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ABSTRACT 

Over the past years, technological developments have 

led to a decrease of accidents due to technical failures 

through the use of redundancy and protection. However, 

the “human factor” contributes significantly in accident 

dynamics, both statistically and in terms of severity of 

consequences. In fact, estimates agree that the errors 

committed by man are causes over 60% of accidents 

and for the remaining part the causes are due to 

technical deficiencies. This paper deals with various 

aspects of human behavior that can influence operator 

reliability, considering the environment in which 

operator is working. The aim of the research is to 

propose a fuzzy cognitive map capable to represent 

human knowledge where the relationships are difficult 

to describe in mathematical terms. 

 

Keywords: human error, risk analysis, fuzzy cognitive 

maps, cognitive model 

 

1. INTRODUCTION 

Nowadays, the analysis of human factors 

constitute a highly interdisciplinary field of study not 

yet well defined, therefore, a complete and universally 

accepted taxonomy of different types of human errors 

and causes determining them, does not exist. The 

objective difficulties of governing the human factor and 

human error have made many experts believe that the 

conduct of prevention and safety were related to a 

person’s intrinsic characteristics, such as personality 

traits. (D’Elia et al., 2013). 

In the literature, there are different risk-based 

approaches reported, ranging from the purely qualitative 

to the quantitative (Bruzzone et al., 2014 a). Many 

authors used probabilistic risk assessment. A vast 

majority of tools and techniques available for the 

Human Reliability Analysis (HRA) are meant for high 

risk sectors like nuclear, petrochemical industries, and 

so on, applied within the context of probabilistic safety 

assessment (Cacciabue, 1996). In the literature, some 

papers proposed the Fuzzy cognitive maps (FCMs) 

approach in the field of risk analysis. 

In fact, human element in risk analysis cannot be 

structured in a hierarchical way, as it involves 

interaction and dependence among factors under various 

heads, like organizational, personal, design related, task 

related, and so on. However, this can be analyzed with a 

network structure, like the use of cognitive maps. 

FCMs have gained considerable research interest 

and widely used to analyse complex systems and 

making decisions. Recently, they found large 

applicability in diverse domains for decision support 

and classification tasks. FCM is an efficient knowledge 

representation and reasoning method, which is based on 

human knowledge and experience (Kandasamy and 

Smarandache, 2003). 

This paper deals with various aspects of human 

behavior that can influence operator reliability, 

considering the environment in which operator is 

working (Bruzzone et al., 2014 b). The focus is on 

understanding the nature of human performance 

variability and eventually, how to describe and analyze 

it. The proposed fuzzy cognitive map is capable of 

representing human knowledge where the relationships 

are difficult to describe in mathematical terms. 

The applicability of the methodology is 

demonstrated through a case study. The paper is 

organized in the following sections: section 2 presents 

general features of fuzzy cognitive maps approach; 

section 3 analyzes human factors in the context of risk 

analysis; section 4 elaborates a fuzzy cognitive model to 

evaluate factors influencing human reliability; finally, 

section 5 presents results and conclusion. 

 

2. FUZZY COGNITIVE MAP APPROACH 

Fuzzy Cognitive Maps (FCM) have found favor in a 

variety of theoretical and applied contexts that span the 

hard and soft sciences. Given the utility and flexibility 

of the method, coupled with the broad appeal of FCM to 

a variety of scientific disciplines, FCM have been 

appropriated in many different ways and, depending on 

the academic discipline in which it has been applied, 

used to draw a range of conclusions about the belief 

systems of individuals and groups (Groumpos, 2010).  

FCM encompasses a wide range of applications 

including: risk assessment (Hurtado, 2010) work 

efficiency and performance optimization strategic 

deterrence and crisis management, scenario/policy 
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assessment (Amer et al., 2011) spatial suitability and 

prediction mapping and environmental modeling and 

management (Adriaenssens et al., 2004). FCMs are 

most often employed in participatory planning and 

management and/or environmental decision-making 

contexts, and are primarily used to gain an 

understanding of how stakeholders internally construct 

their understanding of their world or a particular issue 

of interest (Kontogianni et al., 2012). 

For the above reasons Fuzzy Cognitive Maps 

(FCMs) constitute an attractive modeling technique for 

complex systems (Jose, 2010).  

The term fuzzy cognitive map (FCM) was coined 

in (Kosko, 1986) to describe a cognitive map model 

with two significant characteristics:  

 Causal relationships between nodes are 

fuzzified. Instead of only using signs to indicate 

positive or negative causality, a number is 

associated with the relationship to express the 

degree of relationship between two concepts.  

 The system is dynamic involving feedback, 

where the effect of change in a concept node 

affects other nodes, which in turn can affect 

the node initiating the change.  The presence of 

feedback adds a temporal aspect to the 

operation of the FCM. 

FCM has its roots in concept and cognitive 

mapping. Concept maps are graphical representations of 

organized knowledge that visually illustrate the 

relationships between elements within a knowledge 

domain. By connecting concepts (nodes) with semantic 

or otherwise meaningful directed linkages, the 

relationships between concepts in a hierarchical 

structure are logically defined (Novak and Cañas, 2008; 

Papageorgiou and Salmeron, 2011). 

In other words, FCM is a soft computing technique 

that follows an approach similar to the human reasoning 

and decision-making process. An FCM consists of 

nodes which illustrate the different aspects of the 

system behavior. 

These nodes (concepts) interact with each other, 

illustrating the dynamics of the model. FCM is a 

complex form of data collection where study 

participants are asked to develop qualitative static 

models which are translated into quantitative dynamic 

models. 

A cognitive map can be thought of as a concept 

map that reflects mental processing, which is comprised 

of collected information and a series of cognitive 

abstractions by which individuals filter, code, store, 

refine and recall information about physical phenomena 

and experiences.  

Fuzzy cognitive map uses two types of elements: 

concepts, represented by nodes; and causal beliefs, 

represented by weighted edges connecting the nodes. 

The graphical representation clearly depicts interaction 

of concepts and their degree of dependence/ 

interdependence (Kumar et al., 2013). Figure 1 

illustrates an example of an FCM with seven concepts. 

Concepts characterize the behavior of the system under 

consideration, and it can be an action, variable, or state, 

and so on whose values change with time.  

The FCM structure can be viewed as a recurrent 

artificial neural network, where concepts are 

represented by neurons and causal relationships by 

weighted links or edges connecting the neurons. 

By using Kosko’s conventions, the interconnection 

strength between two nodes Ci and Cj is eij, with eij, 

taking on any value in the range -1 to 1. Values –1 and 

1 represent, respectively, full negative and full positive 

causality, zero denotes no causal effects and all other 

values correspond to different fuzzy levels of causal 

effects. In general, an FCM is described by a connection 

matrix E whose elements are the connection strengths 

(or weights) eij. The element in the i
th

 row and j
th

 

column of matrix E represents the connection strength 

of the link directed out of node Ci and into Cj. If the 

value of this link takes on discrete values in the set {-1, 

0, 1}, it is called a simple FCM. The concept values of 

nodes C1, C2, …, Cn (where n is the number of 

concepts in the problem domain) together represent the 

state vector C. 

An FCM state vector at any point in time gives a 

snapshot of events (concepts) in the scenario being 

modelled.  

 
Figure 1: Example of fuzzy cognitive maps 

 

The nodes represent concepts or variables relevant 

to a given domain. The causal links between these 

concepts are represented by the edges. The edges are 

directed to show the direction of influence. Apart from 

the direction, the other attribute of an edge is its sign, 

which can be positive (a promoting effect) or negative 

(an inhibitory effect). Cognitive maps can be pictured as 

a form of signed directed graph. 

The construction of a cognitive map requires the 

involvement of a knowledge engineer and one or more 

experts in a given problem domain. In a cognitive map, 

the effect of a node A on another node B, linked directly 

or indirectly to it, is given by the number of negative 

edges forming the path between the two nodes. The 

effect is positive if the path has an even number of 

negative edges, and negative otherwise. 
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3. ROLE OF HUMAN FACTORS IN RISK 

ANALYSIS 

With the development of nuclear power, and the 

increasing complexity of automated manufacturing 

processes, the magnitude and significance of accidents 

have greatly increased. The Chernobyl nuclear power 

plant disaster in the Ukraine and the Challenger 

spacecraft explosion are vivid examples. 

In order to ensure effective prevention of dangerous 

events, the role of humans in accident dynamics should 

be considered during risk assessment processes (D’Elia 

et al., 2014). 

The researchers’ great efforts to propose models of 

human behavior (French et al., 2008) favoring 

numerical values of error probability in order to predict 

and prevent unsafe conduct are clearly evident. 

Analysis of human reliability is a multidisciplinary 

problem, calling for knowledge and expertise from 

probabilistic safety analysis, plant design and 

operations, decision science, and the behavioral 

sciences (Hollnagel, 2002). Human Reliability Analysis 

(HRA) grew up in the 1960s, with the intention of 

modeling the likelihood and consequences of human 

errors (Sharit, 2012). 

Human reliability is a crucial element in ensuring 

plant performance, and it is critical to situations or 

activities where the operator interacts directly with the 

system the stress factors include physiological and 

psychological stressors like fear, monotonous workload, 

overload, and so on. There are not many studies 

dedicated to the assessment of performance shaping 

factors (PSFs) on human reliability. 

Human reliability cannot be analyzed in the same 

manner as that of equipment/component. The main 

issue with human reliability analysis (HRA) is the 

uncertainty of the data concerning human factors, 

together with the difficulty in modeling the human 

behavior (Hollnagel, 2005). 

Risk assessment is a systematic process for 

assessing the impact, occurrence and the outcome of 

human activities involving products or systems with 

hazardous characteristics. Three questions need to be 

answered: ‘‘What can go wrong?”; ‘‘How likely is it 

that this will happen?”; ‘‘If it does happen, what are 

the consequences?” (Kaplan and Garrick, 1981). 

Risk identification usually involves specifying one 

or more scenarios of risks. A risk scenario describes an 

interaction between a person and a system or product 

that possesses hazardous characteristics. It describes the 

activity of the person(s) involved, the hazard(s), the 

external factors of the situation and the potential injury. 

Methods for risk assessment need to be as 

univocal and precise as possible to differentiate the risk 

level of various activities. In this light, we need to 

reduce the uncertainty in measurement of qualitative 

attributes such as “severity” and “likelihood” (Carter, 

2003). 

The focus is on understanding the nature of human 

performance. The likelihood of human errors in a 

specific condition depends upon the combined effects. 

4. IMPLEMENTATION OF A FUZZY 

COGNITIVE MODEL TO EVALUATE HUMAN 

INFLUENCE IN RISK ANALYSIS 

Given the basic outline of risk assessment, this paper 

explores the factors and parameters that need to be 

considered in order to design a good quality risk 

assessment. 

It is important to realise that perceived risks and 

benefits are important, and that these may differ from 

person to person. 

The proposed model deals with various aspects of 

human behavior that can influence his/her reliability, 

considering the environment in which he/she is working 

and the nature of task.  

The main objective of building a cognitive map 

around a problem is to be able to predict the outcome by 

letting the relevant issues interact with one another.  

These predictions can be used for finding out whether a 

decision made by someone is consistent with the whole 

collection of stated causal assertions. 

In the proposed research Mental Modeler software 

is used. Mental Modeler  is a fuzzy-logic cognitive 

mapping software (http://www.mentalmodeler.org/), 

allows you to build Fuzzy-logic Cognitive Maps easily 

and intuitively (Gray et al., 2013). Once models are 

built, increasing or decreasing the components included 

in the model allows you to examine different scenarios 

of change. Because of their flexibility, FCM have been 

used in a range of scientific disciplines, from political 

science to economics to ecology. 

Based in Fuzzy-logic Cognitive Mapping (FCM), 

users can easily develop semi-quantitative models of 

environmental issues, social concerns or social-

ecological systems in Mental Modeler by: 

 Defining the important components of a 

system 

 Defining the relationships between these 

components 

 Running “what if” scenarios to determine how 

the system might react under a range of 

possible changes 

 

Here below case study framework is presented. 

 

Step #1: Problem description.  

In the present case study a chemical company is 

evaluated. The data collection phase followed the 

normative literature for conducting fieldwork in risk 

management. The authors drew upon their own 

extensive industrial experience to inform and guide the 

design of an interview protocol that defined the scope of 

the necessary data to explore. 

Semi-structured interviews were conducted with 

the Managing Director (MD), Production Director (PD), 

and Production Manager (PM) in order to: 

 determine or describe the context; 

 describe the possible error modes; 

 describe the probable causes; 

 perform a more detailed analysis of main task 

steps. 
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Step#2: Factors influencing human performance. 

Based on the literature review and personal experience, 

the human error in risk analysis is highly dependent on 

state and condition of the personnel engaged in the 

work. Major factors, which characterize the behavior of 

the personnel are the following: 

 Emotional stability C1 

 Knowledge and skill C2 

 Attention and alertness C3 

 Perception and memory C4 

 Motivation C5 

 Workplace environment C6 

 Clarity of instructions C7 

 Communication C8 

 Time pressure C9 

The above factors formed our fuzzy cognitive map. 

 

Step#3: Fuzzy cognitive map model development 

The factors that influence others, along with their 

linguistic degree of causation are determined as shown 

in Figure 2. While in Figure 3 fuzzy cognitive map’s 

metrics are shown.  

   

 

 
Figure 2: Fuzzy cognitive map 

 

 

 
Figure 3: Fuzzy cognitive map’s metrics
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The degree of relationships among the considered 

factors is established following consensus group 

method. Here, each member contributes to the 

discussion, and the group as a whole then arrives at an 

estimate upon which all members of the group agree. 

After concepts in the model have been determined, 

relationships between concepts can be added by using 

directional arrows which indicate the amount of 

influence one component can have on another, called 

edge relationships. Concepts included in the model can 

have positive (high, medium, or low), negative (high, 

medium, or low) or no (no relationship defined) edge 

relationships. 

The qualitative weights of edge relationships (i.e. 

“fuzzy” approximation of influence) between 

components are then translated into the quantitative 

values between -1 (high negative) to 1 (high positive) 

used in the matrix interface (Table 1). 

 

Table 1: The qualitative weights of edge relationships 

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0,5 0,25 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 0 

C3 0 0,5 0 0 0,5 0 0 0 0 

C4 -0,5 -0,5 0 0 0,5 0 0 0 0 

C5 0 0 0 0 0 0 0 0 0 

C6 0 -0,25 0 0,5 0 0 -0,25 0 0 

C7 0 0 0 0 0 0 0 1 0,5 

C8 0 0 0 0 0 0 0 0 0,5 

C9 0 0 -0,25 0 0 0 0 0 0 
 

Mental Modeler also includes a Matrix interface 

that converts the concept map built in the Concept 

Mapping interface into a structural matrix. The Matrix 

interface can easily be revised based on the original 

concept map once the users familiarize themselves with 

the structure of the tool (Figure 4). 

 

 
 

Figure 4: Matrix 

 

Step#4: Scenario analysis 

Changing the weight of the components selected 

from each of the scenarios, it is possible to estimate 

how the system reacts to changes induced described. In 

other words, the scenario interface indicates the amount 

of relative change in the components included in the 

model based on the edge relationships defined in the 

Concept Mapping interface for the chosen scenario. It is 

possible to decide what scenario to run based on 

probable, improbable, gradual and extreme changes to 

the system.  

It is important to note, that the results presented 

here must be read in a comparative way, not absolute, 

that is used to check which components, given the 

structure of the map, are affected more than the other 

simulated change and with what results. This type of 

analysis is useful to deepen the knowledge of the 

system and to develop strategies and assumptions useful 

to react to the occurrence of events simulated. Scenario 

analysis was discretized into three modes in ascending 

order of control and performance reliability, and thus in 

descending order of human failure probability: 

scrambled, tactical and strategic, as defined below: 

 Scrambled scenario: choice of forthcoming 

action is unpredictable or haphazard; 

 Tactical scenario: performance typically 

follows planned procedures while some ad-hoc 

deviations are still possible; 
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 Strategic scenario: plentiful time is available 

to consider actions to be taken in light of wider 

objectives to be fulfilled and within the given 

context. 

Figures 5, 6 and 7 show the three different 

scenario. 

In the first scenario, suppose the C1, C2, 

C3 and C6 “high”, according to the adopted 

linguistic scale. The output indicates that a 

positive change influences positively the 

factors C5 and C4. In the second scenario 

suppose the C6, C7 and C8 “high”, according 

to the adopted linguistic scale. he output 

indicates that a positive change influences 

positively the factors C5, C4 and C9. In the 

third scenario suppose the C1, C6 and C9 

“high”, according to the adopted linguistic 

scale. he output indicates that a positive change 

influences positively the factors C2, C3, C4 

and C5.  

 

 
Figure 5: Strategic scenario 

 

 
Figure 6: Tactical scenario 
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Figure 7: Scrambled scenario 

 

 

6. CONCLUSION 

The main question of risk evaluation is ‘‘how safe is 

safe enough?” 

An fuzzy cognitive model was applied to manage 

the human factors in order to improve risk analysis. 

Fuzzy systems in general have already proven 

themselves capable of dealing with the inherent 

imprecision encountered in real-world problem 

domains. Fuzzy cognitive maps combine this advantage 

with the well-established utility of cognitive maps as a 

decision support tool, and the dynamic and adaptive 

nature of artificial neural networks. 

The proposed FCM methodology evaluates the 

influence of error inducing factors on human reliability 

and has potential to examine a scenario, where it is not 

easy to describe in terms of relations/mathematical 

formulas. 

Future research will focus in the fuzzy 

quantification of the human error probability within the 

framework of the Cognitive Reliability and Error 

Analysis Method (CREAM) method and other methods 

within HRA approach in order to compare different 

results and approach. 
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