore will be typically

treated by a cerebellum function in IVS, the cerebellum

function approach may become useful also for tackling

with the security related challenges of MSaaS. Since

this is a different topic, we do not further elaborate on

the cerebellum function for enhanced security in MSaaS

in this paper.

4. CONCLUSION

MSaaS is an emerging approach for M&S following the

latest trends in information technologies. It promises

many advantages, such as rapid elasticity, ease in

technical administration and licensing, better utilization,

pays per use, and therefore enables considerable cost

reduction. However, it also introduces many challenges

including security, privacy, accountability, risk and trust

management and service composition. Industry and

academia have tackled with these challenges for almost

a decade. In this paper, we introduce yet another

challenge related to quality of service guarantees,

specifically delay and jitter. When a service is a time

sensitive service, it needs to be physically close enough

to the front end. However, migrating all the service and

data closer to the front end may not always be feasible.

In such a case, a service may be divided into two parts:

a time sensitive part, and the other part which is not

time sensitive. We call the time sensitive part that we

need to locate closer to the front end, and sometimes at

front end, as cerebellum function of the service. A

practical algorithm that is designed for selecting and

configuring the services with cerebellum function is

presented. We are currently implementing a cerebellum

function for IVS as a prototype for experimentation.

REFERENCES

Armbrust M., A. Fox, R. Griffith, A.D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, M. Zaharia. 2010. A view of Cloud

computing. Communications of the ACM, vol. 53,

no. 4, pp. 50–58.

Badger L., T. Grance, R.Patt-Corner and J.Voas. 2012.

Draft Cloud Computing Synopsis and

Recommendations. National Institute of Standards

and Technology, Special Publication 800-146.

Buyya R., R. Ranjan, R.N. Calheiros. 2010. InterCloud:

Utility-oriented federation of Cloud computing

environments for scaling of application services.

Proceedings of the 10th International Conference

on Algorithms and Architectures for Parallel

Processing (ICA3PP’10), pp. 13–31.

Cayirci E. 2013a. Modelling and Simulation as a Cloud

Service: A Survey. In Proceedings of the 2013

Winter Simulation Conference, edited by R.

Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E.

Kuhl. Washington DC, December.

Cayirci E. 2013b. Configuration Schemes for Modelling

and Simulation as a Service Federations.

Simulation Transactions of the Society for

Modelling and Simulation International, Vol. 89,

Issue 11, pp. 1388 – 1399, November 2013.

Cayirci E. 2013c. A Joint Trust and Risk Model for

MSaaS Mashups. In Proceedings of the 2013

Winter Simulation Conference, edited by R.

Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E.

Kuhl. Washington DC, December.

Cayirci E. , A. Garaga, A.S.Oliveira and Y. Roudier.

2014. Cloud Adopted Risk Assessment Model.

International Workshop on Advances in Cloud

Computing Legislation, Accountability, Security

and Privacy (CLASP).

Cayirci E. and A.S.Oliveira. 2015. Modelling Risk and

Trust for Cloud Service Mashups. IEEE

Transactions on Cloud Computıng (submitted).

Jensen M., J.Schwenk, N.Gruscka and L.L.Iacono.

2009. On Technical Security Issues in Cloud

Computing. IEEE International Conference on

Cloud Computing, pp. 109-116.

Johnson H. and Tolk A., “Evaluating the Applicability

of Cloud Computing Enterprises in Support of

Next Generation of Modelling and Simulation

Architectures,” Spring Simulation Multi-

Conference, April 2013.

Rosetti M. And Chen Y., “Cloud Computing

Architecture for Supply Chain Network

Simulation,” Winter Simulation Conference,

December 2012.

Singhal, M., S. Chandrasekhar, G. Tingjian, R., S.

Sandhu, R. Krishnan, G-J. Ahn, E. Bertino. 2013.

Collaboration in Multicloud Computing

Environments: Framework and Security Issues.

IEEE Computer Magazine February 2013, pp 76-

84.

Subashini, S. and Kavitha, V. 2011. A survey on

security issues in service delivery models of cloud

computing. Elsevier Journal of Network and

Computer Applications, Vol. 34, Issue 1, pp. 1-11.

Toosi A.N., R.N.Calheiros, R.K.Thulasiram, R.Buyya.

2011. Resource Provisioning Policies to Increase

IaaS Provider's Profit in a Federated Cloud

Environment. HPCC 2011.

AUTHORS BIOGRAPHY

Erdal Cayirci graduated from Army Academy in 1986

and from Royal Military Academy, Sandhurst in 1989.

He received his MS degree from Middle East Technical

University, and a PhD from Bogazici University both in

computer engineering in 1995 and 2000, respectively.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

449

He retired from the Army when he was a colonel in

2005. He was a faculty member and a researcher at

Istanbul Technical University, Yeditepe University,

Naval Sciences Institute and Georgia Institute of

Technology between 2000 and 2005. He is currently

Head, CAX Support Branch in NATO’s Joint Warfare

Center in Stavanger, Norway, and also a professor in

the Electrical and Computer Engineering Department of

University of Stavanger. His research interests include

computer simulations, cloud computing, risk and trust

modelling, mobile communications and sensor

networks.

He received the “2002 IEEE Communications Society

Best Tutorial Paper” Award for his paper titled “A

Survey on Sensor Networks” published in the IEEE

Communications Magazine in August 2002, the “Fikri

Gayret” Award from Turkish Chief of General Staff in

2003, the “Innovation of the Year” Award from

Turkish Navy in 2005 and the “Excellence” Award in

ITEC 2006.

He co-authored two books titled as “Security in

Wireless Ad Hoc and Sensor Networks,” and

“Computer Assisted Exercises and Training: A

Reference Guide” both published by John Wiley &

Sons in 2009.

Hakan KARAPINAR graduated from Hacettepe

University Electrical & Electronics Engineering

Department in 1996. He received his MS degree from

Bilkent University in 1998 about antenna simulation.

He started working at HAVELSAN Company;

Simulation, Training and Test Systems department in

1998 and he is still working as Program Director in that

division. He started his PhD studies at Hacettepe

University Electronics Engineering Department and

MBA studies at Cankaya University, Turkey. His

research interests include Real Time Simulation,

Modelling, Distribution Interactive Simulation,

Electronics Warfare, Radar, Antenna, Tactical

Environment Simulation and Sensor Simulation.

In HAVELSAN, between 1998 and 2005, he worked as

System Engineer, System Team Leader, System Group

Manager working actively on simulation of electronic

warfare and weapon systems. Between 2005-2011, he

worked as a Project Manager and Program Manager for

fixed-wing and rotary-wing platform training simulators

projects. Till 2011 he is working as Programs Director

responsible for all Simulator and Simulation programs

at HAVELSAN, managing around 22 projects and

programs with more than 600 M $ value for local and

foreign customers.

Lutfu OZCAKIR, graduated from Hacettepe

University (Ankara) Electronics Engineering

Department in 1996 as honour faculty student. He

received his MS degree from of Bilkent University in

Electronics Engineering Medical Signal Processing in

1998. In 1998 he has joined HAVELSAN company

Simulation and Training Systems Division as

responsible engineer of Air Force Wargaming systems.

He started his PhD studies about simulation of

anatomical structures at Hacettepe University, Ankara.

His research interests include Medical Signal

Processing, Tactical Environment Simulation, Real

Time Modelling, Distributed Joint Simulation Systems

and C2 Simulation.

Between 1998-2005 as a team leader, group manager

and project manager he has completed many programs

in simulation and training systems of HAVELSAN.

From 2005-2011 he worked as Project Manager and

Program Director of all projects at HAVELSAN

Simulation Systems division. Till 2011 he is working as

Executive Vice President of Simulation, Training and

Test Systems division and board member of

HAVELSAN Technology Radar (HTR).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

450

