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ABSTRACT 
 
Evolution algorithms are optimization methods that 
mimic a process of a natural evolution. Their stochastic 
properties result in a huge advantage over other 
optimization methods especially when solving complex 
optimization problems. In the paper Agent Modelled 
Evolutionary Based Algorithm (AMEBA) is first 
presented which was developed and implemented in 
MATLAB as a Toolbox. AMEBA algorithm has several 
advantages over other evolutionary algorithms and in 
this article the advantage of custom designed initial 
solution is presented. Custom designed initial solution 
is a solution of the problem that is built on the base of 
the knowledge of the system and represents a solution 
which the AMEBA algorithm will try to improve. This 
capability is presented with the example of an 
evolvement of multivariable controller for the pressure 
– level system that represents non-linear, multivariable 
system which is very stiff, with the property of weak 
inherent coupling. The AMEBA algorithm significantly 
improved the initial controller solution which shows 
that classical controller structures can also be 
automatically altered to increase quality of the solution. 
 
Keywords: evolutionary computation, ameba, pressure-
level pilot plant, multivariable control design 

 
1. INTRODUCTION 
Design of controllers for complex dynamic systems is 
usually done with the use of system mathematical 
model that enables the usage of optimization with 
which the controllers are optimized. Several types of 
optimization method can be used to design a proper 
control system regarding simpler processes. Regarding 
more complex systems as are for example multivariable, 
non-linear, time-variant etc. a group of evolutionary 
computation optimization methods proved to be very 
efficient (Logar, Dovžan, and Škrjanc 2011; Tomažič et 
al. 2013). 

Evolutional computation algorithms are optimization 
methods that mimic process of the natural evolution. In 
general the evolutionary algorithms can be divided into 

two major groups: parametrical and structural 
algorithms.  

Parametrical algorithms evolve parameters while 
structural algorithms evolve structures or mapping 
functions. For example if we would have to design a 
controller for the dynamic system, parametric algorithm 
would demand to define parameters of the chosen 
controller structure (very frequently a PID controller is 
used). In contrast to parametrical algorithms structural 
algorithms do not require predefined form of the 
controller as they can evolve the whole controller 
through the evolution process. The most popular 
parametrical algorithms are genetic algorithms (GA) 
(Atanasijević-Kunc, Belič, and Karba 2006; David 
Goldberg 1989), evolutionary strategies (ES) (Beyer 
2010), differential evolution (DE) (Storn and Price 
1997) and others (Brownlee 2011). Most established 
structural algorithms are genetic programing (GP) that 
have multiple implementations from the tree based 
implementation (Koza 1992) to the grammatically based 
implementation (Whigham 1992) and the evolutionary 
programming that is directed into the evolvement of 
finite state machines (Fogel, Owens, and Walsh 1966). 
New method that supplements the structural group of 
evolutionary algorithms is Agent Modelled 
Evolutionary Based Algorithm (AMEBA) (Corn and 
Atanasijević-Kunc 2011; Corn, Černe, and 
Atanasijević-Kunc 2012; Corn and Černe 2012). An 
important property of AMEBA algorithm is that it can 
include external knowledge in the form of a solution 
which has some relative advantages while optimal result 
is still under investigation.  

In industrial applications the most widely used 
controller is PID controller (Veselý and Rosinová 2011) 
as it is simple to integrate and its control capabilities 
satisfy technological needs of many processes. This 
solutions are frequently not optimized which leaves 
room for the upgrades. AMEBA algorithm can include 
their current solution and try to improve it by changing 
the structure of the controller as is demonstrated in this 
paper.  
 
The paper is organized in the following way. In the next 
section AMEBA algorithm is presented together with 

Proceedings of the European Modeling and Simulation Symposium, 2015 
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

240

mailto:maja.atanasijevic@fe.uni-lj.si


corresponding toolbox developed in Matlab. In the third 
section a multivariable pressure-level dynamic system is 
presented that was used as a testing example. In the 
fourth section the current solution is presented in a form 
of multivariable PI controller and an upgraded 
controller developed by the AMEBA algorithm is 
described. At the end the conclusions and some ideas 
for the future work are given.  

 
2. AGENT MODELLED EVOLUTIONARY 

BASED ALGORITHM - AMEBA  
 

All evolutionary based approaches mimic the process of 
natural evolution. Natural evolution can be divided in 
three basic elements: organism, environment and 
reproduction of organisms. Analogue to the natural 
evolution, evolutionary computation methods have 
entity, environment and reproductions of entities. 

 
2.1. Entity - Agent 
In AMEBA algorithm entity is represented as an agent. 
Agent consists of nodes and connections (Figure 1). 
Each node represents certain mapping function that 
transforms input data into output data. Nodes are 
receiving input information from and sending output 
information to other nodes via connections.  

 

Input
 data

Output
data

Membrane

 
Figure 1. Representation of agent which consists of nodes and 

connections 

In Figure 2 the structure of general node is presented. It 
consists of nodes inputs (u1, u2, … un), nodes mapping 
function f, parameter of node’s expression e, and nodes 
output y. 

 

u1

u2

...

un

f(u1, u2, … un)
y=e·f 

 
Figure 2: Structure of general node 

Main task of the node is transformation of the input 
signal through mapping function to the output as 
described in equation (1). 

𝑦 = 𝑒 ∙ 𝑓(𝑢1,𝑢2, … ,𝑢𝑛)        (1) 
 

Parameter of expression determines the influence of a 
node on other connected nodes. Expression parameter 
can reduce or amplify nodes influence on other nodes 
depending on the optimization process. Expression 
parameters initial values are randomly generated and 
are changing during optimization process. Expression 
parameter have similar role that is the expression of 
gens in DNA chain. 
Different mapping functions determine different types 
of nodes (see Table 1) like basic arithmetic, logic or 
other functions. 

 
Table 1: Nodes of AMEBA algorithm 

Function 
Input, Output 

𝑦(𝑘) = 𝑢1(𝑘) 
Constant 

𝑦(𝑘) = 𝑒 ∙ 𝑎 
Amplify 

𝑦(𝑘) = 𝑒 ∙ 𝑎 ∙ 𝑢1(𝑘) 
Exponent base 

𝑦(𝑘) = 𝑒 ∙ |𝑢1(𝑘)|𝑎 
Exponent index 

𝑦(𝑘) = 𝑒 ∙ 𝑎𝑢1(𝑘) 
Logarithmic 

𝑦(𝑘) = 𝑒 ∙ 𝑙𝑙𝑙𝑎(𝑢1(𝑘)) 
Addition 

𝑦(𝑘) = 𝑒 ∙�𝑎𝑖 ∙ 𝑢𝑖(𝑘)
𝑛

𝑖=1

 

Multiplication 

𝑦(𝑘) = 𝑒 ∙�𝑢𝑖

𝑛

𝑖=1

(𝑘) 

Division 

𝑦(𝑘) = 𝑒 ∙
𝑢1(𝑘)
∏ 𝑢𝑖𝑛
𝑖=2

 

Delay 

𝑦(𝑘) = 𝑒 ∙ �
𝑢0 𝑘 < 𝑛

𝑢1(𝑘 − 𝑛) 𝑘 ≥ 𝑛 

 
Integral 

𝑒 ∙ � 𝑦0 𝑘 = 0
(𝑘 − 1) + 𝑘𝐼 ∙ 𝑢1(𝑘) 𝑘 > 0 

Derivative 

𝑒 ∙ � 0 𝑘 = 0
𝑘𝑑 ∙ (𝑢1(𝑘) − 𝑢1(𝑘 − 1)) 𝑘 > 0 

 
High pass filter 

𝑒 ∙ � 0 𝑘 = 0
𝑦(𝑘 − 1) + 𝛼(𝑢1(k) − y(k − 1)) 𝑘 > 0 
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Low pass filter 

𝑒 ∙ � 0 𝑘 = 0
𝛼 ∙ 𝑦(𝑘 − 1) + 𝛼(𝑢1(k) − 𝑢1(k − 1)) 𝑘 > 0 

 
Special property of AMEBA algorithm is possibility of 
a definition of nodes with the dynamic mapping 
function like time delay, integral, derivative and filters. 
With the usage of dynamic nodes a design of feedback 
loops is possible and by this the formation of dynamic 
systems. 

 
2.2. Environment 
Natural environment provides a habitat for organisms 
and the mechanism of selection that determinate which 
organisms will be reproduced. In artificial evolution 
natural environment is replaced by simulation 
environment in which artificial entities are “living” and 
the selection mechanism is replaced by artificial 
selection mechanism based on an appropriate fitness 
function. Fitness function value quantify entities 
success at solving problem. 

In AMEBA algorithm two mechanisms of selection are 
implemented: the survival of the best and the 
tournament selection. The survival of the best is a 
mechanism in which only the best portion of agents in a 
population are given a chance to reproduce. The 
tournament selection is a mechanism where two 
randomly selected agents compete and the winner gets 
an opportunity to reproduce. These two mechanisms 
were implemented because they have different effect on 
population diversity. Selection of the best mechanism 
strongly reduces diversity of the population as only the 
best agents survive in contrast to a tournament selection 
mechanism where also weaker agents can survive. 

 

2.3. Reproduction 
With the selection process a group of agents are 
selected that will be able to reproduce into a new 
population. In general there are two groups of 
reproduction mechanisms: mutations and crossovers. 
Mutation is a reproduction mechanism where an agent 
replicate itself and during this process slightly change 
one of its features. Crossover is a reproduction 
mechanism where two agents combine and reproduce 
an offspring which possess certain features of both 
parent-agents. In AMEBA algorithm several 
reproduction mechanisms are implemented (see Table 
2). 

Elite division enables cloning of the agent, which means 
that agent reproduce an exact copy of itself for the new 
population. By elitism the best solution is always kept 
trough out the whole optimization process.  

Parameter change mutation mechanism reproduces an 
offspring from parent agent by changing value of nodes 
parameter if node possesses one. Change can be made 
from within the node by the equation (2) or with the 
influence of other nodes regarding the equation (3). 

Table 2: Reproduction mechanism of AMEBA algorithm 

Group Reproduction 
Mutations Elite division 

Parameter change 
Add node 
Remove node 
Switch connection at source 
Switch connections at target 

Crossovers Combination of agents parameters 
Combination of agents nodes and 
connections 

 

𝑎′ =

⎩
⎪
⎨

⎪
⎧𝑎 + 𝑟

𝑟
1
𝑎
−𝑎

 (2) 

 

𝑎′ = � 𝑏
𝑏 (+,−,∗,/) 𝑐 (3) 

 
Parameter change can be done in four ways. To 
parameter a can be added random value r, it can be 
replaced by random value r, it can be transform to its 
inverse value or it can change its sign.  

Parameter change with the influence of other nodes can 
be done in five ways. It can be switched with parameter 
from randomly selected node b, or it can be calculated 
as sum, difference, product or quotient of two 
parameters b and c from two randomly selected nodes. 

Add node reproduction mechanism adds a new node to 
agent. First the random connection is selected than the 
random node is generated and inserted in the place of 
the selected connection. If the new node have free 
inputs that must be connected to the network they are 
randomly connected to other nodes in network. In 
general it is not needed that node is meaningfully 
connected to the network it can be unconnected which 
represents a blind node. 

Remove node reproduction mechanism removes 
randomly selected node from parent agent. First the 
node for removal is selected from the agent than all its 
input connections are removed. In the next step the 
output connections are unpinned from the node and 
randomly connected to some other nodes and then the 
selected node is removed.  

Switch nodes connections reproduction mechanism 
switches either a source or target ends of two randomly 
selected connections in the network.  

Combination of agents’ parameters is a crossing 
reproduction mechanism and it is very similar to 
parameter change mechanism from mutations with the 
difference that nodes for reproduction can be from other 
agents in the population.  

Combination of agent’s nodes and connections is a 
crossing mechanism that combines two parent agents 
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into new offspring. First randomly selected group of 
connected nodes is selected and removed from the first 
parent. Then the same process is done on the second 
parent. Finally the removed nodes from the first parent 
are inserted into the second parent and randomly 
reconnected to the rest of the nodes network. This 
mechanism is similar to a reproduction mechanism of 
combining decision trees in genetic programming 
method with the difference that is made for the graph 
type of structure. 

 
2.4. Toolbox development 

 
AMEBA algorithm is being developed also as software 
package with the user friendly graphical interface. The 
core development is being built in Java programming 
environment that can be used also with Matlab that have 
a very strong support in simulation of dynamic systems 
via Simulink toolbox. Graphical interface is also 
developed in Matlab for the easier use of AMEBA 
algorithm.  

Toolbox enables settings of the simulation environment 
with the inclusion of Simulink model as it is shown in 
Figure 3.  
 

 
Figure 3: Settings of simulation environment 

The agent of AMEBA algorithm is implemented as S-
function so it can be included into model as a standard 
block. Toolbox enables control and monitoring of the 
optimization process where it displays current 
generation number and value of the fitness function of 
the best agent.  

Toolbox enables settings of population properties like 
size of population, size of reproductive population that 
determines how many best agents will be given 
opportunity to reproduce, number of elite agents, and 
other settings that determine the end of optimization 
process like maximum number of generations and 
minimum change in fitness function value (Figure 4).  
 

 
Figure 4: General setting 

Number of inputs and outputs of an agent can be set 
together with the maximum number of nodes that can 
be generated at the agent’s creation (Figure 5). 

 

 
Figure 5: Agent settings 

Different types of nodes can be selected from which the 
algorithm will chose and build agents. Each node has its 
own settings that determine initial value of the nodes 
parameter and steepness of change in case node mutates 
(Figure 6). 

 

 
Figure 6: Node settings 

Reproduction mechanisms can be set with their 
parameter of probability. As agents are evaluated and 
selected for reproduction the reproduction mechanism is 
randomly selected and the probability parameter 
determines their possibility of being selected (Figure 7).  
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Figure 7: Reproduction settings  

Additional functionalities enable better usability of the 
method such as saving and importing of all setting into 
file for later use. With this option also the initial 
population can be imported which enables to inclusion 
of certain knowledge of the solution into the 
optimization problem. It is also possible to convert 
agent into mathematical equation to observe its 
structure. It can also generate Matlab S-function file for 
the easier implementation with Simulink tool (Figure 
8). 

 

 
Figure 8: Additions functionalities of Toolbox 

 
3. PRESSURE-LEVEL PILOT PLANT 
 

Optimization is of great importance in many scientific 
fields where control systems’ design is no exception. 
For testing and comparison purposes we have decided 
to use mathematical models of pressure–level pilot plant 
as presented in Figure 9 (Atanasijević-Kunc and Karba 
2006; Atanasijević-Kunc, M., Belič, A., and Karba 
2007). 

 

 
Figure 9: Pressure-level pilot plant 

Schematically it is illustrated also in Figure 10. 
 

 
Figure 10: Schematic presentation of pressure-level pilot 

plant 

 
The central part of the device is a closed tank where air 
pressure and water level can be controlled through two 
pumps (1 and 2 in Figure 9). They represent actuators of 
the system with an input voltage range of 0-10V. The 
air reservoir (3) increases the time constant of the 
pressure loop and equalizes pulses in the air flow. The 
water flow recirculates in the system and therefore there 
is no need for any external water input. Both outputs of 
the sensors are also within the 0-10V range. Normal 
working conditions of the system can be disturbed by 
changing set-points of corresponding valves, but there 
is no possibility for direct measurement of these signals.  

From the given description it is obvious that the process 
can be represented by a block diagram as shown in 
Figure 3 where the following notation is used:  

u1(t)  voltage input to the air pump 
u2(t)  voltage input to the water pump 
Φzvh(t) air flow to the closed tank 
Φvvh(t) water flow to the closed tank 
pz(t)  air pressure in the tank 
h(t)  water level in the tank 
y1(t)  voltage output from pressure sensor 
y2(t)  voltage output from level sensor 
 

 
Figure 11: Block diagram of plant components 

 
3.1. Nonlinear model 
Model description of this system can be presented 
regarding the components indicated in Figure 11.  

Actuators can be described with the following 
equations (Atanasijević-Kunc, M., Karba, R., and 
Zupančič 1997) for the air pump: 

 
 ( ) [ ] ( ) ( ) ( ) ( )2

11 12 11 12 1 1  4zvh zvha a a a zvh aT T t T T t t K u t
•• •

Φ + + Φ +Φ =
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and for the water pump: 
 

 

Main process equilibrium equations are: 

 

where: 

 

Taking into account that air in the reservoir is an ideal 
gas, specific gas constant is given with: 

 

 

so: 

 

 

and 

 

 
The first equilibrium equation of the main process can 
be presented in the following form: 

 
 
 
 
 

 
Equilibrium equation of the main process for the lower 
part can be described with: 

 
 
 

where: 
 
 

Taking into account that water is not compressible it 
can be written: 

 
 

and the second equilibrium equation of the main process 
can be presented in the following form: 

 
 
 
 

where the following notation was introduced: 
 
 

Both sensors are linear and can be described with: 
 
 
 
 

In all presented equations index z is related with the air 
and index v with the water. Parameters of this nonlinear 

multivariable system were estimated regarding the 
following conditions: valves V7, V8, V9, V11, V12 
closed, valve V10 open, valve V13 open for two 
revolutions. Working points regarding input voltage 
signals were chosen as: 

 
 
 
and so the input air and water flows at working points 
were estimated as: 
 
 
 
 
while model parameters are for the actuators: 
 
 
 
 
for the sensors: 
 
 
and for the main process: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Linearized model 
By the following selection of system states: 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( )5
211 2 2                                5vvha vvh aT t t K u t

•

Φ +Φ =

( ) ( ) ( ) ( )                                 6zvh zizh zt t m t
•

Φ −Φ =

( ) ( ) ( )0                                  7zizh zv zt K p t pΦ = −

( )
5 2

3

10 /
            8

1.3 293
z z z

z o
z z z z

p V p N mr
m T T kgmρ

= = =

( ) ( ) ( )
( )

( )
( ) ( ) ( )0      9z z z

z
z z z z

p t V t p t
m t S H h t

r T t r T t
= = −  
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z z

Sm t H h t p t p t h t
r T
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where ∆ indicates the variation from chosen working 
points, the following linearized state-space equations 
are defined: 
 
 
 
 
where state-space matrices are given with: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

4. CONTROL DESIGN 
Control system major tasks were in the presented case 
focused on two important goals: to overcome system 
stiffness which in the same time results in better robust 
behavior and to overcome the property of weak inherent 
coupling which demands a construction of a dynamic 
compensator in a combination with the observer in case 
of the design goal of dynamic system decoupling. This 
is important for high quality of multivariable system 
operation as cross-couplings introduce disturbances in 
reference-tracking operation. 

We have tested and compared different control design 
approaches. During modelling, simulation and analysis 
phase where also first close-loop solutions were tested 
certain knowledge of the system was accumulated 
which we tried to include into the control design phase 
by prescribing desired responses of the system to the 
reference signals as illustrated in Figure 12. 

 

 
Figure 12: Example of reference signal and desired responses 

of the system 

The velocity of transient responses was estimated 
regarding control signals which have to be inside the 
range of actuators. In case of decoupling not only cross-
couplings are compensated but also relative orders of 
each univariable sub-system is correspondingly lower. 
In our case we have taken into account that approximate 
performance of the first order can be achieved.  

Such system responses were then used in fitness 
function description through optimization process with 
which two controllers were designed. First controller is 
classical multivariable PI or proportional-integral 
controller and the second one was generated by the 
AMEBA algorithm. 

 
4.1. Design of the multivariable PI controller 
For the system with two input and two output signals 
multivariable PI controller is described with: 

𝑢�⃑ (𝑡) = 𝑲𝒑𝑒(𝑡) + 𝑲𝒊 �𝑒(𝑡)𝑑𝑑 

 
 

We used simplex optimization method from Matlab to 
calculate the eight parameters of the PI-controller as: 

�𝑢1
(𝑡)

𝑢2(𝑡)� = �8.97 −0.037
0.71 2.55 � �𝑒1

(𝑡)
𝑒2(𝑡)� 

 

+ � 0.01 −0.00004
0.00082 0.0029 �� �𝑒1

(𝑡)
𝑒2(𝑡)� 𝑑𝑑        (30) 

 

Evaluation results are presented in Table 3. 

Table 3: Results of PI controller 

Error [%] Activity of the actuators [%] 

17% 34% 

 

These results show that controller can control the 
system with 17% error and with the use of 35% of all 
capacity of actuators regarding the simulated run. 
Majority of error is generated by the cross-coupling 
effect that PI controller could not cope with. System 
responses are presented in Figures 13 and 14 and 
corresponding control signals in Figure 15.  

 

 
 

Figure 13: Response of the air-pressure to the change of 
reference signal 
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Response of the air pressure is very oscillatory which is 
not desired and the response of the water level shows 
that controller doesn’t provide good reference tracking 
as well. Significant is also the consequence of cross-
coupling effects. At the same time it is obvious that the 
response of the air part is much faster as that of water 
part.  

 

 

Figure 14: Response of the water level to the change of the 
reference signal 

 

 
Figure 15: Activity of the air and water pumps 

 

It is important to mention that such oscillatory 
responses are not desired also because of the actuators 
as in such cases the lifespan is expected to be reduced. 

 
4.2. Design of the controller with the AMEBA 

algorithm 
 
AMEBA algorithm has a very useful capability that it 
can include external knowledge of the problem into its 
solution. In this case we have used multivariable PI-
controller that was designed through the first 
experiment as a starting point for the AMEBA 
algorithm. The agent representation of the multivariable 
PI-controller is presented in Figure 16.  

The presented PI-controller was included as a member 
of the initial population in optimization process. During 
the optimization or evolution process there were no 
limitations regarding agent’s structure, nor nodes’ 
properties.  

Control design results of AMEBA algorithm are 
presented in Table 4.  

The results show an improvement of 11% in error 
reduction with practically no increase in actuators 
activities which represents significant improvement 
over previously presented multivariable PI-controller. 
The difference can be observed also in Figures 17, 18, 
and 19. Agent that was generated is presented in Figure 
20. 

 

 

 
Figure 16: Representation of multivariable PI-controller as 

an agent of AMEBA algorithm 

 
Table 4: AMEBA algorithm control design results 

Error [%] Activity of the acutators [%] 

5,7% 36% 

 
 

 
Figure 17: Response of the air pressure to the change of 

reference signal 
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Figure 18: Response of the water level to the change of 

reference signal 

 
Figure 19: Activity of the air and water pumps 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Controller generated by AMEBA algorithm 

 
5. CONCLUSIONS 
We have presented new optimization algorithm 
AMEBA. Its efficacy was illustrated through the 
improvement of an existing multivariable PI-controller 

for the pressure-level pilot plant. The upgraded effects 
were especially evident in reduction of the cross-
couplings and in reduction of the oscillations which can 
extend actuators’ lifespan and increase control quality. 
Future work on AMEBA algorithm development will be 
focused on optimization process as we will explore the 
impact of various effects on the quality of the solution 
and on the convergence rate of optimization process like 
effect of size of population, effect of suppression of the 
agents with large number of nodes, effect of using 
multiple environments at once and similar, of course in 
comparison with other optimization approaches. Special 
attention will be devoted to the so called smart 
optimization where additional knowledge from chosen 
area can be taken into account to improve searching 
efficacy. 
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