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ABSTRACT 
A new online simulation tool, NumEquaRes, is 
presented. While other simulation tools focus on 
helping to formulate model equations and provide a 
limited number of analysis types, NumEquaRes focuses 
on the formulation of the analysis algorithm to be 
applied to the model. The model and the algorithm 
together make a data processing system that can be run 
in order to obtain numerical results. We have found that 
some simple algorithms, e.g., generating Poincare map, 
require too much programming when implemented 
using popular tools such as MATLAB, Mathematica, 
Maple, and others. This motivates the development of 
yet another simulation tool providing much more 
flexibility for simulation algorithms without having to 
code them. The paper presents a set of example 
simulations that illustrate the ability to perform 
numerical investigations of dynamic systems. 
NumEquaRes is an open source system available for use 
and further extension to everyone. It is hosted at 
http://equares.ctmech.ru. 

 
Keywords: simulation, web application, numerical 
research. 

 
1. INTRODUCTION 
In this work we present a new Web application, 
NumEquaRes (the name means “Numerical Equation 
Research”). It is a general tool for numerical 
simulations available online. Currently, we are targeting 
small systems of ordinary differential equations (ODE) 
or finite difference equations arising in the education 
process, but that might change in the near future — see 
Sections 8, 9. 
The reasons for developing yet another simulation 
software have emerged as follows. Students were given 
tasks to deduce the equations of motions of mechanical 
systems — for example, a disk rolling on the horizontal 
plane without slip (Routh 1905), or a classical double 
pendulum (Meirovitch 1986), — and to try further 
investigating these equations. While in some cases such 
an investigation can more or less easily be done with 
MATLAB, SciLab, or other existing software, in other 

cases the situation is like there is no (freely available) 
software that would allow one to formulate the task for 
numerical investigation in a straightforward and natural 
way. 
For example, the double pendulum system exhibits 
quasi-periodic or chaotic behavior (Meirovitch 1986), 
depending on the initial state. To determine which kind 
of motion corresponds to certain initial state, one needs 
the Poincaré map (Teschl 2012) — the intersection of 
phase trajectory with a hyperplane. Of course, there are 
ODE solvers in MATLAB that produce phase 
trajectories. We can obtain these trajectories as 
piecewise-linear functions and then compute 
intersections with the hyperplane. But what if we want 
104–105 points in the Poincare map? How many points 
do we need in the phase trajectory? Maybe 107 or more? 
Obviously, the simplest approach described above 
would be waste of resources. A better approach would 
look at trajectory points one by one, test for 
intersections with hyperplane, and forget points that are 
no longer needed. But there is no straightforward way to 
have simulation process like this in MATLAB. 
Of course, there is software (even free software) that 
can compute Poincaré maps. For example, the XPP (X-
Window PhasePlane) tool (Ermentrout 2002) can do 
that. But what we have learned from our examples is 
that we need certain set of features that we could not 
find in any existing software. These features are as 
follows: 

• ability to explicitly specify simulation 
algorithm; 

• reasonable computational performance; 
• ease of use by everyone, at least for certain use 

cases; 
• extensibility by everyone who needs a new 

feature. 
The first of these features is very important, but it is 
missing in all existing tools we tried (see Section 7). It 
seems that developers of these tools and authors of this 
paper have different understanding of what a computer 
simulation can be. Common understanding is that the 
goal of any simulation is to reproduce the behavior of 
system being investigated. Numerical simulations 
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therefore most often perform time integration of 
equations given by a mathematical model of the system. 
In this paper, we give the term simulation a broader 
meaning: it is data processing. Given that meaning, we 
do not think the term is misused, because time 
integration of model equations often remains the central 
part of the entire process. Importantly, researcher might 
need to organize the execution of that part differently, 
e.g., run initial value problem many times for different 
initial states or parameters, do intermediate processing 
on consecutive system states produced by time 
integrator, and so on. 
Given the above general concept of numerical 
simulation, our goal is to provide a framework that 
supports the creation of data processing algorithms in a 
simple and straightforward manner, avoiding any 
coding except to specify model equations. 
Next sections describe design decisions and 
technologies chosen for the NumEquaRes system 
(Section 2); simulation specification (Section 3) and 
workflow semantics (Section 4); performance, 
extensibility, and ease of use (Section 5); examples of 
simulations (Section 6); comparison with existing tools 
(Section 7); next steps to achieve interoperability with 
modeling and simulation tools (Section 8). Section 9 
summarizes current results and presents a roadmap for 
future work. 
 
2. DESIGN DECISIONS AND CHOICE OF 

TECHNOLOGIES 
Keeping in mind the primary goals formulated above, 
we started our work. 
Traditionally, simulation software have been designed 
as desktop applications or high performance computing 
(HPC) applications with desktop front-ends. Nowadays, 
there are strong reasons to consider Web applications 
instead of desktop ones, because on the one hand, main 
limitations for doing so in the past are now vanishing, 
and, on the other hand, there are many well-known 
advantages of Web apps. 
For example, our “ease of use” goal benefits if we have 
a Web app, because this means “no need for user to 
install any additional software”. 
Thus we have decided that our software has to be a Web 
application, available directly in user’s Web browser. 
Now, the “extensibility by everyone” goal means that 
our project must be free software, so the GNU Affero 
GPL v3 license has been chosen. That should enforce 
the usefulness of software for anyone who could 
potentially extend it. 
The “Reasonable performance” goal has determined the 
choice of programming language for software core 
components. 
Preliminary measurements have shown that for a typical 
simulation, native code compiled from C++ runs 
approx. 100 times faster than similar code in MATLAB, 
SciLab, or JavaScript (as of JavaScript, we tested 
QtScript from Qt4; with other implementations, results 
might be different).  Therefore, we decided that the 
simulation core has to be written in C++. The core is a 

console application that runs on the server and interacts 
with the outer world through its command line 
parameters and standard input and output streams. It can 
also generate files (e.g., text or images). 
JavaScript has been chosen as the language for 
simulation description and controlling the core 
application. However, this does not mean that any part 
of running simulation is executing JavaScript code. 
The decision to use the Qt library has been made, 
because it provides a rich set of platform-independent 
abstractions for working with operating system 
resources, and also because it supports JavaScript 
(QtScript) out of the box. 
Other parts of the applications are the Web server, the 
database engine, and components running on the client 
side. For the server, we preferred Node.js over other 
technologies because we believe its design is really 
suitable for Web applications — first of all, due to the 
asynchronous request processing. For example, it is 
easy to use HTML5 Server Sent Events (W3C 2014) 
with Node.js, which is not the case with LAMP/WAMP 
(Wikipedia 2015). 
The MongoDB database engine has been picked among 
others, because, on the one hand, its concept of storing 
JSON-like documents in collections is suitable for us, 
and, on the other hand, we do not really need SQL, and, 
finally, it is a popular choice for Node.js applications. 
As of the client code running in the browser, the 
components used so far are jQuery and jQueryUI 
(which is no surprise), the d3 library (Bostock 2015) for 
interactive visualization of simulation schemes, the 
marked (Jeffrey 2015) and MathJax (Krautzberger 
2014) libraries to format markdown pages with TEX 
formulas. 
In the future, we are planning to add 3D visualization 
using WebGL. 
 
3. SIMULATION SPECIFICATION 
The very primary requirement for NumEquaRes is to 
provide user with the ability to explicitly specify how 
data flows are organized in a simulation. This 
determines how simulations are described. This is done 
similarly to, e.g., the description of a scheme in the 
Visualization Toolkit (VTK) (Kitware 2010), 
employing the “pipes and filters” design pattern. The 
basic idea is that simulation is a data processing system 
defined by a scheme consisting of boxes (filters) with 
input ports and output ports that can be connected by 
links (pipes). Output ports may have many connections; 
input ports are allowed to have at most one connection. 
Simulation data travels from output ports to input ports 
along the links, and from input ports to output ports 
inside boxes. Inside each box, the data undergoes 
certain transformation determined by the box type. 
Typically boxes have input and output ports, so they are 
data transformers. Boxes without input ports are data 
sources, and boxes without output ports are data 
storage. 
Simulation data is considered to be a sequence of 
frames. Each frame can consist of a scalar real value or 
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one-dimensional or multi-dimensional array of scalar 
real values. The list of sizes of that array in all its 
dimensions is called frame format. For example, format 
{1} describes frames of scalar values, and format 
{500,400} describes frames of two-dimensional arrays, 
each having size 500×400. The format of each port is 
assumed to be fixed during simulation. 
Links between box ports are logical data channels, they 
cannot modify data frames in any way. This means that 
data format has to be the same at ports connected by a 
link. Some ports define data format, while some do not; 
instead, such a port takes format of port connected with 
it by a link. Thus, data format propagates along links. 
Furthermore, data format can also propagate through 
boxes. This allows to provide quite flexible design to fit 
the demands of various simulations. 
 
4. SIMULATION WORKFLOW 
This section explains how simulation runs, i.e., how the 
core application processes data frames generated by 
boxes. 
Further, the main routine that controls the data 
processing is called runner. 
 
4.1. Activation notifications 
When a box generates a data frame and sends it to an 
output port, it actually does two things: 

• makes the new data frame available in its 
output port; 

• activates all links connected to the output port. 
This step can also be called output port 
activation. 

Each link connects an output port to an input port, and 
its activation means sending notification to input port 
owner box. The notification just says that a new data 
frame is available at that input port. 
When a box receives such a notification, it is free to do 
whatever it wants to. In some cases, these notifications 
are ignored; in other cases, they cause box to start 
processing data and generate output data frames, which 
leads to link activation again, and the data processing 
goes one level deeper. For example, the Pendulum 
box has two input ports, parameters and state. 
When a data frame comes to parameters, the 
activation notification is ignored (but next time the box 
will be able to read parameters from that port). When a 
data frame comes to state, the activation is not 
ignored. Instead, the box computes ODE right hand side 
and sends it to the output port oderhs. 
 
4.2. Cancellation of data processing 
Link activation notification is actually a function call, 
and the box being notified returns a value indicating 
success or failure. If link activation fails, the data 
processing is canceled. This can happen when some box 
cannot obtain all data it needs from input ports. For 
example, the Pendulum box can process the activation 
of link connected to port state only if there are some 
parameters available in port parameters. If it is so, 

the activation succeeds. Otherwise, the activation fails, 
and the processing is canceled. 
If a box sends a data frame to its output port, and the 
activation of that output port fails, the box always 
cancels the data processing. Notice that this is always 
done by returning a value indicating activation failure, 
because the box can only do something within an 
activation notification. 
 
4.3. Data source box activation 
Each simulation must have at least one data source box 
— a box having output ports but no input ports. There 
can be more than one data source in a simulation. 
Data sources can be passive sources or generators. A 
generator is a box that can be notified just as a link can 
be. A passive data source cannot be notified. 
A passive data source produces one data frame (per 
output port) during the entire simulation. The data 
frame is available on its output port from the very 
beginning of the simulation. 
 
4.4. Initialization of the queue of notifications 
When the runner starts data processing, it first considers 
all data sources and builds the initial state of the queue 
of notifications. For each generator, its notification is 
enqueued. For each passive data source, the notification 
of each of its links is enqueued. 
 
4.5. Processing of the queue of notifications 
Then the queue is processed by sending the activation 
notifications (i.e., calling notification functions) one by 
one, from the beginning to the end. If a notification call 
succeeds, the notification is removed from the queue. 
Otherwise, if the notification call fails (i.e., the data 
processing gets canceled), the notification is moved to 
the end of the queue, and the process continues. 
The runner processes its queue of notifications until it 
becomes empty, or maximum number of activation 
notification failures (currently 100) is exceeded. In the 
latter case, the entire simulation fails. 
 
4.6. Post-processing 
When the queue of notifications becomes empty, the 
runner can enqueue post-processors before it stops the 
data processing. The only example of a post-processor 
is the Pause box. Post-processors, like generators, are 
boxes that can receive activation notifications. 
 
4.7. User input events 
The above process normally takes place during the 
simulation. In addition, there could be events that break 
the processing of the queue of notifications. These 
events are caused by interactive user input. Once a user 
input event occurs, an exception is thrown, which leads 
to the unwinding of any nested link activation calls and 
the change of the queue of notifications. Besides, each 
box gets notified about simulation restart. 
The queue of notifications is changed as follows when 
user input occurs. First, the queue is cleared. Then one 
of two things happens. 
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• \item If the box that threw the exception 
specifies which box should be activated after 
restart, the notifications for that box are 
enqueued (if the box is a generator, its 
activation notification is enqueued; otherwise, 
the activation notifications of all links 
connected to its output ports are enqueued). An 
input box can only specify itself as the next 
box to activate, or specify nothing. 

• \item If the box that threw the exception 
specifies no box to be activated after restart, 
the standard initialization of the notification 
queue is done. 

After that, the processing of notification queue 
continues. 
There is an important issue that must be taken care of. 
Simulation can potentially be defined in such a way that 
its execution leads to an infinite loop of recursive 
invocation of activation notifications. This normally 
causes program to crash due to stack overflow. In our 
system, however, some boxes (not all, but only those 
activating outputs in response to more than one input 
notification) are required to implement counters for 
recursive call depth. When such a counter reaches 2, 
simulation is considered to be invalid and is terminated. 
This allows to do some kind of runtime validation 
against recursion at the cost of managing call depth 
counters. 
It should be noticed that theoretically, simulations that 
we are dealing with here are a subclass of discrete event 
systems (Zeigler, Kim, and Praehofer 2000) with 
discrete time; one time step corresponds to the returning 
from an activation call. 
 
5. PERFORMANCE, EXTENSIBILITY, AND 

EASE OF USE 
As stated in Section 1, computational performance and 
functional extensibility are considered important design 
features of the NumEquaRes system. This section 
provides technical details on what has been done to 
achieve performance and support extensibility. Last 
subsection highlights design features that make system 
easier to use. 
 
5.1. Performance 
To achieve reasonable performance, it is not enough to 
just use C++. Some additional design decisions should 
be made. Most important of them are already described 
above. The ability to organize simulation workflow 
arbitrarily allows to achieve efficient memory usage, 
which is illustrated by an example in Section 1. A 
number of specific decisions made in the design of 
NumEquaRes core are targeted to high throughput. 
They are driven by the following rules. 

• Perform simulation in a single thread. While 
this is a serious performance limitation for a 
single simulation, we have made this decision 
because the simulation runs on the Web server, 
and parallelization inside a single simulation is 
likely to impact the performance of server, as it 

might run multiple simulations simultaneously. 
And, on the other hand, single thread means no 
synchronization overhead. 

• No frequent operations involving interaction 
with operating system. Each box is responsible 
for that. For example, data storage boxes 
should not write output data to files or check 
for user input frequently. The performance 
might drop even if the time is measured using 
QTime::elapsed() too frequently. 

• No memory management for data frames 
within activation calls. In fact, almost 100\% 
of simulation time is spent in just one 
activation call made by runner (during that 
call, in turn, other activation calls are made). 
Therefore, memory management outside 
activation calls (e.g., the allocation of an 
element of the queue of notifications) is not a 
problem. Still some memory allocation 
happens when a box writes its output data, but 
this is not a problem as well, since such 
operations are not frequent. 

• No movement of data frames in memory. If a 
box produces an output frame and makes it 
available in its output port, all connected boxes 
read the data directly from memory it was 
originally written to. This item and the 
previous one both imply that there are nothing 
like queues of data frames, and each frame is 
processed immediately after it is produced. 

• No virtual function calls within activation 
calls. Instead, calls by function pointer are 
preferred. 

A simple architecture of classes has been developed to 
comply with the rules listed above and, in the same 
time, to encapsulate the concepts of box, port, link, and 
others. These classes are split into ones for use at the 
initialization stage, when simulation is loaded, and 
others for use at simulation run time. First set of classes 
may rely on Qt object management system to support 
their lifetime and the exposure of parameters as 
JavaScript object properties. Classes of the second set 
are more lightweight; their implementations are inlined 
whenever possible and appropriate, in order to reduce 
function call overhead. 
Although NumEquaRes core performance has been 
optimized in many aspects, it seems impossible to 
combine speed and flexibility. Our experience with 
some examples indicates that hand-coded algorithms 
run several times faster than those prepared in our 
system. 
 
5.2. Extensibility 
The functionality of NumEquaRes mostly resides in 
boxes. To add a new feature, one thus can write code 
for a new box. Boxes are completely independent. 
Therefore, adding a new one to the core simply boils 
down to adding one header file and one source file and 
recompiling. The core will be aware of the presence of 
the new box through its box factory mechanism. Next 
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steps are to support the new box on server by adding 
some meta-information related to it (including user 
documentation page) and some client code reproducing 
the semantics of port format propagation through the 
box. The checklist can be found in the online 
documentation. 
Some extensions, however, cannot be done by adding 
boxes. For example, to add 3D visualization, one needs 
to change the client-side JavaScript code. We are 
planning to simplify extensions of this kind; however, 
this requires refactoring of current client code. 
 
5.3. Ease of use 
First of all, NumEquaRes is an online system, so user 
does not have to download and install any software, 
provided user already has a Web browser. All user 
interaction with the system is done through the browser. 
To formulate a simulation as a data processing 
algorithm, user composes a scheme consisting of boxes 
and links, and there is no need to code. 
Online help system contains a detailed documentation 
page for each box; it also explains simulation workflow, 
user interface, and other things; there is one step-by-
step tutorial. 
To prepare a simulation, user can find a similar one in 
the database, then clone it and modify. User can decide 
to make his/her simulation public or private; public 
simulations can be viewed, run, and cloned by 
everyone. To share a simulation with a colleague, one 
shares a hyperlink to it; besides, simulations can be 
downloaded and uploaded. 
Currently, user might have to specify part of simulation, 
such as ODE right hand side evaluation, in the form of 
C++ code. We understand this might be difficult for 
people not familiar with C++. To mitigate this problem, 
there are two features. Firstly, each box that needs C++ 
code input provides a simple working example that can 
be copied and modified. Secondly, NumEquaRes 
supports the concept of code snippets. Each piece of 
C++ input can be given a documentation page and 
added to the list of code snippets. These snippets can 
easily be reused by everyone. See also Section 8. 
Another feature that plays a role similar to debugger's is 
the visualization of simulation data flows. The feature is 
currently under development and not available through 
the Web interface. 
 
6. EXAMPLES OF SIMULATIONS 
This section lists several examples of simulations. 
Figure 1 shows one of the simplest simulations — the 
one that plots a single phase trajectory for a simple 
pendulum. The ODE system is provided by the ode 
box. NumEquaRes has a number of options for user to 
supply equations. In particular, it is possible to provide 
C++ code that computes ODE right hand side. Such 
code compiles and runs on the server, if it passes a 
security check. The ODE right hand side depends on the 
state variables and the vector of parameters. They are 
supplied through input ports. Parameters are specified 
in the odeParam box. State variables come from the 

solver box. The solver performs numerical 
integration of the initial value problem, starting from 
the user-specified initial state (the initState box). 
The solver can be configured to perform a fixed number 
of time steps or to run until interrupted by a data frame 
at its stop port. Each time the solver obtains a new 
system state vector, it sends the vector to its 
nextState port. Once the solver finishes, it activates 
the finish port to let others know about it. In this 
simulation, consecutive system states are projected to 
the phase plane (the proj box) and then rasterized by 
the canvas box. Finally, the data comes to the 
bitmap box that generates the output image file. 
Notice that this simulation has three data sources, 
odeParam, solverParam, and initState. 
 

  
Figure 1: Single phase trajectory 

 
From this simplest example one can see how to 
construct simulation scheme from boxes and links that 
computes what user needs. Other examples are more 
complex, but they basically contain boxes of the same 
types, plus probably some more. So far, there are 40 
different box types in NumEquaRes, and it is beyond 
the scope of this article to describe them all. Further, we 
will just focus on some of them to show how 
simulations work. 
 

  
Figure 2: Interactive phase portrait 

 
An important aspect of a simulation is its ability to 
interact with the user. There are a few boxes that 
transform various kinds of interactive user input 
(clicking, moving sliders, rotating mouse wheel, etc.) 
into numerical values. These boxes usually act as 
simple filters of data frames; they replace some 
components of data frames with values obtained from 
user. Figure 2 shows an example of interactive 
simulation: it generates phase trajectories going through 
points on plane — the ones user has clicked with the 
mouse. The box isInput is responsible for that kind 
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of input. Each generated phase curve has two parts: blue 
in the time-positive direction (with resp. to the clicked 
point) and red in the time-negative direction. 

  
Figure 3: Double pendulum, Poincaré map (50000 
points, 28.5 s) 
 
Figure 3 shows the Poincaré map for the classical 
double pendulum system. Importantly, there is no need 
to store phase trajectory or individual points of 
intersection of the trajectory with the plane during 
simulation. The entire processing cycle (test for 
intersection; projection; rasterization) is done as soon as 
a new point of the trajectory is obtained. After that, we 
need to store just one last point from the trajectory. 
Simulations like this are what we could not do easily in 
MATLAB or SciLab, and they have inspired us to 
develop NumEquaRes. 
 

  
Figure 4: Ince-Strutt stability diagram (500×500 points, 
6.3 s) 
 
Figure 4 shows a simple simulation that allows one to 
obtain a stability diagram of a linear ODE system with 
periodic coefficients on the plane of parameters. Here 
the picture on the right is the Ince–Strutt diagram for the 
Mathieu equation (Abramowitz and Stegun 1972). 
People who have experience with it know how difficult 
it is to build such kind of diagrams analytically, even to 
find the boundaries of stability region near the 
horizontal axis. What we suggest here is the brute force 
approach — it is fast enough, general enough, and it is 
done easily. The idea is to split the rectangle of 
parameters into pixels and analyze the stability in the 
bottom-left corner of each pixel (by computing 
eigenvalues of the monodromy matrix (Teschl 2012)), 
then assign pixel color to black or white depending on 
the result. In this simulation, important new boxes are 
odeParamGrid and stabilityChecker. The 
former one provides a way to generate points on a 
multi-dimensional grid, and the latter one analyzes the 

stability of a linear ODE system with periodic 
coefficients. 
 

  
Figure 5: Strange attractor for forced Duffing equation 
(interactive simulation) 
 
Figure 5 shows another application of the Poincaré map, 
now in the visualization of the strange attractor arising 
in the forced Duffing equation (Bender and Orszag 
1999). User can change parameters interactively and see 
how the picture changes. This simulation is simpler than 
the one shown in Figure 3, because to obtain a new 
point on canvas, one just needs to apply time integration 
over known time period of system excitation. 
 

  
Figure 6: Colored Mandelbrot set (interactive 
simulation) 
 
Figure 6 shows an interactive simulation of the 
Mandelbrot set (Mandelbrot 2004). User can pan and 
zoom the picture using the mouse. Importantly, we did 
not have to develop any new box types in order to 
describe the logic of convergence analysis for 
sequences of complex numbers generated by the 
system. This is done with general purpose boxes d 
(computes differences of subsequent data frames), dn 
(computes vector norm), and tdn (detects if a scalar 
value exceeds some threshold). Pixel colors depend on 
how many iterations passed (box c is a counter, its 
output value is joined with pixel coordinates at box j 
and sent to canvas). 
 
7. COMPARISON WITH OTHER TOOLS 
Direct comparison between NumEquaRes and other 
existing tools is problematic because all of them (at 
least, those that we have found) do not provide an easy 
way for user to describe the data processing algorithm. 
In some systems, the algorithm can be available as a 
predefined analysis type; in others, user would have to 
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code the algorithm; also, there are systems that need to 
be complemented with external analysis algorithms. 
Let us consider example simulations shown in Figures 
3, 4, 5, and try to solve those using different free tools; 
for commercial software, try to find out how to do it 
from the documentation. Further in this section, figure 
number refers to the example problem. 
 
Table 1: Comparison of NumEquaRes with other tools 

Name Free Web Can solve Fast 
Mathematica no yes 3, 4, 5; 

needs 
coding 

n/a 

Maple no no 3, 4, 5; 
needs 
coding 

n/a 

MATLAB no no 3, 4, 5; 
needs even 

more coding 

no 
SciLab yes no no 

OpenModelica yes no none could be 
XPP yes no 3, 5 yes 

InsightMaker yes yes none n/a 
 
In Table 1, commercial proprietary software is limited 
to most popular tools — Mathematica, Maple, and 
MATLAB. In many cases, purchasing a tool might be 
not what a user (e.g., a student) is likely to do. 
All of the three example simulations are solvable with 
commercial tools Mathematica, Maple, and MATLAB. 
In Mathematica, it is possible to solve problems like 
3, 5 using standard time-stepping algorithms since 
version 9 (released 24 years later than version 1) due to 
the WhenEvent functionality. Problem 4 can also be 
solved. All algorithms have to be coded. Notice that 
Wolfram Alpha (Wolfram, 2015) (freely available Web 
interface to Mathematica) cannot be used for these 
problems. 
Maple has the DEtools[Poincare] subpackage 
that makes it possible to solve problem 3 and others 
with Hamiltonian equations; problems 4, 5 can be 
solved by coding their algorithms. 
With MATLAB or SciLab, one can code algorithms for 
problems 4, 5 using standard time-stepping algorithms. 
For problem 3, one needs either to implement time-
stepping algorithm separately or to obtain Poincaré map 
points by finding intersections of long parts of phase 
trajectory with the hyperplane. Both approaches are 
more difficult than those in Mathematica and Maple. 
And, even if implemented, simulations are much slower 
than with NumEquaRes. 
OpenModelica (Fritzson 2004) is a tool that helps user 
formulate the equations for a system to be simulated; 
however, it is currently limited to only one type of 
analysis — the solution of initial value problem. 
Therefore, to solve problems like 3, 4, 5, one has to 
code their algorithms (e.g., in C or C++, because the 
code for evaluating equations can be exported as C 
code). 
XPP (Ermentrout 2002) provides all functionality 
necessary to solve problems 3, 5. It contains many 

algorithms for solving equations (while NumEquaRes 
does not) and is a powerful research tool. Yet it does not 
allow user to define a simulation algorithm, and we 
have no idea how to use it for solving problem 4. 
Among other simulation tools we would like to mention 
InsightMaker (Fortmann-Roe 2014). It is a free Web 
application for simulations. It has many common points 
with NumEquaRes, although its set of algorithms is 
fixed and limited. Therefore, problems 3, 4, 5 cannot be 
solved with InsightMaker. 
Concluding this section, we have to state that other 
tools either provide a fixed set of data processing 
algorithms or require them to be coded by users. 
 
8. STEPS TO ACHIEVE INTEROPERABILITY 

WITH MODELING AND SIMULATION 
TOOLS 

 
8.1. Importing model equations 
NumEquaRes focuses on the development of simulation 
algorithm and the execution of it. Simulations are 
dedicated to investigation of certain systems that are 
described by some equations. Currently, these equations 
have to be coded in C++ by hand as parameters of some 
boxes, such as CxxOde. We realize that it's easy only 
for very simple systems. We also realize that there are 
tools, such as OpenModelica (Fritzson 2004), capable 
of generating C-code plus some meta-data that describe 
models specified by user in a more simple and natural 
way. 
To utilize the power of modeling tools in NumEquaRes, 
it is not necessary to create a monolith system 
integrating all pieces together. Instead, one could export 
model equations from a modeling tool and use them in a 
NumEquaRes simulation. Before year 2010, it was 
questionable which data format to use for the export of 
model equations, and how to enable the export feature 
in a modeling tool. In 2010, the Functional Mock-up 
Interface (FMI) (Modelica 2015) has been proposed, 
and since then has been adopted as the model exchange 
format by many modeling and simulation tools. The 
format is suitable for describing a model of dynamical 
system or its part; the system can be described by 
differential, algebraic, and discrete-time equations with 
possible state transitions due to events. Therefore, FMI 
is perfectly suitable for use to import model equations 
in NumEquaRes. 
Using the FMI, a modeling tool exports the equations of 
a model in the form of Functional Mock-up Unit 
(FMU). It is quite easy to develop a box in 
NumEquaRes that wraps an arbitrary FMU and exhibits 
all necessary parameters and variables through its input 
and output ports. 
Next step is to have a time integrator box in 
NumEquaRes that could be used for solving the initial 
value problem for an FMU (currently, we only have 
explicit Runge — Kutta scheme of fourth order with 
fixed step-size, which is insufficient). To accomplish 
this step, we are planning to use the CVODE 
(Woodward, Reynolds, Hindmarsh, and Banks 2015) 
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solver, providing its functionality through a box. Other 
existing freely available time integrators can be used as 
well in a similar manner. 
 
8.2. Using NumEquaRes core library 
The other way to interoperate with NumEquaRes is to 
use its core library in a simulation tool. The developer 
of the tool can supply model equations to NumEquaRes 
through the CxxOde box or develop a new one that 
better integrates with the tool. It might also be necessary 
to wrap some additional functionality in new boxes. 
Any tool can use NumEquaRes, provided that the usage 
conforms to the GNU Affero General Public License, 
version 3. 
 
9. CONCLUSION AND FUTURE WORK 
A new tool for numerical simulations, NumEquaRes, 
has been developed and implemented as a Web 
application. The core of the system is implemented in 
C++ in order to deliver good computational 
performance. It is free software and thus everyone can 
contribute into its development. The tool already 
provides functionality suitable for solving many 
numerical problems, including the visualization of 
Poincaré maps, stability diagrams, fractals, and more. 
NumEquaRes lacks any modeling capabilities, since 
model equations have to be coded by hand. However, 
there are ways to interoperate with modeling tools using 
FMI. Besides, NumEquaRes core library can be used in 
a simulation tool. 
The algorithm of simulation runner implies that the 
order of activation calls it makes is not important, i.e., 
does not affect simulation results. While this is true for 
typical simulations, counter-examples can be invented. 
Further work is to make it possible to distinguish such 
simulations from regular ones and render them invalid. 
NumEquaRes is a new project, and the current state of 
its source code corresponds more to the proof-of-
concept stage than the production-ready stage, because 
human resources assigned to the project are very 
limited. To improve the source code, it is necessary to 
add developer documentation, add unit tests, and deeply 
refactor both client and server parts of the Web 
interface. 
Further plans of NumEquaRes development include 
new features that would significantly extend its field of 
application. One of them is a box wrapping arbitrary 
FMUs containing model equations; the other one is a 
box wrapping the functionality of the CVODE solver. 
Another set of planned features aims to enhance the 
level of presentation of simulation results (currently, it 
is quite modest). Among them is 3D visualization and 
animation. 
 
REFERENCES 
Abramowitz M., Stegun I., 1972. Handbook of 

mathematical functions, pp. 721–750. Washington 
DC: Dover Publications Inc. 

Bender C.M., Orszag S.A., 1999. Advanced 
mathematical methods for scientists and engineers 

I: Asymptotic methods and perturbation theory, 
pp. 545–551. New York: Springer-Verlag. 

Bostock M. 2015. Data-driven documents. Available 
from: http://d3js.org [Accessed June 2015]. 

Ermentrout B., 2002. Simulating, analyzing, and 
animating dynamical systems: A guide to 
XPPAUT for researchers and students. SIAM. 

Fortmann-Roe S., 2014. Insight Maker: A general-
purpose tool for web-based modeling & 
simulation. Simulation modelling practice and 
theory, 47:28–45. 

Fritzson P., 2004. Principles of object-oriented 
modeling and simulation with Modelica 2.1. 
Wiley-IEEE Press, New Jersey. 

Jeffrey C., 2015. A markdown parser and compiler. 
Built for speed. Available from: 
https://github.com/chjj/marked [Accessed June 
2015]. 

Kitware, Inc., 2010. VTK user's guide. Kitware. 
Krautzberger P., 2014. MathJax — beautiful 

mathematics on the web. Available from: 
http://pkra.github.io/slides-mathjax [Accessed 
June 2015]. 

Mandelbrot B.B., 2004. Fractals and chaos: the 
Mandelbrot set and beyond. New York, Berlin, 
Paris: Springer-Verlag. 

Meirovitch, L., 1986. Elements of vibration analysis. 
New York: McGraw-Hill. 

Modelica Association, 2015. Functional mock-up 
interface. Available at https://www.fmi-
standard.org [Accessed June 2015]. 

Routh E.J., 1905. The advanced part of a treatise on the 
dynamics of a system of rigid bodies. London: 
Macmillan. 

Teschl G., 2012. Ordinary differential equations and 
dynamical systems. Available from: 
http://www4.ncsu.edu/~schecter/ma_732_sp13/tes
chl_ode.pdf [Accessed June 2015]. 

W3C, 2014. Server-sent events (second edition). 
Available from: https://w3c.github.io/eventsource 
[Accessed June 2015]. 

Wikipedia, 2015. LAMP (software bundle). Available 
from: 
https://en.wikipedia.org/wiki/LAMP_(software_bu
ndle) [Accessed June 2015]. 

Wolfram Research, 2015. WolframAlpha — 
computational knowledge engine. Available at 
http://www.wolframalpha.com [Accessed June 
2015]. 

Woodward C.S., Reynolds D.R., Hindmarsh A.C., 
Banks L.E., 2015. SUNDIALS — suite of 
nonlinear and dIfferential/algebraic equation 
solvers. Available at 
https://computation.llnl.gov/casc/sundials/main.ht
ml [Accessed June 2015]. 

Zeigler B.P., Kim, T.G., Praehofer H., 2000. Theory of 
modeling and simulation: integrating discrete 
event and continuous complex dynamic systems. 
Amsterdam, San Diego (Calif.), London: 
Academic Press. 

Proceedings of the European Modeling and Simulation Symposium, 2015 
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

265


