
PIPELINE AS HIGH LEVEL PARALLEL COMPOSITION FOR THE

IMPLEMENTATION OF A SORTING ALGORITHM

M. Rossainz-López
(a)

, M. I. Capel-Tuñón
(b)

, P. Domínguez-Mirón
(a)

, Ivo H. Pineda Torres
(a)

(a)

 Universidad Autónoma de Puebla, Avenida. San Claudio y 14 Sur, San Manuel, Puebla,

State of Puebla, 72000, México
(b)

 Departamento de Lenguajes y Sistemas Informáticos, ETS Ingeniería Informática y de Telecomunicación,

Universidad de Granada, Periodista Daniel Saucedo Aranda s/n,

18071 Granada, Spain

(a)

rossainz@cs.buap.mx,
(b)

manuelcapel@ugr.es,
(a)

paty.dguez.m@gmail.com,
(a)

ipineda@cs.buap.mx

ABSTRACT

Shown representation by composing Parallel Objects,

Pattern communication / interaction PipeLine for

implementing a sorting algorithm, through a approach

of Structured Parallel Programming using High Level

Parallel Compositions or CPANs. Shown the definition,

design and implementation of PipeLine as a CPAN

under the paradigm of object orientation in order to

provide the programmer the ability to reuse the pattern

in solving problems, particularly those that deal with

management, optimization and information search;

CPANPipe are added to a set of restrictions

synchronization between processes (maximum

parallelism, mutual exclusion, producer-consumer

synchronization type). Synchronous communication

modes, asynchronous and asynchronous future used.

The sort algorithm based on a Pipeline and its design

and implementation as shown CPANPipe and finally

execution performance is obtained in a parallel 64-

processor machine.

Keywords: CPAN Pipeline, Structured Parallel

Programming, Parallel Objects, Communication

Patterns.

1. INTRODUCTION

Some of the problems of the environments of parallel

programming it is that of their acceptance for the users,

which depends that they can offer complete expressions

of the behavior of the parallel programs that are built

with these environments (Danelutto and Orlando 1995).

At the moment in the systems oriented to objects, the

programming environments based on parallel objects

are only known by the scientific community dedicated

to the study of the Concurrence. A first approach that

tries to attack this problem it is to try to make the user

to develop his programs according to a style of

sequential programming and, helped of a system or

specific environment, this can produce his parallel tally

(Akl 1992). However, intrinsic implementation

difficulties exist to the definition of the formal

semantics of the programming languages that impede

the automatic parallelization without the user's

participation, for what the problem of generating

parallelism in an automatic way for a general

application continues being open (Darlington 1993).

A promising approach alternative that is the one that is

adopted in the present investigation to reach the

outlined objectives is the denominated structured

parallelism (Capel and Troya 1994). In general the

parallel applications follow predetermined patterns of

execution. These communication patterns are rarely

arbitrary and not structured in their logic (Brinch

Hansen 1993, Brinch Hansen 1994). The High Level

Parallel Compositions or CPANs are patterns parallel

defined and logically structured that, once identified in

terms of their components and of their communication,

they can be taken to the practice and to be available as

abstractions of high level in the user's applications

within an environment or programming environment, in

this case the one of the orientation to objects (Rossainz

and Capel 2008, Rossainz 2005). A CPAN has the

following properties that can be studied in detail in

(Rossainz, Pineda and Dominguez 2014):

1. Capacity of invocation of methods of the

objects that contemplates the asynchronous

communication ways and asynchronous future

(Danelutto and Orlando 1995). The

asynchronous way doesn't force to wait the

client's result that invokes a method of an

object. The asynchronous future

communication way makes the client to wait

only when needs the result in a future instant of

her execution. Both communication ways

allow a client to continue being executed

concurrently with the execution of the method

(parallelism inter-objects).

2. The objects must can to have internal

parallelism. A mechanism of threads it must

allow to an object to serve several invocations

of their methods concurrently (parallelism

intra-objects).

3. Availability of synchronization mechanisms

when parallel petitions of service take place. It

is necessary so that the objects can negotiate

several execution flows concurrently and, at

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

213

mailto:rossainz@cs.buap.mx
mailto:manuelcapel@ugr.es
mailto:paty.dguez.m@gmail.com
mailto:ipineda@cs.buap.mx

the same time, to guarantee the consistency of

their data.

4. Availability of flexible mechanisms of control

of types. The capacity must be had of

associating types dynamically to the

parameters of the methods of the objects. It is

needed that the system can negotiate types of

generic data, since the CPANs only defines the

parallel part of an interaction pattern, therefore,

they must can to adapt to the different classes

of possible components of the pattern.

5. Transparency of distribution of parallel

applications. It must provide the transport of

the applications from a system centralized to a

distributed system without the user's code is

affected. The classes must maintain their

properties, independently of the environment

of execution of the objects of the applications.

6. Performance. This is always the most

important parameter to consider when one

makes a new proposal of development

environment for parallel applications. An

approach based on patterns as classes and

parallel objects must solve the denominated

problem PPP (Programmability, Portability,

Performance) so that it is considered an

excellent approach to the search of solutions to

the outlined problems.

With the basic set of classes of the model of

programming of PO they are possible to be constructed

concrete CPANs. To build a CPAN, first it should be

had clear the parallel behavior that one needs to

implement, so that the CPAN in itself is this pattern.

Several parallel patterns of interaction exist as are the

farms, the pipes, the trees, the cubes, the meshes, the

matrix of processes, etc. So you know what pattern is

best suited to a particular application is an important

design decision that cannot be fully automated. Once

identified the parallel behavior, the second step consists

on elaborating a graphic of its representation as mere

technique of informal design of what will be later on the

parallel processing of the objective system; it is also

good to illustrate its general characteristics, etc., and it

will allow later to define its representation with CPANs,

following the pattern proposed in the next section.

When the model of a CPAN is already had concretized,

that defines a specific parallel pattern; say for example,

a tree, or some of those previously mentioned ones, the

following step would be to carry out its syntactic

definition and semantics.

Finally, the syntactic definition previous to a CPAN

programmed is translated in the most appropriate

programming environment for its parallel

implementation. It would be verified that the resulting

semantics is the correct one, it would be proven with

several different examples to demonstrate its genericity

and the performance of the applications would be

observed that include it as component software.

The parallel patterns worked in the present investigation

have been the pipeline, to be a significant reusable

pattern in multiple applications and algorithms. Being

used at the moment with different purposes, in different

areas and with different applications according to the

literature that there is on the topic (Cole 1989,

Darlington 1993). In the present investigation the

pipeline is constructed as a CPAN to implement a

sorting algorithm and solving the problem of generating

parallel an increasing sequence of numbers from lowest

to highest. Finally performance shown considering

measures such as the execution time in seconds, cycles

per instruction (CPI), speedup and Amdahl's Law.

2. HIGH LEVEL PARALLEL COMPOSITIONS

(HLPC)

A CPAN comes from the composition of a set of

objects of three types (see Figure 1): An object manager

that it represents the CPAN in itself and makes of him

an encapsulated abstraction that it hides their internal

structure. The manager controls the references of a set

of objects (a denominated object Collector and several

denominated objects Stage) that represent the

components of the CPAN and whose execution is

carried out in parallel and it should be coordinated by

the own manager. The objects Stage that are objects of

specific purpose, in charge of encapsulating an interface

type client-server that settles down between the

manager and the objects slaves (objects that are not

actively participative in the composition of the CPAN,

but rather they are considered external entities that

contain the sequential algorithm that constitutes the

solution of a given problem). And an object Collector

that it is an object in charge of storing in parallel the

results that he receives of the objects stage that has

connected. That is to say, during the service of a

petition, the control flow within the stages of a CPAN

depends on the implemented communication pattern.

Figure 1: Internal Structure of a HLPC. Composition of

its components

The objects manager, collector and stages are included

within the definition of Parallel Object (PO) (Corradi

1991). The Parallel Objects are active objects, that is to

say, objects that have execution capacity in them

(Corradi 1991). The applications within the pattern PO

can exploit the parallelism so much among objects

HLPC

Collector Stage

Manager

Slave

Stage

Stage

Stage

Slave

Slave

Slave

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

214

(inter-object) as the internal parallelism of them (intra-

object). An object PO has a similar structure to that of

an object in Smalltalk, but it also includes a politics of

scheduling, determined a priori that specifies the form

of synchronizing an or more operations of a class in

parallel (Danelutto and Orlando 1995, Corradi 1991).

The synchronization policies are expressed in terms of

restrictions; for example, the mutual exclusion in

processes readers/writers or the maximum parallelism in

processes writers. All the parallel objects derive then of

the classic definition of “class” more the incorporation

of the synchronization restrictions (mutual exclusion

and maximum parallelism) (Birrel 1989). The objects of

oneself class shares the same specification contained in

the class of which you/they are instantiates. The

inheritance allows deriving a new specification of one

that already exists. The parallel objects support multiple

inheritances.

CLASS: <class name>

 INHERITS_FROM: <list of class names parents>

 INSTANCE_STATE: < list the names and

 types of instance>

 INSTANCE_METHODS: <list of public methods>

 PRIVATE_METHODS: <list of private methods>

 SCHEDULING_PART: <list of synchronization

 restrictions>

END_CLASS <class name>

2.1. The abstract class ComponentManager

It defines the generic structure of the component

manager of a CPAN, of where will be derived all the

manager concretes depending on the parallel behavior

that is contemplated for the creation of the CPAN. All

concrete instance of a manager accepts as input a list of

n-associations. An association is a pair of elements, that

is: an object slave and the name of the method that has

to be executed by this object. The objects slaves are

external entities that contain a sequential algorithm that

have to execute through one of their methods.

Once the manager has captured the list of n-

associations, this generates the concrete stages, one for

each association and then each stage becomes in

responsible for an object slave, together with the

execution method of this. In turn, the stages are

connected to each other, in accordance with the parallel

pattern that has been implemented in the CPAN.

Finally the manager carries out the processing of a

computation, through the execution of one of his

methods (execution). For it is necessary to pass to the

method the data input with those that one wants to

work. The manager generates a component collector

then and it passes to the stages the reference to this

collector, as well as the data input. The stages processes

them and, according to as be connected some with

other, will spend the results that they go obtaining. At

the end the collector will pick up the results of the

stages to return them to the manager who finally will

transmit the results to the exterior of the CPAN (to the

code of user's application that uses it). The following

syntactic definitions have been written using the

grammar free of context that is in the appendix A of the

present document.

CLASS ABSTRACT ComponentManager

 {

 ComponentStage[] stages;

 PUBLIC VOID init (ASOCIACION[] list)

 { ABSTRACT;}

 PUBLIC ANYTYPE execution(ANYTYPE datain)

 VAR

 ComponentCollector res;

 {

 res = ComponentCollector CREATE();

 commandStages(datain,res);

 RETURN res.get();

 }

 PRIVATE VOID commandStages(ANYTYPE datain,

 ComponentCollector res)

 { ABSTRACT; }

 MAXPAR (execution);

 };

The same manager can be used to carry out more

calculations in parallel. The synchronization policies

used for it is it the restriction of synchronization of the

“maximum parallelism” or MAXPAR applied to the

method “execution().”

2.2. The abstract class ComponentStage

It defines the generic structure of the component stage

of a CPAN, as well as of their interconnections, of

where they will be derived all the concrete stages

depending on the parallel behavior that is contemplated

in the creation of the CPAN. All concrete instance of a

stage accepts as input a list of associations slave_object-

method to work with her and it is connected or not with

the following stage of the list of associations, depending

on the parallel pattern that you/they implement, so that

when the manager commands to the stages in parallel,

each one of them makes the object slave to carry out the

execution of his method, the stage captures the results

and it sends them to the following stage or the collector,

depending on the implemented structure (everything it

within a method called request ()). In turn, each stage

can command others in the execution of the

computation initiate by the manager.

CLASS ABSTRACT ComponentStage

 {

 ComponentStage[] otherstages;

 BOOL am_i_last;

 METHOD meth;

 OBJECT obj;

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

215

 PUBLIC VOID init (ASOCIACION[] list)

 VAR

 ASOCIACION item;

 {

 item = HEAD(list);

 obj = item.obj;

 meth= item.meth;

 if (TAIL(list) == NULL)

 am_i_last = true;

 }

 PUBLIC VOID request (ANYTYPE datain,

 ComponentCollector res)

 VAR

 ANYTYPE dataout;

 {

 dataout = EVAL (obj, meth, datain);

 IF (am_i_last)

 TREAD res.put(dataout)

 ELSE commandOtherStages (dataout, res);

 }

 PRIVATE VOID commandOtherStages (ANYTYPE

 dataout, ComponentCollector res)

 { ABSTRACT;}

 MAXPAR (request);

 };

Again as in the previous case it can have more than a

petition of the operation “request ()” being executed in

parallel, for what the synchronization policies that must

be used for its correct implementation is the one that

provides the synchronization restriction of “maximum

parallelism”, applied now to the method “request().”

2.3. The concrete class ComponentCollector

It defines the concrete structure of the component

collector of any CPAN. This component implements a

buffer multi-item basically, where they will leave storing

the results of the stages that make reference to this

collector. This way one can obtain the result of the

calculation initiate by the manager.

CLASS CONCRETE ComponentCollector

 {

 VAR

 ANYTYPE[] content;

 PUBLIC VOID put (ANYTYPE item)

 { CONS(content, item); }

 PUBLIC ANYTYPE get()

 VAR

 ANYTYPE result;

 {

 result = HEAD(content[]);

 content = TAIL(content[]);

 RETURN result;

 }

 SYNC(put,get);

 MUTEX(put);

 MUTEX(get);

 };

In this case the used synchronization restrictions are

SYNC and MUTEX to be able to synchronize the

communication concurrently among the methods put()

and get() and to provide mutual exclusion.

3. THE PIPELINE AND ITS

REPRESENTATION AS CPAN

The Pipeline this compound for a set of interconnected

states one after another. The information follows a flow

from a state to another.

3.1. The technique of the Pipeline

Using the technique of the Pipeline, the idea is to divide

the problem in a series of tasks that have to be

completed, one after another. In a pipeline each task can

be executed by a process, thread or processor for

separate (Robbins and Robbins 1999), (Figure 6):

Fig. 2: Pipeline

The processes of the pipeline are sometimes called

stages of the pipeline (Roosta 1999). Each stage can

contribute to the solution of the total problem and it can

pass the information that is necessary to the following

stage of the pipeline. This type of parallelism is seen

many times as a form of functional decomposition. The

problem is divided in separate functions that can be

executed individually, but with this technique, the

functions are executed in succession.

An algorithm that solves a specific problem can then be

formulated as a pipeline if can be divided into a number

of functions that could be performed by the stages of

pipe (Robbins and Robbins 1999). Suppose, for

example, we want to order a disordered set of data from

highest to lowest in descending order, but you have

already implemented a sorting algorithm ascending; if

this sort algorithm were used, it would be necessary to

reverse the sequence of already sorted data, which can

be carried out by adding an extra stage to the pipeline

with an assigned role to carry out the specific process

(see Figure 3).

Figure 3: Pipeline seen as functional decomposition

The interpretation of the elements of the previous figure

is as follows:

 x represents the initial dataset that we assume is
in disarray;

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

216

 f(x) represents the function "orders" which
receives as input the data set to order and
outputs the sort in ascending order (from low to
high) dataset that come;

 y represents the output of the function f (x), ie,
the data sorted;

 g(y) represents the function "invest" that
receives the result of the function "orders" to
output the data set previously ordered but
reversed in sequence to have a descending
order (from highest to lowest);

 z is the output of the function g (y) in the last
stage of the pipeline.

Assuming that the data set with which they work in this

example are integers, the sequence of results within the

pipeline would be as follows, see Figure 4.

Figure 4: Sequence results in Pipeline

If a problem can be divided into a series of sequential

tasks, pipelined approach provides increased speed of

execution in the following three types of calculations:

1. When more than one instance of the problem

can be run in parallel;

2. Either a series of data can be processed and

each of these is used in multiple operations;

3. Or if the information required by the following

process to start your calculation happens after

the current process has completed all its

internal operations.

With this technique many computational problems are

performed sequentially can be easily parallelized as a

pipeline. Examples of these problems are:

 the sum of numbers,

 the shorting numbers,

 generating prime numbers,

 Solving a system of linear equations.

The technique of parallel processing pipeline is then

presented as a High Level Parallel Composition

applicable to solving a range of problems that are

partially sequential in nature, so that the Pipe CPAN

guarantees code parallelization of sequential algorithm

using the pattern Pipeline.

3.2. Representation of the Pipeline as a CPAN

The Figure 5 represents the parallel pattern of

communication Pipeline as a CPAN.

Figure 5: The CPAN of a Pipeline

The objects stage_i and Manager of the graphic pattern

of the CpanPipe are instances of concrete classes that

inherit the characteristics of the classes

ComponentManager and ComponentStage. The

Collector is the only object that is an instance of the

base class ComponentCollector since this is a concrete

class. Once the objects are created and properly

connected according to the parallel pattern Pipeline,

then you have a CPAN for a specific type of parallel

pattern, and can be resolved after the allocation of

objects associated with slave stages.

3.3. Semantic and Syntactic Definition of the Cpan

Pipe

The Cpan Pipe is represented by the class PipeManager

that inherits of ComponentManager, and a pattern of

communication pipeline implements whose stages is

instances of the class PipeStage that inherits of

ComponentStage. Any object PipeManager only takes

charge of the first stage of the pipeline in its

initialization. For details see (Capel and Rossainz

2004). During the execution of a petition of service, the

first stage is only commanded.

CLASS CONCRETE PipeManager EXTENDS OF

ComponentManager

{

 PUBLIC VOID init(ASOCIACION[] list)

 {

 stages[0] = PipeStage CREATE(list);

 }

 PRIVATE VOID commandStages (ANYTYPE

 datain,ComponentCollector res)

 {

 THREAD stages[0].request(datain,res);

 }

};

The objects of the class PipeStage creates the following

stage of the pipeline during its initialization phase. In

the execution of their operation request(), an object

stage commands directly to the following one and it is

the last one that sends the result to the object Collector

(instance of the class ComponentCollector) whose

reference is transmitted dynamically stage by stage.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

217

CLASS CONCRETE PipeStage EXTENDS OF

ComponentStage

{

 PUBLIC VOID init (ASOCIACION[] list)

 {

 stage.init(list);

 IF (!am_i_last)

 {

 otherstages[0] = PipeStage

 CREATE(TAIL(list));

 }

 }

 PRIVATE VOID commandOtherStages (ANYTYPE

 datain,ComponentCollector res)

 {

 THREAD otherstages[0].request

 (datain, res);

 }

};

4. PARALLEL ALGORITHM SORTING WITH

PIPELINE

Using a PipeLine is useful to introduce a scheme of

parallelization of a sorting algorithm, so that to solve

the problem have to perform a series of operations on a

data set. Each of these transactions is considered a stage

in the data processing and each is executed by a

separate process that synchronizes with the above

processes and form respective next stage. The complete

data processing ends when they have passed through

every stage.

Pipeline processing a serial data sequence they pass

through the pipeline stages. Each stage is associated

with a process that performs a specific operation when a

fact comes through its associated slave object.

Completed this operation, passes the result to the next

stage. In a parallel sorting algorithm with a pipeline 3

phases are distinguished (Barry and Allen 1999;

Blelloch 1996):

 The initial charge: data is allocated to all
processes associated with the stages of the
pipeline. In this phase the processes are running
the same code in the second phase, the
difference is that you must initialize properly to
receive the first data, they will come from the
previous stage or initial program load.

 The processing of the data stream with
maximum efficiency: Processes behave
cyclically in execution. Data support the
previous stage, process and send the result to
the next stage. Each process has to be
synchronized with that of the previous stage to
not send new data when it has not yet finished
processing the data streams; but also to the next
step, to not send the result to the process of this
stage is not ready to receive it. The final
process has a special behavior with respect to
the processes associated with the above steps as
you have to run a routine or exit code and

presentation of results of the program. Its
operation is to obtain the data sent by the
process of the last stage of the pipeline and
send them to an output device or send a
termination condition the main program. The
series of results it produces the last process
must match the expected result of the algorithm
has been parallelized, if the pipeline has been
successfully parallelized.

 Download: In this last stage the processes send
the result of the last processed data and
themselves detect termination situation, as they
will no longer receive more data from the input
stream and should not pose any global control
in the program tells them when they have
finished. Processes for transmitting the data
stored in its stages before completion, is usually
introduced a special value at the end of the
input sequence used to unload the pipeline.

To implement the parallel sorting algorithm, a pipeline

process is used, which receives an unordered set of

integers by a routine or entry code. It is obtained as a

result the ordered sequence of integers ascending. The

number of values in the input sequence cannot be

greater than the number of pipeline stages. Each

pipeline processes can store an integer, which will be

the largest that has been received so far from the

previous step. In each iteration, a process receives a

integer, compared to the one that had stored and sends

the smaller of the next stage of the pipeline, while the

highest is stored (Barry and Allen 1999; Blelloch 1996).

Suppose that at a certain moment of the execution of the

algorithm, the first three stages of the pipeline have a

stored integer, while the fourth stage has not yet

received any. Suppose the integer 2 is received from the

beginning of the pipeline (see figure 6).

Figure 6: insertion sequence of integers in a pipeline

The first process compares the value received to its

stored value, sends the least of them (2) to the next

stage of the pipeline and stores the largest (4).

Similarly, the second process, after receiving the integer

sent by the first (2), sends it to the next stage, keeping

stored the integer (3).

The third process, however, sends the integer that was

stored at the next stage and stores just received (2).

The fourth process, not having yet a stored integer,

stores the received by the previous stage (see figure 7).

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

218

Figure 7: Sort sequence of integers on a Pipeline

The above figure represents the parallel sorting

algorithm using a Pipeline. CpanPipe design shown in

figure 8.

Figure 8: Ordering integers using CpanPipe

5. PERFORMANCE

CpanPipe performance to implement a parallel sorting

algorithm was carried out on a parallel computer with

64 processors, 8 GB of main memory, high-speed buses

and distributed shared memory architecture.

Performance measures obtained in implementing the

CpanPipe that solves the problem of sorting is carried

out with the following restrictions execution:

 The same sequential algorithm of comparing
values in each of the slave objects associated
with pipeline stages except the first and last
step as described in Chapter IV,

 50000 a set of whole numbers randomly
obtained in the range of 0-50000 ordered,
allowing make a sufficient charge for
processors and thereby observe the
performance improvement CpanPipe,

 CpanPipe execution for 2, 4, 8, 16 and 32 full-
time processors.

Table I and figure 9 show the series of measurements

obtained including their corresponding sequential

versions, CpanPipe execution time in seconds, cycles

per instruction executed, magnitude speedup found and

the upper bound on the magnitude of speedup using for

that Amdahl's law.

Table I: Cpan Perfomance Pipe Parallel to the

Management of 50000 Sorting integers

Figure 9: Scaling the magnitude of CpanPipe Speedup

for 2, 4, 8, 16 and 32 exclusive processors

6. CONCLUSIONS

It has created a programming methodology based on

High Level Parallel Compositions or CPANs (Rossainz

and Capel 2008). CPAN Pipeline has been implemented

which is part of a class library of parallel objects that

provides the user the pattern cited as CPAN and other

communication patterns as farms and trees and the

details of which are published in (Rossainz and Capel

2012). The CPAN Pipe can be exploited using the

approach object-oriented to define new communication

patterns based on the already built. For more details see

references (Rossainz and Capel 2006, Rossainz and

Capel 2012).

Well-known algorithms that solve sequential problems

in algorithms parallelizable have transformed and with

them the utility of the method has been proven and of

the component software developed in the investigation.

It has become a sequential sorting algorithm on a

parallelizable algorithm using a Pipeline as CPAN. It

has implemented the synchronization restrictions

suggested by the model Cpan: maximum parallelism

(MaxPar), mutual exclusion (mutex) communication

and synchronization producer / consumer processes

(Sync). Of equal it forms the programming in the

asynchronous future communication way for results

“futures” within the Cpans it has been carried out in an

original way by means of classes.

It has been proven performance Pipe Cpan by metrics

Speedup, Amdahl's Law and efficiency to demonstrate

that parallel behavior CpanPipe is better than its

sequential counterpart.

APPENDIX A. FREE GRAMMAR OF THE

CONTEXT FOR THE DEFINITION OF CLASS

PO (PARALLEL OBJECTS)

Definición de una clase PO::=CLASS <tipo de clase>

<nombre de clase> [herencia]

 {

 [<Definición de variables de instancia>]

 [<Definición de métodos públicos>]

 [<Definición de métodos privados>]

 [<Definición de restricciones de sincronización>]

 };

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

219

tipo de clase::= ABSTRACT  CONCRETE

nombre de clase::= <letra mayúscula>{letra  dígito}*

herencia::= EXTENDS OF <nombre de clase>

letra::= <letra mayúscula>  <letra minúscula>

letra mayúscula::= A B C D E F G . . .  Y Z

letra minúscula::= a b c d e f g . . .  y z

dígito::= 0 1 2 3 4 5 6 7 8  9

Definición de variables de instancia::={<tipo>

<nombre variable>{,nombre variable}*;}*

tipo::= <tipo primitivo><tipo array><tipo clase>

ASOCIACION ANYTYPE METHOD  FUTURETYPE

tipo primitivo::= CHAR  INT  REAL  DOUBLE 

LONG  FLOAT  VOID BOOL STRING

tipo array::= <tipo>[]

tipo clase::= <nombre de clase>

nombre variable::= letra{letra  dígito}*

Definición de métodos públicos::={PUBLIC <tipo>

<Nombre Método>([<parámetros>])

 [<declaración de variables locales>]

 {

 <cuerpo>

 } }*

Definición de métodos privados::= { PRIVATE <tipo>

<Nombre Método>([<parámetros>])

 [<declaración de variables locales>]

 { <cuerpo> } }*

Nombre Método::= letra{letra}*[{dígito}*]

Parámetros::= <tipo> <nombre parámetro>{,<tipo>

<nombre parámetro>}*

Nombre parámetro::= letra{letra  dígito}*

Declaración de Variables locales::= VAR

 <variables locales>{; <variables locales>}*;

variables locales::= <tipo> <nombre

 variable>{,<nombre variable>}*

cuerpo::= ABSTRACT;  {<sentencia>}*

sentencia::= <asignación>

  <condición>

  <ciclo>

  <ejecución de método>

  RETURN <expresión>

  <composición de objetos paralelos>

asignación::= <nombre de variable> = <expresión>;

  <definición de objeto> = <creación de un objeto>;

<definición de objeto>::= <tipo clase> <nombre de

objeto>

<nombre de objeto>::= <letra>{letra  digito}*

<creación de un objeto>::=<nombre de clase>

CREATE ([<parámetros>])

<uso de un objeto>::= <nombre de objeto>. <nombre

variable>; <nombre de objeto>. <Nombre método>(

[argumentos]);

expresión::= HEAD(ASOCIACION[])

  TAIL (ASOCIACION[])

  CONS(ANYTYPE[], ANYTYPE)

  <creación de un objeto>

  <uso de objeto>

 <nombre de objeto> EVAL (<nombre metodo>,

 argumento)

condicion::= IF (expresión booleana)

 {

 sentencia;{sentencia;}*

 }

 ELSE {

 sentencia;{sentencia;}*

 }

ciclo::= <ciclo condicional>  <ciclo no condicional>

ciclo condicional::= WHILE (expresión booleana)

 {

 sentencia;{sentencia;}*

 }

ciclo no condicional::=FOR <nombre

variable>=(expresión entera, expresión entera)

 {

 sentencia;{sentencia;}*

 }

ejecución de método::=<nombre método>(

[argumentos])

composición de objetos paralelos::= <modo síncrono>

  <modo asíncrono>

modo síncrono::= <nombre de objeto>.<nombre

método>([argumentos]);

modo asíncrono::=THREAD<nombre de

objeto>.<nombre método>([argumentos]);

Definición de restricciones de sincronización::=

 MUTEX (<nombre método>)

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

220

  MUTEX (<nombre método>, <nombre método>)

  SYNC (<nombre método>, <nombre método>)

  MAXPAR(<nombre método>)

REFERENCES

Akl S.G., 1992. Diseño y Análisis de Algoritmos

Paralelos. Ra-Ma Serie Paradigma, Madrid.

Birrell, Andrew, 1989. An Introduction to programming

with threads. Digital Equipment Corporation,

Systems Research Center.

Blelloch, Guy E., 1996. Programming Parallel

Algorithms. Comunications of the ACM. Volume

39, Number 3.

Brinch Hansen, 1993. Model Programs for

Computational Science: A programming

methodology for multicomputers, Concurrency:

Practice and Experience, Volume 5, Number 5.

Brinch Hansen, 1994. SuperPascal- a publication

language for parallel scientific computing,

Concurrency: Practice and Experience, Volume 6,

Number 5.

Barry W., Allen M., 1999. Parallel Programming.

Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice

Hall. ISBN 0-13-671710-1.

Capel, M.; Troya J. M., 1994. An Object-Based Tool

and Methodological Approach for Distributed

Programming. Software Concepts and Tools.

Capel M., Rossainz, M., 2004. A parallel programming

methodology based on high level parallel

compositions. Proceedings of the 14th

International Conference on Electronics,

Communications and Computers, IEEE CS press.

0-7695-2074-X.

Cole, M., 1989. Algorithmic Skeletons: Structured

Managment of Parallel Computation. The MIT

Press.

Corradi A., Leonardi L., 1991. PO Constraints as tools

to synchronize active objects. Journal Object

Oriented Programming 10, pp. 42-53.

Corradi A, Leonardo L, Zambonelli F., 1995.

Experiences toward an Object-Oriented Approach

to Structured Parallel Programming. DEIS

technical report no. DEIS-LIA-95-007.

Danelutto, M.; Orlando, S; et al., 1995. Parallel

Programming Models Based on Restricted

Computation Structure Approach. Technical

Report-Dpt. Informatica. Universitá de Pisa.

Darlington et al., 1993, Parallel Programming Using

Skeleton Functions. Proceedings PARLE’93,

Munich (D).

Robbins, K. A., Robbins S. 1999. “UNIX Programación

Práctica. Guía para la concurrencia, la

comunicación y los multihilos”. Prentice Hall.

Roosta, Séller, 1999. Parallel Processing and Parallel

Algorithms. Theory and Computation. Springer.

Rossainz, M., 2005. Una Metodología de Programación

Basada en Composiciones Paralelas de Alto Nivel

(CPANs). Universidad de Granada, PhD

dissertation, 02/25/2005.

Rossainz, M., Capel M., 2006. Design and

Implementation of the Branch & Bound

Algorithmic Design Technique as an High Level

Parallel Composition. International

Mediterranean Modelling Multi-conference.

Barcelona, Spain.

Rossainz, M., Capel M., 2008. A Parallel Programming

Methodology using Communication Patterns

named CPANS or Composition of Parallel Object.

20TH European Modeling & Simulation

Symposium.Campora S. Giovanni. Italy.

Rossainz, M., Capel M., 2012. Compositions of Parallel

Objects to Implement Communication Patterns.

XXIII Jornadas de Paralelismo. SARTECO 2012.

Septiembre de 2012. Elche, España.

Rossainz M., Pineda I., Dominguez P., Análisis y

Definición del Modelo de las Composiciones

Paralelas de Alto Nivel llamadas CPANs. Modelos

Matemáticos y TIC: Teoría y Aplicaciones 2014.

Dirección de Fomento Editorial. ISBN 987-607-

487-834-9. Pp. 1-19. México.

Proceedings of the European Modeling and Simulation Symposium, 2015
978-88-97999-57-7; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

221

