
HARDWARE LIBRARIES FOR ONLINE CONTROL OF INTERACTIVE SIMULATIONS

Josef Brozek
(a)

, Martin Jakes
(b)

(a),(b)

Department of software technologies, University of Pardubice, CZ

(a)

mail@jobro.cz, (b)
jakesmar@gmail.com

ABSTRACT

The article presents possible ways of connecting hardware

devices with computer simulation.

Today we often see interactive simulators that truly copy

the modelled system. Such simulators require extensive

know-how in terms of methods enabling data transfer

between the running simulation core and the controlling

device that is a mere electromechanical emulation of the

real system.

Our libraries are largely applicable in monolithic

simulations, distributed simulations, in drive-simulators

design and in simulation-based decision making. Their

simple application enables each reader of this article

effectively employ different input-output devices for their

own simulators.

An integral part of the article is an introduction of a case

study aiming at consistent verification of methods used for

the libraries development and for verification of the

libraries as such.

Keywords: HLA, simulator, simulation, Java FX, Java,

HLA-VA, Rawsberry, hardware, microcontroller, army

simulator, car simulator.

1. STRUCTURE OF THE ARTICLE

The first part of the article defines the problem by

introducing signals to be processed. Readers may feel that

this chapter is rather abstract due to the lack of

specification of input-output devices to be used. However,

the article is structured in a way that introduces particular

devices in chapters four and five.

Chapter four deal with the software layer. Selected

programming languages are introduced, advantages and

disadvantages presented in terms of particular hardware

component controls and an introduction to a more complex

distributed simulation concept is presented. HLA was

selected for distributed simulation: this chapter gives

reasons why HLA and how its properties were used in

individual libraries design. Readers may find out more

about the ways of use of our library in the environment of

implicit and other programming languages.

In the course of development, individual solutions were

designed, where the task was to connect the input-output

devices with the simulator; therefore it was inevitable to

form simple application (or rather application-hardware)

prototypes. Chapter five describes individual prototypes

with the aim to extend the basic reader´s notion of possible

ways our library can be used.

Besides individual prototypes, we designed an extensive

case study which is presented in Chapter six. The sixth

chapter summarizes the whole solution and presents the

premises for possible future development.

2. SITUATION SEARCH

In current situation exists models, which using different

hardware input devices for control of simulators. But

publications about it, focuses primarily on the major topic

of simulation (submarine, train) and do not help

community to understand, how connect hardware drivers

into their simulations.

We used space between current simulation teams focus,

and made very simple libraries, which should enable of

simple connection hardware devices with HLA (or

different) simulator.

Then, with our scope there is done relatively original work,

which can be used by many developer teams for their

works. Simply put, our work is professionally profiled on

the border between software engineering and simulation

architecture. It publishes real libraries, which after

installation transfers data directly from I / O devices into

the simulator (if you want to use in the HLA, you still need

to adjust OMT).

3. PROBLEM DEFINITION

Recently designed interactive simulators show very good

results in real visualization. Besides the standard computer

simulators, drive-simulators or emulators have been often

used. The difference between a high quality simulation and

a high quality emulator rests in the fact that the whole

simulation runs on a computer, including optional user

interactions (i.e. parameterization of simulation calculation

under the running simulation). The emulator carries out the

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

295

mailto:mail@jobro.cz
mailto:jakesmar@gmail.com

calculations through a computer; however, their input-

output devices are a true imitation of real input-output

devices. An automobile emulator thus has a real steering

wheel, pedals and gear shift and is explicitly controlled by

these devices. An automobile simulator may have a very

sophisticated physics and dynamics of the drive, etc.;

however, as it is only controlled by a keyboard, it is a mere

simulator.

Besides the above mentioned, there is another specific

simulation type called “live simulation” which is mostly

dealt with in the military sector. This highly sophisticated

simulator type enables VDU and vibration units (and other

components) wearing users real engagement in virtual

reality. At all events, our libraries have been optimized for

a live simulation use.

Simulation, live simulation and emulators can be simply

named as simulators. Simulators are in principle used for

two main purposes: decision-making and training. The

existence of input-output devices corresponding to the true

image of professionally trained personnel is of the key

importance for the success of simulators. You can access

[Sinclair, 2013] for more information.

3.1. Types of input-output values

We can briefly characterize the types of values that a

simulator is expected to work with. They are divided

according to the direction, type and the processing demand.

Before focusing on individual types, it is essential to

determine the actual system to be observed. We can

explain the preceding proposition on an example: a simple

steering wheel can be approached from several different

angles.

The basic view is a very high abstraction defining the

steering wheel as a device in the state “steer angle”.

However, we would fail in a real system since we must

take in consideration also the steering dynamics, i.e. the

monitored system except the steer angle must be extended

by e.g. monitoring of dynamic change, because the steering

speed can be of the key importance in certain parts of the

simulation.

If we extend the view, the same steering wheel can be

simultaneously used as an output device – the simulator

can automatically manipulate such motions as the vehicle

yank in a road wash-out, etc.

3.2. Characterization by direction

The essential data characterizing feature is direction, i.e.

the determination whether input or output data are in

question. Many devices at real simulators are input and

output elements at the same time.

The following are simple examples:

 Input device: a button for the simulated industrial

operation start up

 Output device: an indicator displaying danger for train

operation on railway

 Combined device: a steering wheel taking the input

data from the user; however, at the same time enables an

output in the form of variable resistance in turning in

different terrain or according to the selected simulated

vehicle.

3.3. Data types

The basic types of data are the following: continuous,

digital and logic. Continuous data in driving trainers are

always transferred into digital data by means of a/d

converters. It is important to mention that minimum

deformation occurs because even the most basic converter

that transfers continuous data into a 1-byte value achieves

acceptable accuracy. In our example, the continuous value

is transferred to one of 256 values – a relative deviation of

any step is 0.4%, which is much a higher accuracy than a

person can achieve with his/her physical engagement.

Digital value processing in information technology

environment is very easy and simple to use in abstraction.

It is convenient (already in the problem analysis) to select a

specific data type, i.e. logical (Boolean) variables that

might reach only the “true – false” values. Logical value

processing not only is fastest but also easy to integrate in

input-output devices of the lowest level.

3.4. Processing demands

The data must be also characterized in terms of their

processing demands due to close relation to quality

validation and verification. In the event that an input-

output device is formed on the lowest level and all data

administered by a software architect, then the processing

demand, as well as testing, are very high.

In addition, there exists a real risk of a blind point in the

testing (i.e. situation where everything appears to be

functioning until a very specific situation occurs in which

the solution is non-functional / inaccurate).

A suitable way of reducing the processing demands is the

use of already existing solutions and software libraries,

mainly of a commercial nature. The best case of such

commercial solutions is affordable price focusing on the

segment highly similar to that of training devices

(especially computer games segment).¨

4. OWN SOFTWARE

It is inevitable to concentrate on the next solution level, i.e.

the software level. Despite the article focuses on a very low

level of simulation (in the following order: simulation

theory – practical solution – architecture of simulators –

libraries for simulators) and the hardware aspect is dealt

with as a mere overview, the principles used in software

are described with more details. The reason for this is the

fact that another potential user should know when the

solution can be really used.

4.1. Software description

Major part of this work is software-based, then, there is

need define parts of used software.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

296

4.1.1. HLA-VA

Java FX was selected as the basic programming language

because it provides a quality support for the scene

animation and the code can be performed from Java

programming language. This aspect is of a high importance

because the HLA-VA framework in the basic scheme is

implemented directly for Java and will be used in our

study. Since the objective is to employ also distributed

simulation, we can use the fact that pRTI provides a library

for Java language.

To perform the code, a virtual machine is required (JVM);

however, this is a standard approach in modern languages

(most other languages use .NET virtual machine).

Languages of C/C++ family are an exception: they are in

fact inapplicable for high quality visualization without

extensions and frameworks they use through virtual

libraries. More information at Brozek, Onggo and Kavicka

(2004).

For further versions and quality 3D graphic supported

views can be used options of OpenGL, including its

approaches (non-object programming) and specific

programming languages.

4.1.2. Use of drivers

Certain hardware types have drivers installed by the

manufacturer, which can be successfully used. The

programming principle is described in Figure 2 The

application logic itself can lean on the driver interface,

therefore in the event of hardware replacement for a device

whose driver has a corresponding interface (e.g. joystick),

the solution will keep functioning correctly. For more

information see e.g Henninger, Cutts, Loper (2014)

Figure 1: Programming lelvels [5]

4.1.3. Driver-free solution

Driver-free programming can be approached in several

different ways, where the most effective is formation of a

generic scheme that will later be capable of

parametrization. All of principles are low-level and are

under scope of this article. But principle which

demonstrates that each individual output of the device can

be set up as input - output and, at the same time, data

collection can be characterized (upon request / after a

change, etc.) from Huddleston (2007).

4.1.4. Interface of our solution

Interface of individual libraries is designed in an open way,

but intuitively.

For the connection to actual simulator, the designer is only

required to connect the hardware device, link the library

and implement interface methods for the appropriate

device.

The input -output interface within the library is provided

independently. Should the application require a combined

device (i.e. both input and output), it is essential to

implement two interfaces.

Complications may occur in the event that connection of

several input or output devices of the same type is needed

(with the same drivers) in one application (e.g. connection

of two steering wheels). This solution is currently not

applicable within our libraries, because the construction

does not allow for the use of parallel devices (the same

solution used by most commercial software types).

4.2. Use of our solution in SW

In the event that JAVA language is used, the link of drivers

coded in the same language is very simple for desktop,

website and mobile applications – i.e. mobile device

solutions.

Our libraries can be used in other programming languages;

however, the use is slightly more complicated (although

simpler than implementation from zero).

5. PROTOTYPES

The existence of input devices, their drivers and control

libraries are of abstract nature and very difficult to grasp.

An integral part of individual libraries formation is, among

others, formation of simple software prototypes whose

objective was a thorough testing of the appropriate

libraries. Validation and verification of a particular library

was carried out simultaneously.

5.1. Prototype 1: Automobile

At first, a simple prototype was designed. A set of steering

wheels and pedals was used that was originally designed

for computer games. This solution facilitated successful

validation and verification of a library for PC steering

wheels connected by a USB, which is very important

especially in regard to the fact that it is a wide spectre of

applicable devices that makes the library very useful. The

library is limited to the use of basic functions (steering

wheel turn, pedal operations, gears changing and six

additional buttons at the most). An advantage of the library

is implementation of the feedback interface, which

transforms a simple input device a combined one.

The prototype was used for the needs of our case study (see

Chapter 6).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

297

5.2. Prototype 2: Heavy gun sighting system

Library for driving a joystick was tested on an example of

a machine gun turret control. As in the previous example,

the connection was made via USB. The same prototype

was run on a tablet, which tested the libraries on another

platform. The prototype itself was formed with the stress

on its integration in a more extensive case study, which

was performed later (see Chapter 6).

5.3. Prototype 3: Connecting online simulation, sensor

network

Besides the distributed interactive simulation, our solution

also aims at online simulations. We decided to carry out

two case studies within the prototypes, where the first one

is more extensive. Generally speaking, sensor network

online reading is concerned, where actual input devices

were used (buttons and levers) connected to individual pins

of a Raspberry PI. The prototype (for complex connection

see Sinclair (2001) and Richardson (2012)) serves for

demonstration of the approach trivialities in the event that

our libraries are used.

An input device can be formed only by means of a PI

Raspberry, our library and almost any connective devices

(even by two wires connected to the Raspberry). This

prototype presents a key factor for the formation of any

type of input-output devices. USB feeding (optionally from

a mobile phone power bank) facilitates the creation of a

super-portable computer that can be used in a live

simulation since its weight (including power bank) does

not exceed 400g.

The most complex solution made within the prototype was

sensor network. Its objective was to emulate the security

device for operation on railway. The total of 10 sensors

with logical value can be evaluated and the data

immediately transferred to the simulation. This solution

can be used especially in decision-making simulations.

5.4. Prototype 4: Connection of online simulation,

status indicators

The last prototype (chronologically developed as the first

one) is a solution that employs low-level approaches.

Microcontroller AtMega was used for data processing and

input devices and mainly output devices were connected

directly. Although it is the most economical solution, its

implementation complexity outweighed all the others. In

addition, the libraries written for the needs of this solution

were eventually eliminated because their function required

a specific sensor type. The competitive price cannot

compensate the lack of comfort in further development.

Although the prototype with a microcontroller can be a

functioning solution, it is currently considered to bring

more drawbacks than benefits. The article lists this solution

rather for the purpose of complexity; the recommended

option is clearly the use of Raspberry PI.

6. CASE STUDY

Simple prototypes cannot fully demonstrate the suitability

of solutions, therefore a more extensive case study was

carried out.

For more information about construction of HLA

simulation models see Kuhl, Dahmann, Weatherly (2000),

Manling (1999) or Rabelo and col. (2014).

6.1. Demonstration

Model for the case study was a military vehicle displayed

in Figure 3. The vehicle has two important parts: the first

one is driver station, the second is shooter station – the

latter usually sits on the front- passenger seat and the heavy

gun located on the armoured vehicle roof is controlled

electronically.

Figure 2: Single car from case study

Figure 3 shows the vehicle drawing and its division into

individual simulators. The first – driver simulator –

contains a standard steering wheel and pedals. The second

simulator is designed for the shooter and its position is

emulated through joystick. Distributed interactive

simulation thus demonstrates two persons in one vehicle,

while each person can have his/her own point of view. One

person controls the vehicle and the other manipulates the

gun. The persons are independent of each other (but both

depend on the vehicle). The third federate (we are unable

to say that it is the simulator as such) takes care of the

environment (maps) and relating calculations. The motion

of the vehicle itself is not solved until the third federate.

Only two computers are required for the run of the whole

simulator (one for each user). Execution of the third

federate in view of the simulation study is not important.

6.2. Selection of technologies

For the above indicated reasons, HLA was used for

distribution of the solution. Since the remote control

libraries and also HLA-VA framework supply a sufficient

software solution for the formation of individual federates,

the most important part of the development was

visualization. Open GL was selected as visualization

technology. It is essential to say that in the selection of

technology, the application is not expected to have

sophisticated graphics as that of PC games. Graphic

parameters must comply with the requirements of

distributed interactive simulation (it is not a distributed

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

298

interactive simulation in terms of the DIS standard, i.e.

IEEE1278).

For more information about accessible technologies see for

DIS IEEE1278, for HLA IEEE1516:2010, Fujimoto (2000)

or SISO (2001).

6.3. Case study architecture

The case study is relatively simple: a simple system of

permitted and enabled operations is placed on the HLA-VA

framework for both of the federates. The federation

diagram is relatively simple due to the use of a large

number of libraries; it is demonstrated in Figure 4.

Figure 3: Real federation architecture

Few parts as Visualization federate can be run on mobile

devices, see Brozek, Jakes, Gago (2014) for mor

information about this principle.

There are differences in federation architecture for direct

method (when hardware control devices is connected to

computer), and spited method (when hardware control

device is connected to simpler device without own

monitor). This differences are at figure 5.

Figure 4: Two principles connection HW to HLA

simulation

6.4. Testing method

Two users have been selected for testing, while each of

them had the task to take up one position in the vehicle.

One target was determined within the environment to be

eliminated by users. All testing was carried out in relation

to this target (a shooter´s target). For example, in one of the

situations the driver´s task was to rotate around the target

while the shooter´s task was to keep the target in the view

finder of the gun (this way tested the coordination of both

the federates against each other).

Since the testing used the pRTI solution by Pitch

technologies, an integral part of RTI is a high quality

solution for monitoring the whole running federation data.

This method enables us to monitor actual synchronization

as well as the values of most of the attributes. Therefore

validation and verification could be performed from an

independent point through the third party´s software. The

running application in testing and the view of the

monitoring software are displayed in Figures 6, 7 and 8.

Figure 5: Drivers federate

Figure 6: Gunners federate

Figure 7: Visualization federate (two cars mode)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

299

7. CONCLUSION

The article reviewed the problem of connecting input-

output devices to a computer simulation and presented new

solutions based on the reusability principle. Encapsulating

the solution in libraries and release of this method to the

simulation community results in the fact that every person

within their commercial, academic or educational activity

can develop simulators that - besides keyboard and mouse -

can in reality use any input-output device.

Libraries as such open the way to building live simulators

or distributed simulation models connected into an online

simulation.

7.1. Potential for future development

The research was finalized and the designed libraries were

tested. In view of this fact, the development has been

completed. On the other hand, results published in this

article present only one of partial tasks to be carried out to

develop a high quality simulator for railway staff training.

Despite the development of libraries was finished, further

steps within our workplace consist in their application.

ACKNOWLEDGMENTS

Expenses related with publication of article were

funded from SGS announced by University of Pardubice at

2015, in section Application section software technology.

REFERENCES

Brozek J., Jakes M., Gago L. Using tablets in distributed

simulation. Pardubice, 2014. ISBN 978-889799932-4.

Conference Paper. EMSS 2014 Proceedings,

University of Bordeaux.

Brozek J., Onggo B.S., Kavicka A. High level architecture

virtual assistant framework. Pardubice, 2014. ISBN

978-889799932-4. Conference Paper. EMSS 2014

Proceedings, University of Bordeaux.

Fujimoto R.M., c2000, Parallel and distributed simulation

systems. New York; John Wiley & Sons. ISBN 04-

711-8383-0.

Henninger A.E., Cutts D., Loper M. Live Virtual

Constructive Architecture Roadmap (LVCAR) Final

Report, Institute for Defense Analysis, Sept, 2014,

Available from:

http://www.msco.mil/files/MSCO%20Online%20Libr

ary/LVCAR%20-%201%20of%205%20-

%20Final%20Report%20-%2020090814.pdf

Kuhl F., Dahmann J., Weatherly R., Creating Computer

Simulation Systems: An Introduction to the High

Level Architecture, c2000, Upper Saddle River, NJ;

Prentice Hall PTR. ISBN 01-302-2511-8.

Manlig, F., 1999. Computer simulation of discrete events.

Available from:

http://www2.humusoft.cz/www/archived/pub/witness/

9910/manlig.htm [accessed 15 July 2014].

Rabelo, L., Sala-Diakanda S., Pastrana J., Marin M., Bhide

S., Joledo O., Bardina J., 2013. Simulation Modeling

of Space Missions Using the High Level Architecture.

Available from:

http://www.hindawi.com/journals/mse/2013/967483/

[accessed 15 July 2014].

Richardson M., Wallace S.P. Getting started with

Raspberry Pi. 1st ed. Sebastopol, CA: O'Reilly Media,

2012, xiii, 161 p. Make: projects. ISBN 14-493-4421-

6.

Sinclair I. Sensors and transducers. 3rd ed. Oxford:

Newnes, 2001, xiv, 306 s. ISBN 07-506-4932-1.

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture

(HLA)-Framework and Rules. New York; IEEE.

ISBN 978-0-7381-6251-5.

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture

(HLA)-Object Model Template (OMT)

Specifications. New York; IEEE. 2010.ISBN 978-0-

7381-6249-2.

The institute of electrical and electronics engineers, Inc,

2010, IEEE1516:2010: IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture

(HLA)-Federate Interface Specification. New

York;IEEE. ISBN 978-0-7381-6247-8.

The institute of electrical and electronics engineers, Inc,

2010, IEEE standard for distributed interactive

simulation application protocols. New York: Institute

of Electrical and Electronics Engineers, 2002. ISBN

07-381-0992-4.

The simulation interoperability standards organization,

Independent Throughput and Latency Benchmarking

for the Evaluation of RTI Implementations, 2001,

The Simulation Interoperability Standards

Organization. Fall. DOI: SISO-01F-SIW-033.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

300

