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ABSTRACT 
This paper is about the modelling of an assignment 
problem motivated by a real world problem instance. We 
consider multiple pieces of equipment which need to be 
assigned to several locations taking into account 
capacities as well as relations between equipment and 
distances between locations. Additionally, a clustering of 
locations is taken into account that groups locations into 
areas or fields. It is forbidden to assign the same 
equipment to locations in different fields. The problem 
arises in many real world applications such as facility 
layout or location problems. We discuss the complexity 
of the problem and prove its NP-hardness. Further two 
linearization approaches are presented as well as 
computational studies of the original and the linearized 
models are conducted. Experimental tests are carried out 
using CPLEX. 

 
Keywords: generalized quadratic assignment problem, 
location problem, logistics, linearization 

 
1. INTRODUCTION 
This research work is motivated by a real world problem 
instance. A production company should store multiple 
equipment to several storage locations which are grouped 
into areas, here groups. It is necessary to assign every 
equipment, but allow a single equipment to be assigned 
to more than one location, since the required storage can 
exceed the capacity of single locations. Thus, the overall 
number of locations must exceed the amount of 
equipment to be assigned. One location may only contain 
one equipment due to the nature of the storage order and 
transport vehicles. 
The transportation costs which arise when equipment are 
demanded for further processing should be minimized. 
Those costs capture the costs of a vehicle moving 
between groups or locations collecting equipment that 
are required at the same time. The costs rely on a matrix 
which assigns a probability of collaborative further 
processing, as well as on a matrix which indicates the 
distances between locations.  

1.1. .Related Problems 
This problem class is strongly related to the quadratic 
assignment problem (QAP) (Koopman and Beckmann 
1957) as well as to the generalized quadratic assignment 
problem (GQAP) (Lee and Ma 2004). The QAP usually 
assigns one equipment to one location. However, some 
researchers considered the QAP in a more general way 
(Garfinkel and Nemhauser 1972) (Sahni and Gonzalez 
1976), where the number of equipment is less than the 
number of locations but without regarding demanded 
storage of equipment or capacities of locations. The 
GQAP assigns several equipment to one location but one 
equipment only to a single location, while considering 
distances, relations, storage demands and capacities. A 
generalization of the GQAP is the multi-resource 
generalized quadratic assignment problem (MRGQAP) 
(Yagiura et. al. 2007) that addresses an assignment of 
tasks to agents whereas an agent can handle several tasks 
but one task may only be handled by one agent. Further, 
a task may require various resources and one agent has a 
capacity of each resource, which represents the 
difference to the GQAP. 
 
1.2. Computational Research and Complexity 
Methods for solving the QAP have been researched 
extensively. (Burkard, Çela, Pardalos, and Pitsoulis 
1998) present an overview of studies of the research 
community. Approaches for solving the GQAP are very 
limited. The authors of the GQAP (Lee and Ma 2004) 
presented three linearization approaches of the problem 
and a branch and bound algorithm for solving those. 
They employ a single-assignment method as a branching 
rule. By solving a heuristic greedy algorithm an upper 
bound is provided, whereas the lower bound at each node 
of the branch and bound tree is found by solving the 
generalized linear assignment problem (GLAP) (Ross 
and Soland 1975). They present an empirical study of 27 
test instances varying from 5–16 equipment for 5–30 
locations for all three linearization approaches. (Hahn, 
Kim, Guignard, Smith, and Zhu 2008) propose another 
exact solution method for the GQAP. A branch and 
bound algorithm is used whose bound is based on a 
Lagrangean dual. The dual is derived using the 
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Reformulation Linearization Technique (RLT) (Sherali 
and Adams 1996). The basis of the algorithm is a dual 
ascent procedure using first-level or Level-1 RLT. (Kim 
2006) also propose an exact algorithm partially based on 
a reformulation linearization technique enhanced by 
adding a subgradient optimization step. 
(Kim 2006) also developed a heuristic technique using 
new evaluations of neighboring solutions for various 
strategies for exploring the neighborhood. A memetic 
heuristic approach is presented by (Cordeau, Gaudioso, 
Laporte, and Moccia 2006) obtaining good results in 
reasonable computational time. In (Ahlatcioglu, et al. 
2012) a combined method of convex hull relaxation 
(CHR) (Ahlatcioglu and Guignard 2007), which is a 
special case of the primal relaxation, and quadratic 
convex reformulation (QCR) (Plateau 2006), which aims 
to convert non-convex quadratic functions into convex 
quadratic functions, is proposed. The QAP and 
generalizations of it remain one of the hardest 
optimization problems. It is a NP-hard problem. Even 
finding an approximate solution cannot be done in 
polynomial time unless P=NP (Sahni and Gonzalez 
1976). Due to this fact heuristic methods have become 
widely used. Most efficient heuristics are construction 
methods, enumeration or improvement methods or 
metaheuristics, such as simulated annealing, tabu search, 
genetic algorithms or ant systems (Burkard, Çela, 
Pardalos, and Pitsoulis 1998).  
 
1.3. Our Contribution 
So far the research community has done a lot of essential 
work regarding the development of various solution 
techniques for already existing models, which shall not 
be within the scope of this project. The focus of this work 
is the modelling of a new problem class. So far, problem 
classes considering a 1:1 or a n:1 assignment have been 
developed, some regarding further constraints like 
limited resources or capacities. Even so, no problem class 
has been defined regarding the splitting of equipment to 
several locations, speaking of a 1:n assignment. Further 
we take into account that locations belong to a certain 
area, while regarding distances between locations and 
relations between equipment. This problem class is 
important when the storage demands of equipment 
exceed the storage capacities of single locations as well 
as when collateral storage is needed due to collaborative 
further processing. Due to considering locations as part 
of a group, we name the developed model a clustered 
generalized quadratic assignment problem. The aim of 
this paper is to formulate the model and to perform a 
comprehensive computational study on it.  

In section 2 the problem formulation is outlined in a 
descriptive and mathematical way. Properties like 
complexity and linearizations will be discussed. 
Computational studies are conducted in section 3. Tests 
are carried out on academic instances and show results 
regarding the solution quality and runtime and draw a 
comparison between the linearization approaches and the 
original problem. 
 

2. PROBLEM DESCRIPTION 
The clustered generalized quadratic assignment problem 
(CGQAP) considers the assignment of multiple and 
various equipment to one or several storage locations 
depending on the storage demands and location 
capacities. Storage locations are clustered and hence 
belong to a single group. When assigning equipment to 
locations we consider a probability of further 
collaborative processing between equipment as well as 
distances between locations inducing that two pieces of 
equipment having a high common probability shall be 
stored close to each other. Additionally, the problem 
takes into account that a single equipment may not be 
placed in more than one group. The objective is to 
minimize the transportation costs arising when articles 
are demanded for further processing.  
The space requirement of the equipment has to be met by 
the space capacities of the locations. The CGQAP is a 
generalization of the GQAP in that a 1:n assignment is 
considered, meaning 1 equipment may be assigned to n 
locations which is an inverted assumption of the GQAP. 
Additionally, each location belongs to exactly one group. 
For the purpose of an optimal assignment probabilities of 
further collaborative processing as well as distances 
between locations are regarded. The objective is to 
optimally assign equipment to storage locations whereas 
an equipment may be located on several locations but 
only within one group, while regarding space limitations. 
  
2.1. The Model 
For the formulation of the mathematical model we use 
the following notation:  
 
ܯ ൌ ሼ1,… ,݉ሽ: Set of equipment 
ܰ ൌ ሼ1,… , ݊ሽ: Set of locations 
ܩ ൌ ሼ1,… , ݃ሽ: Set of groups 
௜∈ெݎ ∈ Թା: Space requirements per equipment 
ܿ௞∈ே ∈ Թା: Space capacity per location 
 
Let ߙ be a surjective mapping, such that each location is 
mapped to a group and ܩ௟ be the set of locations 
belonging to a group: 
 
ܰ:ߙ → ሺ݇ሻߙ	:ܩ ∈ ,ܩ ∀௞∈ே		  
 
௟ܩ ൌ ሼ݊|ߙሺ݊ሻ ൌ ݈ሽ with ܩ௟ ∩ ௢ܩ ൌ ∅		∀݈ ്  .݋
  
The function ܽ:ܰ ൈ ܰ → ሼ1,0ሽ is equal to the identity in 
the case that two locations belong to the same group. 
 
ܽሺ݇, ݄ሻ ൌ ቄ1 ሺ݇ሻߙ ൌ ሺ݄ሻߙ

0 otherwise
			݇, ݄ ∈ ܰ  

 
Between equipment there is a certain probability of how 
likely two pieces of equipment have a further 
collaborative processing. Function ܯ:ݓ ൈܯ → Թ଴

ା 
assigns a probability, also called weights, to each 
possible pair of equipment. 
 
௜௝ݓ ∈ Թ଴

ା			∀݅, ݆ ∈  .ܯ
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Between locations, function ݀:ܰ ൈ ܰ → Թ଴
ା determines 

the distance between each pair of locations. 
 
݀௞௛ ∈ Թ଴

ା				∀݇, ݄ ∈ ܰ. 
 
The costs arising when equipment are demanded for 
further processing shall be minimized. Those costs 
capture the distance the transport vehicles have to travel 
in order to pick up the demanded articles.  
The binary decision variable determines the assignment 
of equipment to locations and can be written as 
 
௜௞ݔ → ቄ1 equipment	݅	is	assigned	to	location	݇

0 otherwise
  

 
We also define a binary decision expression denoting if 
at least one location in a group contains an article 
 

௟ݖ → ൜
1 if	 ∑ ∑ ௜௞௞∈ீ೗ݔ

௠
௜ ൒ 1		

0 otherwise
  

 
We can finally write the objective 
 
min ߜ ∗ ∑ ௟ݖ

௚
௟ ൅ ߛ ∗ ∑ ∑ ∑ ∑ ௜௞ݔ ∗ ௝௛ݔ ∗ ௜௝ݓ ∗ ݀௞௛

௡
௛

௠
௝

௡
௞

௠
௜

          (CGQAP) 
 
subject to 
 
∑ ௜௞ݔ
௠
௜ ൑ 1	  ∀݇ ∈ ܰ (1) 

 
∑ ௜௞ݔ
௡
௞ ∗ ܿ௞ ൒ ݅∀ ௜ݎ ∈  (2) ܯ

 
௜௛ݔ௜௞ݔ ൑ ܽሺ݇, ݄ሻ ∀݅ ∈ ,ܯ ݇, ݄ ∈ ܰ (3) 
 
௜௞ݔ ∈ ሼ0, 1ሽ  ∀݅ ∈ ,ܯ ݇ ∈ ܰ (4) 
 
,ߜ ߛ ∈ Թା  
  
Constraint (1) ensures that each location is assigned only 
once. Constraint (2) ensures that the space requirements 
are met by the assigned locations. Constraint (3) ensures 
that the equipment is not assigned to locations in 
different groups. 
 
2.1.1. Complexity 
The formulation above is a generalization of the 
formulation of Koopman and Beckman (Koopman and 
Beckmann 1957) with further constraints. Assuming that 
one piece of equipment can be split into several pieces, 
we can prove that the CGQAP is NP-hard by reducing it 
to a QAP, which is known to be NP-hard (Sahni and 
Gonzalez 1976). 
 
Theorem 1: The CGQAP is strongly NP-hard. 
 
Proof: Assuming that equipment can be split into several 
pieces of the same equipment with lower demand, 
solving a CGQAP can be considered as solving a QAP, 
with additional constraints on clustered areas, for each 
possible way of splitting an equipment. Hence the 

CGQAP is at least as complex as the QAP which is 
known to be strongly NP-hard (Sahni and Gonzalez 
1976). ∎ 
 
Following the thought of the proof, a CGQAP becomes 
more complex as the storage capacity decreases since the 
equipment need to be split more often which results in 
solving more QAPs. The maximum number of QAPs to 
be solved is the number of multiples of the minimum 
storage unit within the e demand. 
 
2.1.2. Linearization 
Due to the high complexity of the QAP, there have been 
many linearization approaches (Xia and Yuan 2006) 
(Burkard, Çela, Pardalos, and Pitsoulis 1998) (Erdogan, 
2006) (Punnen and Kabadi 2013). (Lee and Ma 2004) 
have conducted three approaches for the GQAP, namely 
following Frieze and Yadegar, Kaufman and Broeckx 
and a new linearization. In this paper, following (Lee and 
Ma 2004), we introduce Frieze and Yadegar linearization 
(Frieze and Yadegar 1983) and Kaufman and Broeckx 
(Kaufman and Broeckx 1978) linearization for the 
CGQAP. 
 
Frieze and Yadegar 
The products ݔ௜௞ݔ௝௛ of the binary variables are replaced 
by continuous variables ݕ௜௞௝௛ ≔  ௝௛. Applying thisݔ௜௞ݔ
approach to the CGQAP formulation we achieve the 
following mixed integer linear programming 
formulation. 
 
min ߜ ∗ ∑ ௟ݖ

௚
௟ ൅ ߛ ∗ ∑ ∑ ∑ ∑ ௜௞௝௛ݕ ∗ ௜௝ݓ ∗ ݀௞௛

௡
௛

௠
௝

௡
௞

௠
௜   

                (FYL) 
 
∑ ௜௞௝௛ݕ
ே
௞ୀଵ ൌ ,݅∀  ௝௛ݔ ݆ ∈ ,ܯ ݄ ∈ ܰ (1a) 

 
∑ ௜௞௝௛ݕ
ே
௛ୀଵ ൌ ,݅∀  ௜௞ݔ ݆ ∈ ݇	ܯ ∈ ܰ (2a) 

 
∑ ௜௞ݔ
௠
௜ ൑ 1  ∀݇ ∈ ܰ  (3a) 

 
∑ ௜௞ݔ
௡
௞ ∗ ܿ௞ ൒ ݅∀  ௜ݎ ∈  (4a) ܯ

 
௜௞ݔ ൅ ௜௛ݔ െ 2 ∗ ܽሺ݇, ݄ሻ ൑ 1 ∀݅ ∈ ,ܯ ݇, ݄ ∈ ܰ (5a) 
 
௜௞ݔ ∈ ሼ0, 1ሽ  ∀݅ ∈ ,ܯ ݇ ∈ ܰ  (6a) 
 
௜௞௝௛ݕ ∈ ሾ0; 1ሿ ∀݅, ݆ ∈ ,ܯ ݇, ݄ ∈ ܰ (7a) 
 
,ߜ ߛ ∈ Թା  
 
The problem (FYL) has ݉ଶ݊ଶ continuous variables, ݉݊ 
binary variables and ݊ଶ݉ ൅ 2݉ଶ݊ ൅݉݊ ൅݉ ൅ 3݊ 
constraints. 
 
Theorem 2: The FYL is equivalent to the CGQAP. 
 
Proof: We will only show one direction of the proof 
namely that a feasible solution of FYL is a feasible 
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solution to the CGQAP since the other direction is trivial 
to show.  
Let ሺݔ,  :ሻ be a feasible solution to FYL. First we showݕ
 
௜௞ݔ ൌ 0 ⇒ ௜௞௝௛ݕ ൌ 0, ∃݅ ∈ ,ܯ ݇ ∈ ܰ, ∀݆ ∈ ,ܯ ݄ ∈ ܰ 
 
Considering (1a), we obtain:  
 
∑ ∑ ௜௞௝௛ݕ

ே
௞ୀଵ ൌ ∑ ௝௛ݔ

ெ
௜ୀଵ ൌ ௝௛ݔܯ

ெ
௜ୀଵ , ∀݆ ∈ ,ܯ ݄ ∈ ܰ  

 
In case ݔ௝௛ ൌ 0	we have: 
 
∑ ∑ ௜௞௝௛ݕ

ே
௞ୀଵ

ெ
௜ୀଵ ൌ 0 ⇒ ௜௞௝௛ݕ ൌ 0, ∀݅ ∈ ,ܯ ݇ ∈ ܰ. 

 
Considering (2a), we obtain: 
 
∑ ∑ ௜௞௝௛ݕ

ே
௛ୀଵ ൌ ∑ ௜௞ݔ

ெ
௝ୀଵ ൌ ௜௞ݔܯ

ெ
௝ୀଵ , ∀݅ ∈ ,ܯ ݇ ∈ ܰ.  

 
In case ݔ௜௞ ൌ 0 we have: 
 
∑ ∑ ௜௞௝௛ݕ

ே
௛ୀଵ

ெ
௝ୀଵ ൌ 0 ⇒ ௜௞௝௛ݕ ൌ 0, ∀݆ ∈ ,ܯ ݄ ∈ ܰ  

 
Further we show:  
 
ሺݔ௜௞ ൌ 1 ∧ ௝௛ݔ ൌ 1ሻ ⇒ ሺݕ௜௞௝௛ ൌ 1ሻ.  
 
For this purpose we define a function ߶, denoting the 
assignment of equipment to locations. In our case, it is an 
injective function (without proof). 
 
ܯ:߶ → ܰ:߶ሺ݅ሻ ൌ ݇ , such that ݔ௜థሺ௜ሻ ൌ 1, ∀݅ ∈   .ܯ
 
We need to show: 
 
௜థሺ௜ሻ௝థሺ௝ሻݕ  ൌ 1, ∀݅, ݆ ∈   .ܯ
 
We write 
 
 ∑ ௜௞௝௛ݕ

ே
௞ୀଵ ,௜థሺ௜ሻ௝௛ݕ =  ∀݅, ݆ ∈ ,ܯ ݄ ∈ ܰ. 

 
We have  
 
∑ ∑ ௜௞௝௛ݕ

ே
௞ୀଵ ൌ ∑ ௜థሺ௜ሻ௝௛ݕ

ெ
௜ୀଵ ൌ ,௝௛ݔܯ

ெ
௜ୀଵ ∀݆ ∈ ,ܯ ݄ ∈ ܰ  

 
For ߶ሺ݆ሻ ൌ ݄	 ⇔ ௝௛ݔ ൌ 1, we achieve 
 
∑ ௜థሺ௜ሻ௝థሺ௝ሻݕ
ெ
௜ୀଵ ൌ ,ܯ ∀݆ ∈   ܯ

 
Hence ሺݔ௜௞ ൌ 1 ∧ ௝௛ݔ ൌ 1ሻ ⇒ ሺݕ௜௞௝௛ ൌ 1ሻ.  ∎ 
 
Kaufman and Broeckx 
The products ݔ௜௞ݔ௝௛ of the binary variables are replaced 
by continuous variables ݕ௜௞ determining the product of 
relations and distances to all located equipment of a fixed 
located equipment. Applying this approach to the 
CGQAP formulation we achieve the following mixed 
integer linear programming formulation. 
 

min ߜ ∗ ∑ ௟ݖ
௚
௟ ൅ ߛ ∗ ∑ ∑ ௜௞ݕ

௡
௞

௠
௜              (KB) 

 
∑ ௜௞ݔ
௠
௜ ൑ 1  ∀݇ ∈ ܰ  (1b) 

 
∑ ௜௞ݔ
௡
௞ ∗ ܿ௞ ൒ ݅∀  ௜ݎ ∈  (2b) ܯ

 
௜௞ݔ ൅ ௜௛ݔ െ 2 ∗ ܽሺ݇, ݄ሻ ൑ 1 ∀݅ ∈ ,ܯ ݇, ݄ ∈ ܰ (3b) 
 
∑ ∑ ௜௝ݓ ∗ ݀௞௛ ∗ ௝௛ݔ

ே
௛ୀଵ

ெ
௝ୀଵ   

 ൅ݒ௜௞ ∗ ௜௞ݔ െ ௜௞ݕ ൑ ,௜௞ݒ ∀݅ ∈ ,ܯ ݇ ∈ ܰ  (4b) 
 
௜௞ݔ ∈ ሼ0, 1ሽ  ∀݅ ∈ ,ܯ ݇ ∈ ܰ  (5b) 
 
௜௞ݕ ൒ 0 ∀݅ ∈ ,ܯ ݇ ∈ ܰ  (6b) 
 
,ߜ ߛ ∈ Թା  
 
We define ∀݅ ∈ ,ܯ ݇ ∈ ܰ:  
 
௜௞ݕ ≔ ௜௞ݔ ∗ ∑ ∑ ௜௝ݓ ∗ ݀௞௛ ∗ ௝௛ݔ

௡
௛ୀଵ

௠
௝ୀଵ   

 
௜௞ݒ ≔ ∑ ∑ ௜௝݀௞௛ݓ

௡
௛ୀଵ

௠
௝ୀଵ 	  

 
The problem (KB) has ݉݊ continuous variables, ݉݊ 
binary variables and ݉ ൅݉݊ ൅ 3݊ constraints. 
 
Theorem 3: The KB is equivalent to the CGQAP. 
 
Proof: We will only show one direction of the proof 
namely that a feasible solution ሺݔ,  ሻ of KB is a feasibleݕ
solution to CGQAP since the other direction is trivial to 
show.  
Let ሺݔ,  ሻ be a feasible solution to FYL. First we showݕ
that (4b) is satisfied for ݔ௝௛ ൌ 0 and/or ݔ௜௞ ൌ 0. 
 
ሺݔ௝௛ ൌ 0ሻ 	⇒ ௜௞ݒ ∗ ሺݔ௜௞ െ 1ሻ ൑ ,௜௞ݕ ∀݆ ∈ ,ܯ ݇ ∈ ܰ  
 
ሺݔ௜௞ ൌ 0ሻ ⇒ െݓ௜௞ ൅  
 ∑ ∑ ௜௝ݓ ∗ ݀௞௛ ∗ ௝௛ݔ

௡
௛ୀଵ

௠
௝ୀଵ ൑ ,௜௞ݕ ∀݅ ∈ ,ܯ ݇ ∈ ܰ  

 
Obviously ݒ௜௞ ∗ ሺݔ௜௞ െ 1ሻ and  
 
െ∑ ∑ ௜௝݀௞௛ݓ

௡
௛ୀଵ

௠
௝ୀଵ ൅ ∑ ∑ ௜௝ݓ ∗ ݀௞௛ ∗ ௝௛ݔ

௡
௛ୀଵ

௠
௝ୀଵ   

 
are both non-positive. Since ݕ௜௞ ൒ 0 and ݕ௜௞ shall be 
minimized, ݕ௜௞ must be zero.  
 
Further we need to prove (7b) for all ݅ ∈ ݇ and ܯ ∈ ܰ. 
For this purpose we use the function ߶, defined in 2.1.2: 
Frieze and Yadegar.  
Since ݓ௜௞ ∗ ሺݔ௜௞ െ 1ሻ is non-positive, we know: 
 
௜௞ݕ ൌ   ௜థሺ௜ሻݕ
 
 ൒ ሺ∑ ∑ ௜௝ݓ ∗ ݀థሺ௜ሻ௛ ∗ ௝௛ሻݔ

௡
௛ୀଵ

௠
௝ୀଵ ൅ ௜థሺ௜ሻݒ ∗

											൫ݔ௜థሺ௜ሻ െ 1൯  
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 ൌ ∑ ௜௝ݓ ∗ ݀థሺ௜ሻథሺ௝ሻ ∗ ௝థሺ௝ሻݔ
௠
௝ୀଵ ൅ ௜థሺ௜ሻݒ ∗

											൫ݔ௜థሺ௜ሻ െ 1൯  
 
 ൌ ∑ ௜௝ݓ ∗ ݀థሺ௜ሻథሺ௝ሻ

௠
௝ୀଵ  

 
 In order to minimize the sum of ݕ௜௞, we can conclude: 
 
௜௞ݕ ൌ ௜௞ݔ ∗ ∑ ∑ ௜௝ݓ ∗ ݀௞௛ ∗ ௝௛ݔ

௡
௛ୀଵ

௠
௝ୀଵ , ∀݅ ∈ ,ܯ ݇ ∈ ܰ.  

        ∎  
 

3. EXPERIMENTAL STUDIES 
In this section computational studies on both 
linearization approaches and on the original problem are 
presented. The studies are conducted on a variety of 
GQAP problem instances (see 3.1). We draw a 
comparison of results achieved by CPLEX (IBM C. , 
2015) regarding solution quality and runtime.  
All tests were calculated on a laptop with an Intel(R) 
Core(TM) i7-4600U CPU @2.10GHz 2.70GHz 
processor.  

 
3.1. Problem Instances 
The problem instances used are described in (GitHub, 
2015). However, they had to be adapted to this problem 
formulation due to the inversed assignment order (1:n) 
and the constraint on locations belonging to certain 
groups. The instances are turned around such that the 
original locations become equipment and the original 
equipment become locations and also distances and 
weights have been interchanged. The capacities of 
locations are varied in order to obtain instances of 
various complexity. The instances are named in the way 
“N-M-p” meaning that N equipment shall be assigned to 
M locations. The total storage requirement of equipment 
is p percentage of the total capacity of locations. 
Obviously the higher the percentage the more complex is 
the problem instance. The problem instances are 
published on the HeuristicLab website (HEAL, 2015). 
 

3.2. Experimental Results 
Due to the complexity of the problem we set a timelimit 
of 10800 seconds in CPLEX. The reason for choosing 
three hours is that preliminary tests show good results 
within that time.  

Table 1 summarizes results regarding the best found 
solution and runtime to that solution. What can be seen 
is that the KB-formulation obtains the best solution 
quality for most instances. The FYL-linearization shows 
best results for the instances of lowest complexity (10-
50-38, 15-35-45, 20-30-45) and also for all instances of 
the 10-50-class.  

Note that two of the most complex instances (15-35-91, 
20-30-91) could not be solved by the FYL-model within 
the timelimit (marked with an “x”), which in turn is due 
to the high number of variables and constraints. Here it 
is worth to mention that the original problem formulation 
could be solved to its best found solution within 257 
seconds for one of those problems (15-35-91), which is 
way better than the solving time of the KB-model for that 
instance. 

Having a closer look at the runtime until the best solution 
is found, again the KB-linearization performs best for 
most problem instances. This is a reasonable fact due to 
the little number of variables and constraints. 
Nevertheless, it is noticeable that the runtime to the best 
found solution of KB is significantly higher for the 
instances of highest complexity (10-50-77, 15-35-91, 20-
30-91). This characteristic is not that distinct for FYL and 
the original formulation. However, in table 2 we take a 
look at the time until a first solution is found, where the 
KB-linearization is the most efficient one for each 
problem instance. At this point we can conclude that the 
KB-model is very efficient in finding a first solution 
which is also further improved during the solving 
process. It takes considerable time to find the optimal 
solution for those instances. 

 

Table1: Best solution found within 10800 sec. and time to this solution  

 Original FYL KB 

Instance Best Solution Time to Best Best Solution Time to Best Best Solution Time to Best 

10-50-77 1,0037 6820 1,0006 10561 1,003 10379 
10-50-51 0,669 7398 0,6673 1601 0,6681 250 
10-50-38 0,6675 5202 0,6671 947 0,6674 214 

15-35-91 1,0036 257 x x 1,0026 10777 

15-35-61 0,6678 6827 1,0013 3322 0,6677 16 

15-35-45 0,6675 105 0,6673 3092 0,6673 78 

20-30-91 1,0022 1611 x x 1,0019 1065 

20-30-61 1,0011 579 1,001 4403 1,0009 60 

20-30-45 1,0009 4502 1,0009 10569 1,0009 17 
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The FYL-formulation also obtains the best solution 
quality for some instances, the runtime to the first 
solution found is significantly longer though. This fact 
can also be seen in the performance of all three 
formulations for the problem instances with lowest  
complexity. Having a look at figure 1, it can be seen that 
the FYL-model has a long initialization time for each 
instance while the KB model reaches a first feasible 
solution very fast. However, it is worth to mention that 
no definite preference can be identified between the 
original model and FYL regarding the solution quality. 

 

4. CONCLUSION 
In this paper we define a new problem class namely the 
clustered generalized quadratic assignment problem 
(CGQAP). It is a generalization of the quadratic 
assignment problem (QAP) and the generalized 
quadratic assignment problem (GQAP). Based on the 
complexity of the QAP, which is known to be NP-hard, 
we show the NP-hardness of the CGQAP. Further we 
present two linearization approaches and prove its 

equivalence to the original problem. Computational 
studies are conducted regarding runtime and solution 
quality on adapted problem instances of the GQAP. The 
presented problem class has numerous applications 
whenever multiple equipment need to be assigned to 
several locations which again can be grouped into certain 
areas where also capacities and storage amount need to 
be taken into account. The problem is also very 
interesting from a theoretical point of view since it is 
based on the QAP which is one of the most challenging 
combinatorial optimization problems.  
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 Original FYL KB 

Instance First Solution Time to First First Solution Time to First First Solution Time to First 

10-50-77 1,0053 121 1,001 1200 1,0038 16 

10-50-51 1,0024 143 0,6673 1601 0,6687 12 

10-50-38 1,0013 66 0,6671 947 0,6676 11 

15-35-91 1,2934 144 x x 1,0043 19 

15-35-61 1,0013 166 1,0013 3322 0,6679 9 

15-35-45 0,6675 105 0,6674 1811 0,6675 12 

20-30-91 1,2916 1144 x x 1,0023 62 

Table 2: First solution found

Figure 1: Performance of the original model, FYL and KB 
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