
NUMEQUARES — ONLINE SIMULATION TOOL FOR EDUCATION AND ACADEMIC
RESEARCH

Stepan Orlov(a), Nikolay Shabrov(b)

(a),(b) Computer Technologies in Endineering dept.,
St. Petersburg State Polytechnical University,

St. Petersburg, Russia

(a)majorsteve@mail.ru, (b)shabrov@rwwws.ru

ABSTRACT
A new online simulation tool, NumEquaRes, is
presented. While other simulation tools focus on
helping to formulate model equations and provide a
limited number of analysis types, NumEquaRes focuses
on the formulation of the analysis algorithm to be
applied to the model. The model and the algorithm
together make a data processing system that can be run
in order to obtain numerical results. We have found that
some simple algorithms, e.g., generating Poincare map,
require too much programming when implemented
using popular tools such as MATLAB, Mathematica,
Maple, and others. This motivates the development of
yet another simulation tool providing much more
flexibility for simulation algorithms without having to
code them. The paper presents a set of example
simulations that illustrate the ability to perform
numerical investigations of dynamic systems.
NumEquaRes is an open source system available for use
and further extension to everyone. It is hosted at
http://equares.ctmech.ru.

Keywords: simulation, web application, numerical
research.

1. INTRODUCTION
In this work we present a new Web application,
NumEquaRes (the name means “Numerical Equation
Research”). It is a general tool for numerical
simulations available online. Currently, we are targeting
small systems of ordinary differential equations (ODE)
or finite difference equations arising in the education
process, but that might change in the near future — see
Sections 8, 9.
The reasons for developing yet another simulation
software have emerged as follows. Students were given
tasks to deduce the equations of motions of mechanical
systems — for example, a disk rolling on the horizontal
plane without slip (Routh 1905), or a classical double
pendulum (Meirovitch 1986), — and to try further
investigating these equations. While in some cases such
an investigation can more or less easily be done with
MATLAB, SciLab, or other existing software, in other

cases the situation is like there is no (freely available)
software that would allow one to formulate the task for
numerical investigation in a straightforward and natural
way.
For example, the double pendulum system exhibits
quasi-periodic or chaotic behavior (Meirovitch 1986),
depending on the initial state. To determine which kind
of motion corresponds to certain initial state, one needs
the Poincaré map (Teschl 2012) — the intersection of
phase trajectory with a hyperplane. Of course, there are
ODE solvers in MATLAB that produce phase
trajectories. We can obtain these trajectories as
piecewise-linear functions and then compute
intersections with the hyperplane. But what if we want
104–105 points in the Poincare map? How many points
do we need in the phase trajectory? Maybe 107 or more?
Obviously, the simplest approach described above
would be waste of resources. A better approach would
look at trajectory points one by one, test for
intersections with hyperplane, and forget points that are
no longer needed. But there is no straightforward way to
have simulation process like this in MATLAB.
Of course, there is software (even free software) that
can compute Poincaré maps. For example, the XPP (X-
Window PhasePlane) tool (Ermentrout 2002) can do
that. But what we have learned from our examples is
that we need certain set of features that we could not
find in any existing software. These features are as
follows:

• ability to explicitly specify simulation
algorithm;

• reasonable computational performance;
• ease of use by everyone, at least for certain use

cases;
• extensibility by everyone who needs a new

feature.
The first of these features is very important, but it is
missing in all existing tools we tried (see Section 7). It
seems that developers of these tools and authors of this
paper have different understanding of what a computer
simulation can be. Common understanding is that the
goal of any simulation is to reproduce the behavior of
system being investigated. Numerical simulations

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

258

mailto:majorsteve@mail.ru
mailto:shabrov@rwwws.ru

therefore most often perform time integration of
equations given by a mathematical model of the system.
In this paper, we give the term simulation a broader
meaning: it is data processing. Given that meaning, we
do not think the term is misused, because time
integration of model equations often remains the central
part of the entire process. Importantly, researcher might
need to organize the execution of that part differently,
e.g., run initial value problem many times for different
initial states or parameters, do intermediate processing
on consecutive system states produced by time
integrator, and so on.
Given the above general concept of numerical
simulation, our goal is to provide a framework that
supports the creation of data processing algorithms in a
simple and straightforward manner, avoiding any
coding except to specify model equations.
Next sections describe design decisions and
technologies chosen for the NumEquaRes system
(Section 2); simulation specification (Section 3) and
workflow semantics (Section 4); performance,
extensibility, and ease of use (Section 5); examples of
simulations (Section 6); comparison with existing tools
(Section 7); next steps to achieve interoperability with
modeling and simulation tools (Section 8). Section 9
summarizes current results and presents a roadmap for
future work.

2. DESIGN DECISIONS AND CHOICE OF

TECHNOLOGIES
Keeping in mind the primary goals formulated above,
we started our work.
Traditionally, simulation software have been designed
as desktop applications or high performance computing
(HPC) applications with desktop front-ends. Nowadays,
there are strong reasons to consider Web applications
instead of desktop ones, because on the one hand, main
limitations for doing so in the past are now vanishing,
and, on the other hand, there are many well-known
advantages of Web apps.
For example, our “ease of use” goal benefits if we have
a Web app, because this means “no need for user to
install any additional software”.
Thus we have decided that our software has to be a Web
application, available directly in user’s Web browser.
Now, the “extensibility by everyone” goal means that
our project must be free software, so the GNU Affero
GPL v3 license has been chosen. That should enforce
the usefulness of software for anyone who could
potentially extend it.
The “Reasonable performance” goal has determined the
choice of programming language for software core
components.
Preliminary measurements have shown that for a typical
simulation, native code compiled from C++ runs
approx. 100 times faster than similar code in MATLAB,
SciLab, or JavaScript (as of JavaScript, we tested
QtScript from Qt4; with other implementations, results
might be different). Therefore, we decided that the
simulation core has to be written in C++. The core is a

console application that runs on the server and interacts
with the outer world through its command line
parameters and standard input and output streams. It can
also generate files (e.g., text or images).
JavaScript has been chosen as the language for
simulation description and controlling the core
application. However, this does not mean that any part
of running simulation is executing JavaScript code.
The decision to use the Qt library has been made,
because it provides a rich set of platform-independent
abstractions for working with operating system
resources, and also because it supports JavaScript
(QtScript) out of the box.
Other parts of the applications are the Web server, the
database engine, and components running on the client
side. For the server, we preferred Node.js over other
technologies because we believe its design is really
suitable for Web applications — first of all, due to the
asynchronous request processing. For example, it is
easy to use HTML5 Server Sent Events (W3C 2014)
with Node.js, which is not the case with LAMP/WAMP
(Wikipedia 2015).
The MongoDB database engine has been picked among
others, because, on the one hand, its concept of storing
JSON-like documents in collections is suitable for us,
and, on the other hand, we do not really need SQL, and,
finally, it is a popular choice for Node.js applications.
As of the client code running in the browser, the
components used so far are jQuery and jQueryUI
(which is no surprise), the d3 library (Bostock 2015) for
interactive visualization of simulation schemes, the
marked (Jeffrey 2015) and MathJax (Krautzberger
2014) libraries to format markdown pages with TEX
formulas.
In the future, we are planning to add 3D visualization
using WebGL.

3. SIMULATION SPECIFICATION
The very primary requirement for NumEquaRes is to
provide user with the ability to explicitly specify how
data flows are organized in a simulation. This
determines how simulations are described. This is done
similarly to, e.g., the description of a scheme in the
Visualization Toolkit (VTK) (Kitware 2010),
employing the “pipes and filters” design pattern. The
basic idea is that simulation is a data processing system
defined by a scheme consisting of boxes (filters) with
input ports and output ports that can be connected by
links (pipes). Output ports may have many connections;
input ports are allowed to have at most one connection.
Simulation data travels from output ports to input ports
along the links, and from input ports to output ports
inside boxes. Inside each box, the data undergoes
certain transformation determined by the box type.
Typically boxes have input and output ports, so they are
data transformers. Boxes without input ports are data
sources, and boxes without output ports are data
storage.
Simulation data is considered to be a sequence of
frames. Each frame can consist of a scalar real value or

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

259

one-dimensional or multi-dimensional array of scalar
real values. The list of sizes of that array in all its
dimensions is called frame format. For example, format
{1} describes frames of scalar values, and format
{500,400} describes frames of two-dimensional arrays,
each having size 500×400. The format of each port is
assumed to be fixed during simulation.
Links between box ports are logical data channels, they
cannot modify data frames in any way. This means that
data format has to be the same at ports connected by a
link. Some ports define data format, while some do not;
instead, such a port takes format of port connected with
it by a link. Thus, data format propagates along links.
Furthermore, data format can also propagate through
boxes. This allows to provide quite flexible design to fit
the demands of various simulations.

4. SIMULATION WORKFLOW
This section explains how simulation runs, i.e., how the
core application processes data frames generated by
boxes.
Further, the main routine that controls the data
processing is called runner.

4.1. Activation notifications
When a box generates a data frame and sends it to an
output port, it actually does two things:

• makes the new data frame available in its
output port;

• activates all links connected to the output port.
This step can also be called output port
activation.

Each link connects an output port to an input port, and
its activation means sending notification to input port
owner box. The notification just says that a new data
frame is available at that input port.
When a box receives such a notification, it is free to do
whatever it wants to. In some cases, these notifications
are ignored; in other cases, they cause box to start
processing data and generate output data frames, which
leads to link activation again, and the data processing
goes one level deeper. For example, the Pendulum
box has two input ports, parameters and state.
When a data frame comes to parameters, the
activation notification is ignored (but next time the box
will be able to read parameters from that port). When a
data frame comes to state, the activation is not
ignored. Instead, the box computes ODE right hand side
and sends it to the output port oderhs.

4.2. Cancellation of data processing
Link activation notification is actually a function call,
and the box being notified returns a value indicating
success or failure. If link activation fails, the data
processing is canceled. This can happen when some box
cannot obtain all data it needs from input ports. For
example, the Pendulum box can process the activation
of link connected to port state only if there are some
parameters available in port parameters. If it is so,

the activation succeeds. Otherwise, the activation fails,
and the processing is canceled.
If a box sends a data frame to its output port, and the
activation of that output port fails, the box always
cancels the data processing. Notice that this is always
done by returning a value indicating activation failure,
because the box can only do something within an
activation notification.

4.3. Data source box activation
Each simulation must have at least one data source box
— a box having output ports but no input ports. There
can be more than one data source in a simulation.
Data sources can be passive sources or generators. A
generator is a box that can be notified just as a link can
be. A passive data source cannot be notified.
A passive data source produces one data frame (per
output port) during the entire simulation. The data
frame is available on its output port from the very
beginning of the simulation.

4.4. Initialization of the queue of notifications
When the runner starts data processing, it first considers
all data sources and builds the initial state of the queue
of notifications. For each generator, its notification is
enqueued. For each passive data source, the notification
of each of its links is enqueued.

4.5. Processing of the queue of notifications
Then the queue is processed by sending the activation
notifications (i.e., calling notification functions) one by
one, from the beginning to the end. If a notification call
succeeds, the notification is removed from the queue.
Otherwise, if the notification call fails (i.e., the data
processing gets canceled), the notification is moved to
the end of the queue, and the process continues.
The runner processes its queue of notifications until it
becomes empty, or maximum number of activation
notification failures (currently 100) is exceeded. In the
latter case, the entire simulation fails.

4.6. Post-processing
When the queue of notifications becomes empty, the
runner can enqueue post-processors before it stops the
data processing. The only example of a post-processor
is the Pause box. Post-processors, like generators, are
boxes that can receive activation notifications.

4.7. User input events
The above process normally takes place during the
simulation. In addition, there could be events that break
the processing of the queue of notifications. These
events are caused by interactive user input. Once a user
input event occurs, an exception is thrown, which leads
to the unwinding of any nested link activation calls and
the change of the queue of notifications. Besides, each
box gets notified about simulation restart.
The queue of notifications is changed as follows when
user input occurs. First, the queue is cleared. Then one
of two things happens.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

260

• \item If the box that threw the exception
specifies which box should be activated after
restart, the notifications for that box are
enqueued (if the box is a generator, its
activation notification is enqueued; otherwise,
the activation notifications of all links
connected to its output ports are enqueued). An
input box can only specify itself as the next
box to activate, or specify nothing.

• \item If the box that threw the exception
specifies no box to be activated after restart,
the standard initialization of the notification
queue is done.

After that, the processing of notification queue
continues.
There is an important issue that must be taken care of.
Simulation can potentially be defined in such a way that
its execution leads to an infinite loop of recursive
invocation of activation notifications. This normally
causes program to crash due to stack overflow. In our
system, however, some boxes (not all, but only those
activating outputs in response to more than one input
notification) are required to implement counters for
recursive call depth. When such a counter reaches 2,
simulation is considered to be invalid and is terminated.
This allows to do some kind of runtime validation
against recursion at the cost of managing call depth
counters.
It should be noticed that theoretically, simulations that
we are dealing with here are a subclass of discrete event
systems (Zeigler, Kim, and Praehofer 2000) with
discrete time; one time step corresponds to the returning
from an activation call.

5. PERFORMANCE, EXTENSIBILITY, AND

EASE OF USE
As stated in Section 1, computational performance and
functional extensibility are considered important design
features of the NumEquaRes system. This section
provides technical details on what has been done to
achieve performance and support extensibility. Last
subsection highlights design features that make system
easier to use.

5.1. Performance
To achieve reasonable performance, it is not enough to
just use C++. Some additional design decisions should
be made. Most important of them are already described
above. The ability to organize simulation workflow
arbitrarily allows to achieve efficient memory usage,
which is illustrated by an example in Section 1. A
number of specific decisions made in the design of
NumEquaRes core are targeted to high throughput.
They are driven by the following rules.

• Perform simulation in a single thread. While
this is a serious performance limitation for a
single simulation, we have made this decision
because the simulation runs on the Web server,
and parallelization inside a single simulation is
likely to impact the performance of server, as it

might run multiple simulations simultaneously.
And, on the other hand, single thread means no
synchronization overhead.

• No frequent operations involving interaction
with operating system. Each box is responsible
for that. For example, data storage boxes
should not write output data to files or check
for user input frequently. The performance
might drop even if the time is measured using
QTime::elapsed() too frequently.

• No memory management for data frames
within activation calls. In fact, almost 100\%
of simulation time is spent in just one
activation call made by runner (during that
call, in turn, other activation calls are made).
Therefore, memory management outside
activation calls (e.g., the allocation of an
element of the queue of notifications) is not a
problem. Still some memory allocation
happens when a box writes its output data, but
this is not a problem as well, since such
operations are not frequent.

• No movement of data frames in memory. If a
box produces an output frame and makes it
available in its output port, all connected boxes
read the data directly from memory it was
originally written to. This item and the
previous one both imply that there are nothing
like queues of data frames, and each frame is
processed immediately after it is produced.

• No virtual function calls within activation
calls. Instead, calls by function pointer are
preferred.

A simple architecture of classes has been developed to
comply with the rules listed above and, in the same
time, to encapsulate the concepts of box, port, link, and
others. These classes are split into ones for use at the
initialization stage, when simulation is loaded, and
others for use at simulation run time. First set of classes
may rely on Qt object management system to support
their lifetime and the exposure of parameters as
JavaScript object properties. Classes of the second set
are more lightweight; their implementations are inlined
whenever possible and appropriate, in order to reduce
function call overhead.
Although NumEquaRes core performance has been
optimized in many aspects, it seems impossible to
combine speed and flexibility. Our experience with
some examples indicates that hand-coded algorithms
run several times faster than those prepared in our
system.

5.2. Extensibility
The functionality of NumEquaRes mostly resides in
boxes. To add a new feature, one thus can write code
for a new box. Boxes are completely independent.
Therefore, adding a new one to the core simply boils
down to adding one header file and one source file and
recompiling. The core will be aware of the presence of
the new box through its box factory mechanism. Next

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

261

steps are to support the new box on server by adding
some meta-information related to it (including user
documentation page) and some client code reproducing
the semantics of port format propagation through the
box. The checklist can be found in the online
documentation.
Some extensions, however, cannot be done by adding
boxes. For example, to add 3D visualization, one needs
to change the client-side JavaScript code. We are
planning to simplify extensions of this kind; however,
this requires refactoring of current client code.

5.3. Ease of use
First of all, NumEquaRes is an online system, so user
does not have to download and install any software,
provided user already has a Web browser. All user
interaction with the system is done through the browser.
To formulate a simulation as a data processing
algorithm, user composes a scheme consisting of boxes
and links, and there is no need to code.
Online help system contains a detailed documentation
page for each box; it also explains simulation workflow,
user interface, and other things; there is one step-by-
step tutorial.
To prepare a simulation, user can find a similar one in
the database, then clone it and modify. User can decide
to make his/her simulation public or private; public
simulations can be viewed, run, and cloned by
everyone. To share a simulation with a colleague, one
shares a hyperlink to it; besides, simulations can be
downloaded and uploaded.
Currently, user might have to specify part of simulation,
such as ODE right hand side evaluation, in the form of
C++ code. We understand this might be difficult for
people not familiar with C++. To mitigate this problem,
there are two features. Firstly, each box that needs C++
code input provides a simple working example that can
be copied and modified. Secondly, NumEquaRes
supports the concept of code snippets. Each piece of
C++ input can be given a documentation page and
added to the list of code snippets. These snippets can
easily be reused by everyone. See also Section 8.
Another feature that plays a role similar to debugger's is
the visualization of simulation data flows. The feature is
currently under development and not available through
the Web interface.

6. EXAMPLES OF SIMULATIONS
This section lists several examples of simulations.
Figure 1 shows one of the simplest simulations — the
one that plots a single phase trajectory for a simple
pendulum. The ODE system is provided by the ode
box. NumEquaRes has a number of options for user to
supply equations. In particular, it is possible to provide
C++ code that computes ODE right hand side. Such
code compiles and runs on the server, if it passes a
security check. The ODE right hand side depends on the
state variables and the vector of parameters. They are
supplied through input ports. Parameters are specified
in the odeParam box. State variables come from the

solver box. The solver performs numerical
integration of the initial value problem, starting from
the user-specified initial state (the initState box).
The solver can be configured to perform a fixed number
of time steps or to run until interrupted by a data frame
at its stop port. Each time the solver obtains a new
system state vector, it sends the vector to its
nextState port. Once the solver finishes, it activates
the finish port to let others know about it. In this
simulation, consecutive system states are projected to
the phase plane (the proj box) and then rasterized by
the canvas box. Finally, the data comes to the
bitmap box that generates the output image file.
Notice that this simulation has three data sources,
odeParam, solverParam, and initState.

Figure 1: Single phase trajectory

From this simplest example one can see how to
construct simulation scheme from boxes and links that
computes what user needs. Other examples are more
complex, but they basically contain boxes of the same
types, plus probably some more. So far, there are 40
different box types in NumEquaRes, and it is beyond
the scope of this article to describe them all. Further, we
will just focus on some of them to show how
simulations work.

Figure 2: Interactive phase portrait

An important aspect of a simulation is its ability to
interact with the user. There are a few boxes that
transform various kinds of interactive user input
(clicking, moving sliders, rotating mouse wheel, etc.)
into numerical values. These boxes usually act as
simple filters of data frames; they replace some
components of data frames with values obtained from
user. Figure 2 shows an example of interactive
simulation: it generates phase trajectories going through
points on plane — the ones user has clicked with the
mouse. The box isInput is responsible for that kind

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

262

of input. Each generated phase curve has two parts: blue
in the time-positive direction (with resp. to the clicked
point) and red in the time-negative direction.

Figure 3: Double pendulum, Poincaré map (50000
points, 28.5 s)

Figure 3 shows the Poincaré map for the classical
double pendulum system. Importantly, there is no need
to store phase trajectory or individual points of
intersection of the trajectory with the plane during
simulation. The entire processing cycle (test for
intersection; projection; rasterization) is done as soon as
a new point of the trajectory is obtained. After that, we
need to store just one last point from the trajectory.
Simulations like this are what we could not do easily in
MATLAB or SciLab, and they have inspired us to
develop NumEquaRes.

Figure 4: Ince-Strutt stability diagram (500×500 points,
6.3 s)

Figure 4 shows a simple simulation that allows one to
obtain a stability diagram of a linear ODE system with
periodic coefficients on the plane of parameters. Here
the picture on the right is the Ince–Strutt diagram for the
Mathieu equation (Abramowitz and Stegun 1972).
People who have experience with it know how difficult
it is to build such kind of diagrams analytically, even to
find the boundaries of stability region near the
horizontal axis. What we suggest here is the brute force
approach — it is fast enough, general enough, and it is
done easily. The idea is to split the rectangle of
parameters into pixels and analyze the stability in the
bottom-left corner of each pixel (by computing
eigenvalues of the monodromy matrix (Teschl 2012)),
then assign pixel color to black or white depending on
the result. In this simulation, important new boxes are
odeParamGrid and stabilityChecker. The
former one provides a way to generate points on a
multi-dimensional grid, and the latter one analyzes the

stability of a linear ODE system with periodic
coefficients.

Figure 5: Strange attractor for forced Duffing equation
(interactive simulation)

Figure 5 shows another application of the Poincaré map,
now in the visualization of the strange attractor arising
in the forced Duffing equation (Bender and Orszag
1999). User can change parameters interactively and see
how the picture changes. This simulation is simpler than
the one shown in Figure 3, because to obtain a new
point on canvas, one just needs to apply time integration
over known time period of system excitation.

Figure 6: Colored Mandelbrot set (interactive
simulation)

Figure 6 shows an interactive simulation of the
Mandelbrot set (Mandelbrot 2004). User can pan and
zoom the picture using the mouse. Importantly, we did
not have to develop any new box types in order to
describe the logic of convergence analysis for
sequences of complex numbers generated by the
system. This is done with general purpose boxes d
(computes differences of subsequent data frames), dn
(computes vector norm), and tdn (detects if a scalar
value exceeds some threshold). Pixel colors depend on
how many iterations passed (box c is a counter, its
output value is joined with pixel coordinates at box j
and sent to canvas).

7. COMPARISON WITH OTHER TOOLS
Direct comparison between NumEquaRes and other
existing tools is problematic because all of them (at
least, those that we have found) do not provide an easy
way for user to describe the data processing algorithm.
In some systems, the algorithm can be available as a
predefined analysis type; in others, user would have to

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

263

code the algorithm; also, there are systems that need to
be complemented with external analysis algorithms.
Let us consider example simulations shown in Figures
3, 4, 5, and try to solve those using different free tools;
for commercial software, try to find out how to do it
from the documentation. Further in this section, figure
number refers to the example problem.

Table 1: Comparison of NumEquaRes with other tools

Name Free Web Can solve Fast
Mathematica no yes 3, 4, 5;

needs
coding

n/a

Maple no no 3, 4, 5;
needs
coding

n/a

MATLAB no no 3, 4, 5;
needs even

more coding

no
SciLab yes no no

OpenModelica yes no none could be
XPP yes no 3, 5 yes

InsightMaker yes yes none n/a

In Table 1, commercial proprietary software is limited
to most popular tools — Mathematica, Maple, and
MATLAB. In many cases, purchasing a tool might be
not what a user (e.g., a student) is likely to do.
All of the three example simulations are solvable with
commercial tools Mathematica, Maple, and MATLAB.
In Mathematica, it is possible to solve problems like
3, 5 using standard time-stepping algorithms since
version 9 (released 24 years later than version 1) due to
the WhenEvent functionality. Problem 4 can also be
solved. All algorithms have to be coded. Notice that
Wolfram Alpha (Wolfram, 2015) (freely available Web
interface to Mathematica) cannot be used for these
problems.
Maple has the DEtools[Poincare] subpackage
that makes it possible to solve problem 3 and others
with Hamiltonian equations; problems 4, 5 can be
solved by coding their algorithms.
With MATLAB or SciLab, one can code algorithms for
problems 4, 5 using standard time-stepping algorithms.
For problem 3, one needs either to implement time-
stepping algorithm separately or to obtain Poincaré map
points by finding intersections of long parts of phase
trajectory with the hyperplane. Both approaches are
more difficult than those in Mathematica and Maple.
And, even if implemented, simulations are much slower
than with NumEquaRes.
OpenModelica (Fritzson 2004) is a tool that helps user
formulate the equations for a system to be simulated;
however, it is currently limited to only one type of
analysis — the solution of initial value problem.
Therefore, to solve problems like 3, 4, 5, one has to
code their algorithms (e.g., in C or C++, because the
code for evaluating equations can be exported as C
code).
XPP (Ermentrout 2002) provides all functionality
necessary to solve problems 3, 5. It contains many

algorithms for solving equations (while NumEquaRes
does not) and is a powerful research tool. Yet it does not
allow user to define a simulation algorithm, and we
have no idea how to use it for solving problem 4.
Among other simulation tools we would like to mention
InsightMaker (Fortmann-Roe 2014). It is a free Web
application for simulations. It has many common points
with NumEquaRes, although its set of algorithms is
fixed and limited. Therefore, problems 3, 4, 5 cannot be
solved with InsightMaker.
Concluding this section, we have to state that other
tools either provide a fixed set of data processing
algorithms or require them to be coded by users.

8. STEPS TO ACHIEVE INTEROPERABILITY

WITH MODELING AND SIMULATION
TOOLS

8.1. Importing model equations
NumEquaRes focuses on the development of simulation
algorithm and the execution of it. Simulations are
dedicated to investigation of certain systems that are
described by some equations. Currently, these equations
have to be coded in C++ by hand as parameters of some
boxes, such as CxxOde. We realize that it's easy only
for very simple systems. We also realize that there are
tools, such as OpenModelica (Fritzson 2004), capable
of generating C-code plus some meta-data that describe
models specified by user in a more simple and natural
way.
To utilize the power of modeling tools in NumEquaRes,
it is not necessary to create a monolith system
integrating all pieces together. Instead, one could export
model equations from a modeling tool and use them in a
NumEquaRes simulation. Before year 2010, it was
questionable which data format to use for the export of
model equations, and how to enable the export feature
in a modeling tool. In 2010, the Functional Mock-up
Interface (FMI) (Modelica 2015) has been proposed,
and since then has been adopted as the model exchange
format by many modeling and simulation tools. The
format is suitable for describing a model of dynamical
system or its part; the system can be described by
differential, algebraic, and discrete-time equations with
possible state transitions due to events. Therefore, FMI
is perfectly suitable for use to import model equations
in NumEquaRes.
Using the FMI, a modeling tool exports the equations of
a model in the form of Functional Mock-up Unit
(FMU). It is quite easy to develop a box in
NumEquaRes that wraps an arbitrary FMU and exhibits
all necessary parameters and variables through its input
and output ports.
Next step is to have a time integrator box in
NumEquaRes that could be used for solving the initial
value problem for an FMU (currently, we only have
explicit Runge — Kutta scheme of fourth order with
fixed step-size, which is insufficient). To accomplish
this step, we are planning to use the CVODE
(Woodward, Reynolds, Hindmarsh, and Banks 2015)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

264

solver, providing its functionality through a box. Other
existing freely available time integrators can be used as
well in a similar manner.

8.2. Using NumEquaRes core library
The other way to interoperate with NumEquaRes is to
use its core library in a simulation tool. The developer
of the tool can supply model equations to NumEquaRes
through the CxxOde box or develop a new one that
better integrates with the tool. It might also be necessary
to wrap some additional functionality in new boxes.
Any tool can use NumEquaRes, provided that the usage
conforms to the GNU Affero General Public License,
version 3.

9. CONCLUSION AND FUTURE WORK
A new tool for numerical simulations, NumEquaRes,
has been developed and implemented as a Web
application. The core of the system is implemented in
C++ in order to deliver good computational
performance. It is free software and thus everyone can
contribute into its development. The tool already
provides functionality suitable for solving many
numerical problems, including the visualization of
Poincaré maps, stability diagrams, fractals, and more.
NumEquaRes lacks any modeling capabilities, since
model equations have to be coded by hand. However,
there are ways to interoperate with modeling tools using
FMI. Besides, NumEquaRes core library can be used in
a simulation tool.
The algorithm of simulation runner implies that the
order of activation calls it makes is not important, i.e.,
does not affect simulation results. While this is true for
typical simulations, counter-examples can be invented.
Further work is to make it possible to distinguish such
simulations from regular ones and render them invalid.
NumEquaRes is a new project, and the current state of
its source code corresponds more to the proof-of-
concept stage than the production-ready stage, because
human resources assigned to the project are very
limited. To improve the source code, it is necessary to
add developer documentation, add unit tests, and deeply
refactor both client and server parts of the Web
interface.
Further plans of NumEquaRes development include
new features that would significantly extend its field of
application. One of them is a box wrapping arbitrary
FMUs containing model equations; the other one is a
box wrapping the functionality of the CVODE solver.
Another set of planned features aims to enhance the
level of presentation of simulation results (currently, it
is quite modest). Among them is 3D visualization and
animation.

REFERENCES
Abramowitz M., Stegun I., 1972. Handbook of

mathematical functions, pp. 721–750. Washington
DC: Dover Publications Inc.

Bender C.M., Orszag S.A., 1999. Advanced
mathematical methods for scientists and engineers

I: Asymptotic methods and perturbation theory,
pp. 545–551. New York: Springer-Verlag.

Bostock M. 2015. Data-driven documents. Available
from: http://d3js.org [Accessed June 2015].

Ermentrout B., 2002. Simulating, analyzing, and
animating dynamical systems: A guide to
XPPAUT for researchers and students. SIAM.

Fortmann-Roe S., 2014. Insight Maker: A general-
purpose tool for web-based modeling &
simulation. Simulation modelling practice and
theory, 47:28–45.

Fritzson P., 2004. Principles of object-oriented
modeling and simulation with Modelica 2.1.
Wiley-IEEE Press, New Jersey.

Jeffrey C., 2015. A markdown parser and compiler.
Built for speed. Available from:
https://github.com/chjj/marked [Accessed June
2015].

Kitware, Inc., 2010. VTK user's guide. Kitware.
Krautzberger P., 2014. MathJax — beautiful

mathematics on the web. Available from:
http://pkra.github.io/slides-mathjax [Accessed
June 2015].

Mandelbrot B.B., 2004. Fractals and chaos: the
Mandelbrot set and beyond. New York, Berlin,
Paris: Springer-Verlag.

Meirovitch, L., 1986. Elements of vibration analysis.
New York: McGraw-Hill.

Modelica Association, 2015. Functional mock-up
interface. Available at https://www.fmi-
standard.org [Accessed June 2015].

Routh E.J., 1905. The advanced part of a treatise on the
dynamics of a system of rigid bodies. London:
Macmillan.

Teschl G., 2012. Ordinary differential equations and
dynamical systems. Available from:
http://www4.ncsu.edu/~schecter/ma_732_sp13/tes
chl_ode.pdf [Accessed June 2015].

W3C, 2014. Server-sent events (second edition).
Available from: https://w3c.github.io/eventsource
[Accessed June 2015].

Wikipedia, 2015. LAMP (software bundle). Available
from:
https://en.wikipedia.org/wiki/LAMP_(software_bu
ndle) [Accessed June 2015].

Wolfram Research, 2015. WolframAlpha —
computational knowledge engine. Available at
http://www.wolframalpha.com [Accessed June
2015].

Woodward C.S., Reynolds D.R., Hindmarsh A.C.,
Banks L.E., 2015. SUNDIALS — suite of
nonlinear and dIfferential/algebraic equation
solvers. Available at
https://computation.llnl.gov/casc/sundials/main.ht
ml [Accessed June 2015].

Zeigler B.P., Kim, T.G., Praehofer H., 2000. Theory of
modeling and simulation: integrating discrete
event and continuous complex dynamic systems.
Amsterdam, San Diego (Calif.), London:
Academic Press.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

265

