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ABSTRACT 

Shown representation by composing Parallel Objects, 

Pattern communication / interaction PipeLine for 

implementing a sorting algorithm, through a approach 

of Structured Parallel Programming using High Level 

Parallel Compositions or CPANs. Shown the definition, 

design and implementation of PipeLine as a CPAN 

under the paradigm of object orientation in order to 

provide the programmer the ability to reuse the pattern 

in solving problems, particularly those that deal with 

management, optimization and information search; 

CPANPipe are added to a set of restrictions 

synchronization between processes (maximum 

parallelism, mutual exclusion, producer-consumer 

synchronization type). Synchronous communication 

modes, asynchronous and asynchronous future used. 

The sort algorithm based on a Pipeline and its design 

and implementation as shown CPANPipe and finally 

execution performance is obtained in a parallel 64-

processor machine.  

 

Keywords: CPAN Pipeline, Structured Parallel 

Programming, Parallel Objects, Communication 

Patterns. 

 

1. INTRODUCTION 

Some of the problems of the environments of parallel 

programming it is that of their acceptance for the users, 

which depends that they can offer complete expressions 

of the behavior of the parallel programs that are built 

with these environments (Danelutto and Orlando 1995). 

At the moment in the systems oriented to objects, the 

programming environments based on parallel objects 

are only known by the scientific community dedicated 

to the study of the Concurrence. A first approach that 

tries to attack this problem it is to try to make the user 

to develop his programs according to a style of 

sequential programming and, helped of a system or 

specific environment, this can produce his parallel tally 

(Akl 1992). However, intrinsic implementation 

difficulties exist to the definition of the formal 

semantics of the programming languages that impede 

the automatic parallelization without the user's 

participation, for what the problem of generating 

parallelism in an automatic way for a general 

application continues being open (Darlington 1993).  

A promising approach alternative that is the one that is 

adopted in the present investigation to reach the 

outlined objectives is the denominated structured 

parallelism (Capel and Troya 1994). In general the 

parallel applications follow predetermined patterns of 

execution. These communication patterns are rarely 

arbitrary and not structured in their logic (Brinch 

Hansen 1993, Brinch Hansen 1994). The High Level 

Parallel Compositions or CPANs are patterns parallel 

defined and logically structured that, once identified in 

terms of their components and of their communication, 

they can be taken to the practice and to be available as 

abstractions of high level in the user's applications 

within an environment or programming environment, in 

this case the one of the orientation to objects (Rossainz 

and Capel 2008, Rossainz 2005). A CPAN has the 

following properties that can be studied in detail in 

(Rossainz, Pineda and Dominguez 2014): 

 

1. Capacity of invocation of methods of the 

objects that contemplates the asynchronous 

communication ways and asynchronous future 

(Danelutto and Orlando 1995). The 

asynchronous way doesn't force to wait the 

client's result that invokes a method of an 

object. The asynchronous future 

communication way makes the client to wait 

only when needs the result in a future instant of 

her execution. Both communication ways 

allow a client to continue being executed 

concurrently with the execution of the method 

(parallelism inter-objects). 

2. The objects must can to have internal 

parallelism. A mechanism of threads it must 

allow to an object to serve several invocations 

of their methods concurrently (parallelism 

intra-objects). 

3. Availability of synchronization mechanisms 

when parallel petitions of service take place. It 

is necessary so that the objects can negotiate 

several execution flows concurrently and, at 
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the same time, to guarantee the consistency of 

their data. 

4. Availability of flexible mechanisms of control 

of types. The capacity must be had of 

associating types dynamically to the 

parameters of the methods of the objects. It is 

needed that the system can negotiate types of 

generic data, since the CPANs only defines the 

parallel part of an interaction pattern, therefore, 

they must can to adapt to the different classes 

of possible components of the pattern.  

5. Transparency of distribution of parallel 

applications. It must provide the transport of 

the applications from a system centralized to a 

distributed system without the user's code is 

affected. The classes must maintain their 

properties, independently of the environment 

of execution of the objects of the applications.  

6. Performance. This is always the most 

important parameter to consider when one 

makes a new proposal of development 

environment for parallel applications. An 

approach based on patterns as classes and 

parallel objects must solve the denominated 

problem PPP (Programmability, Portability, 

Performance) so that it is considered an 

excellent approach to the search of solutions to 

the outlined problems. 

 

With the basic set of classes of the model of 

programming of PO they are possible to be constructed 

concrete CPANs. To build a CPAN, first it should be 

had clear the parallel behavior that one needs to 

implement, so that the CPAN in itself is this pattern. 

Several parallel patterns of interaction exist as are the 

farms, the pipes, the trees, the cubes, the meshes, the 

matrix of processes, etc. So you know what pattern is 

best suited to a particular application is an important 

design decision that cannot be fully automated. Once 

identified the parallel behavior, the second step consists 

on elaborating a graphic of its representation as mere 

technique of informal design of what will be later on the 

parallel processing of the objective system; it is also 

good to illustrate its general characteristics, etc., and it 

will allow later to define its representation with CPANs, 

following the pattern proposed in the next section. 

When the model of a CPAN is already had concretized, 

that defines a specific parallel pattern; say for example, 

a tree, or some of those previously mentioned ones, the 

following step would be to carry out its syntactic 

definition and semantics. 

Finally, the syntactic definition previous to a CPAN 

programmed is translated in the most appropriate 

programming environment for its parallel 

implementation. It would be verified that the resulting 

semantics is the correct one, it would be proven with 

several different examples to demonstrate its genericity 

and the performance of the applications would be 

observed that include it as component software. 

The parallel patterns worked in the present investigation 

have been the pipeline, to be a significant reusable 

pattern in multiple applications and algorithms. Being 

used at the moment with different purposes, in different 

areas and with different applications according to the 

literature that there is on the topic (Cole 1989, 

Darlington 1993). In the present investigation the 

pipeline is constructed as a CPAN to implement a 

sorting algorithm and solving the problem of generating 

parallel an increasing sequence of numbers from lowest 

to highest. Finally performance shown considering 

measures such as the execution time in seconds, cycles 

per instruction (CPI), speedup and Amdahl's Law. 

 

2. HIGH LEVEL PARALLEL COMPOSITIONS 

(HLPC) 

A CPAN comes from the composition of a set of 

objects of three types (see Figure 1): An object manager 

that it represents the CPAN in itself and makes of him 

an encapsulated abstraction that it hides their internal 

structure. The manager controls the references of a set 

of objects (a denominated object Collector and several 

denominated objects Stage) that represent the 

components of the CPAN and whose execution is 

carried out in parallel and it should be coordinated by 

the own manager. The objects Stage that are objects of 

specific purpose, in charge of encapsulating an interface 

type client-server that settles down between the 

manager and the objects slaves (objects that are not 

actively participative in the composition of the CPAN, 

but rather they are considered external entities that 

contain the sequential algorithm that constitutes the 

solution of a given problem). And an object Collector 

that it is an object in charge of storing in parallel the 

results that he receives of the objects stage that has 

connected. That is to say, during the service of a 

petition, the control flow within the stages of a CPAN 

depends on the implemented communication pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Internal Structure of a HLPC. Composition of 

its components 

 

The objects manager, collector and stages are included 

within the definition of Parallel Object (PO) (Corradi 

1991). The Parallel Objects are active objects, that is to 

say, objects that have execution capacity in them 

(Corradi 1991). The applications within the pattern PO 

can exploit the parallelism so much among objects 
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(inter-object) as the internal parallelism of them (intra-

object). An object PO has a similar structure to that of 

an object in Smalltalk, but it also includes a politics of 

scheduling, determined a priori that specifies the form 

of synchronizing an or more operations of a class in 

parallel (Danelutto and Orlando 1995, Corradi 1991). 

The synchronization policies are expressed in terms of 

restrictions; for example, the mutual exclusion in 

processes readers/writers or the maximum parallelism in 

processes writers. All the parallel objects derive then of 

the classic definition of “class” more the incorporation 

of the synchronization restrictions (mutual exclusion 

and maximum parallelism) (Birrel 1989). The objects of 

oneself class shares the same specification contained in 

the class of which you/they are instantiates. The 

inheritance allows deriving a new specification of one 

that already exists. The parallel objects support multiple 

inheritances. 

 

CLASS: <class name> 

     INHERITS_FROM: <list of class names parents> 

     INSTANCE_STATE: < list the names and  

                                       types of instance> 

     INSTANCE_METHODS: <list of public methods> 

    PRIVATE_METHODS: <list of private methods> 

    SCHEDULING_PART: <list of synchronization 

                                           restrictions> 

END_CLASS <class name> 

 

2.1. The abstract class ComponentManager 

It defines the generic structure of the component 

manager of a CPAN, of where will be derived all the 

manager concretes depending on the parallel behavior 

that is contemplated for the creation of the CPAN. All 

concrete instance of a manager accepts as input a list of 

n-associations. An association is a pair of elements, that 

is: an object slave and the name of the method that has 

to be executed by this object. The objects slaves are 

external entities that contain a sequential algorithm that 

have to execute through one of their methods. 

Once the manager has captured the list of n-

associations, this generates the concrete stages, one for 

each association and then each stage becomes in 

responsible for an object slave, together with the 

execution method of this. In turn, the stages are 

connected to each other, in accordance with the parallel 

pattern that has been implemented in the CPAN. 

Finally the manager carries out the processing of a 

computation, through the execution of one of his 

methods (execution). For it is necessary to pass to the 

method the data input with those that one wants to 

work. The manager generates a component collector 

then and it passes to the stages the reference to this 

collector, as well as the data input. The stages processes 

them and, according to as be connected some with 

other, will spend the results that they go obtaining. At 

the end the collector will pick up the results of the 

stages to return them to the manager who finally will 

transmit the results to the exterior of the CPAN (to the 

code of user's application that uses it). The following 

syntactic definitions have been written using the 

grammar free of context that is in the appendix A of the 

present document. 

 

CLASS ABSTRACT ComponentManager 

    {  

      ComponentStage[ ] stages; 

 

      PUBLIC VOID init (ASOCIACION[]  list )  

        { ABSTRACT;} 

 

      PUBLIC ANYTYPE execution(ANYTYPE datain)  

       VAR 

         ComponentCollector res; 

          { 

           res = ComponentCollector CREATE( ); 

           commandStages(datain,res); 

           RETURN res.get( ); 

          } 

  

      PRIVATE VOID commandStages(ANYTYPE datain,  

                                ComponentCollector res)  

          { ABSTRACT; } 

  

      MAXPAR (execution);  

     }; 

 

The same manager can be used to carry out more 

calculations in parallel. The synchronization policies 

used for it is it the restriction of synchronization of the 

“maximum parallelism” or MAXPAR applied to the 

method “execution().” 

 

2.2. The abstract class ComponentStage 

It defines the generic structure of the component stage 

of a CPAN, as well as of their interconnections, of 

where they will be derived all the concrete stages 

depending on the parallel behavior that is contemplated 

in the creation of the CPAN. All concrete instance of a 

stage accepts as input a list of associations slave_object-

method to work with her and it is connected or not with 

the following stage of the list of associations, depending 

on the parallel pattern that you/they implement, so that 

when the manager commands to the stages in parallel, 

each one of them makes the object slave to carry out the 

execution of his method, the stage captures the results 

and it sends them to the following stage or the collector, 

depending on the implemented structure (everything it 

within a method called request ()). In turn, each stage 

can command others in the execution of the 

computation initiate by the manager. 

 

CLASS ABSTRACT  ComponentStage 

   { 

    ComponentStage[] otherstages; 

    BOOL am_i_last; 

    METHOD meth; 

    OBJECT obj; 
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    PUBLIC VOID init (ASOCIACION[]  list) 

    VAR 

        ASOCIACION item; 

      { 

        item = HEAD(list);  

        obj = item.obj;  

        meth= item.meth; 

        if (TAIL(list) == NULL)  

             am_i_last = true; 

       } 

 

   PUBLIC VOID request (ANYTYPE datain,  

                           ComponentCollector res)  

    VAR 

        ANYTYPE dataout; 

      { 

       dataout = EVAL (obj, meth, datain); 

       IF (am_i_last)  

           TREAD res.put(dataout) 

       ELSE commandOtherStages  (dataout, res); 

      } 

    PRIVATE VOID  commandOtherStages (ANYTYPE  

                             dataout, ComponentCollector  res)   

           { ABSTRACT;}     

   MAXPAR (request);  

  }; 

 

Again as in the previous case it can have more than a 

petition of the operation “request ()” being executed in 

parallel, for what the synchronization policies that must 

be used for its correct implementation is the one that 

provides the synchronization restriction of “maximum 

parallelism”, applied now to the method “request().” 

 

2.3. The concrete class ComponentCollector 

It defines the concrete structure of the component 

collector of any CPAN. This component implements a 

buffer multi-item basically, where they will leave storing 

the results of the stages that make reference to this 

collector. This way one can obtain the result of the 

calculation initiate by the manager. 

 

CLASS CONCRETE ComponentCollector 

    { 

     VAR 

        ANYTYPE[] content; 

 

     PUBLIC VOID put (ANYTYPE item)  

           { CONS(content, item); } 

      

     PUBLIC ANYTYPE get( ) 

         VAR 

        ANYTYPE result; 

         { 

          result = HEAD(content[]); 

          content = TAIL(content[]); 

         RETURN result; 

         }  

      SYNC(put,get);  

     MUTEX(put);  

     MUTEX(get); 

     }; 

 

In this case the used synchronization restrictions are 

SYNC and MUTEX to be able to synchronize the 

communication concurrently among the methods put() 

and get() and to provide mutual exclusion. 

 

3. THE PIPELINE AND ITS 

REPRESENTATION AS CPAN 

The Pipeline this compound for a set of interconnected 

states one after another. The information follows a flow 

from a state to another. 

 

3.1. The technique of the Pipeline 

Using the technique of the Pipeline, the idea is to divide 

the problem in a series of tasks that have to be 

completed, one after another. In a pipeline each task can 

be executed by a process, thread or processor for 

separate (Robbins and Robbins 1999), (Figure 6): 

 

 
Fig. 2: Pipeline 

 

The processes of the pipeline are sometimes called 

stages of the pipeline (Roosta 1999). Each stage can 

contribute to the solution of the total problem and it can 

pass the information that is necessary to the following 

stage of the pipeline. This type of parallelism is seen 

many times as a form of functional decomposition. The 

problem is divided in separate functions that can be 

executed individually, but with this technique, the 

functions are executed in succession. 

An algorithm that solves a specific problem can then be 

formulated as a pipeline if can be divided into a number 

of functions that could be performed by the stages of 

pipe (Robbins and Robbins 1999). Suppose, for 

example, we want to order a disordered set of data from 

highest to lowest in descending order, but you have 

already implemented a sorting algorithm ascending; if 

this sort algorithm were used, it would be necessary to 

reverse the sequence of already sorted data, which can 

be carried out by adding an extra stage to the pipeline 

with an assigned role to carry out the specific process 

(see Figure 3). 

 

Figure 3: Pipeline seen as functional decomposition 

 

The interpretation of the elements of the previous figure 

is as follows: 

 

 x represents the initial dataset that we assume is 
in disarray; 
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 f(x) represents the function "orders" which 
receives as input the data set to order and 
outputs the sort in ascending order (from low to 
high) dataset that come; 

 y represents the output of the function f (x), ie, 
the data sorted; 

 g(y) represents the function "invest" that 
receives the result of the function "orders" to 
output the data set previously ordered but 
reversed in sequence to have a descending 
order (from highest to lowest); 

 z is the output of the function g (y) in the last 
stage of the pipeline. 

 
Assuming that the data set with which they work in this 

example are integers, the sequence of results within the 

pipeline would be as follows, see Figure 4. 

 

Figure 4: Sequence results in Pipeline 

 

If a problem can be divided into a series of sequential 

tasks, pipelined approach provides increased speed of 

execution in the following three types of calculations: 

 

1. When more than one instance of the problem 

can be run in parallel; 

2. Either a series of data can be processed and 

each of these is used in multiple operations; 

3. Or if the information required by the following 

process to start your calculation happens after 

the current process has completed all its 

internal operations. 

 

With this technique many computational problems are 

performed sequentially can be easily parallelized as a 

pipeline. Examples of these problems are: 

 

 the sum of numbers, 

 the shorting numbers, 

 generating prime numbers, 

 Solving a system of linear equations. 
 
The technique of parallel processing pipeline is then 

presented as a High Level Parallel Composition 

applicable to solving a range of problems that are 

partially sequential in nature, so that the Pipe CPAN 

guarantees code parallelization of sequential algorithm 

using the pattern Pipeline. 

 

3.2. Representation of the Pipeline as a CPAN 

The Figure 5 represents the parallel pattern of 

communication Pipeline as a CPAN. 

 

 
 

Figure 5:  The CPAN of a Pipeline 

 

The objects stage_i and Manager of the graphic pattern 

of the CpanPipe are instances of concrete classes that 

inherit the characteristics of the classes 

ComponentManager and ComponentStage. The 

Collector is the only object that is an instance of the 

base class ComponentCollector since this is a concrete 

class. Once the objects are created and properly 

connected according to the parallel pattern Pipeline, 

then you have a CPAN for a specific type of parallel 

pattern, and can be resolved after the allocation of 

objects associated with slave stages. 

 

3.3. Semantic and Syntactic Definition of the Cpan 

Pipe 

The Cpan Pipe is represented by the class PipeManager 

that inherits of ComponentManager, and a pattern of 

communication pipeline implements whose stages is 

instances of the class PipeStage that inherits of 

ComponentStage. Any object PipeManager only takes 

charge of the first stage of the pipeline in its 

initialization. For details see (Capel and Rossainz 

2004). During the execution of a petition of service, the 

first stage is only commanded. 

 

CLASS CONCRETE PipeManager EXTENDS OF 

ComponentManager 

{ 

 PUBLIC VOID init(ASOCIACION[ ] list) 

   { 

    stages[0] = PipeStage CREATE( list ); 

   } 

 

 PRIVATE VOID commandStages (ANYTYPE  

 datain,ComponentCollector res) 

   { 

    THREAD stages[0].request(datain,res); 

   } 

}; 

 

The objects of the class PipeStage creates the following 

stage of the pipeline during its initialization phase. In 

the execution of their operation request(), an object 

stage commands directly to the following one and it is 

the last one that sends the result to the object Collector 

(instance of the class ComponentCollector) whose 

reference is transmitted dynamically stage by stage. 
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CLASS CONCRETE  PipeStage EXTENDS OF 

ComponentStage 

{ 

 PUBLIC VOID init (ASOCIACION[] list) 

   { 

    stage.init(list); 

    IF (!am_i_last) 

      {    

       otherstages[0] = PipeStage  

               CREATE(TAIL(list)); 

      } 

    } 

    

  PRIVATE VOID commandOtherStages (ANYTYPE  

  datain,ComponentCollector res) 

    {   

     THREAD otherstages[0].request  

                         (datain, res);  

    } 

}; 

 

4. PARALLEL ALGORITHM SORTING WITH 

PIPELINE 

Using a PipeLine is useful to introduce a scheme of 

parallelization of a sorting algorithm, so that to solve 

the problem have to perform a series of operations on a 

data set. Each of these transactions is considered a stage 

in the data processing and each is executed by a 

separate process that synchronizes with the above 

processes and form respective next stage. The complete 

data processing ends when they have passed through 

every stage. 

Pipeline processing a serial data sequence they pass 

through the pipeline stages. Each stage is associated 

with a process that performs a specific operation when a 

fact comes through its associated slave object. 

Completed this operation, passes the result to the next 

stage. In a parallel sorting algorithm with a pipeline 3 

phases are distinguished (Barry and Allen 1999; 

Blelloch 1996): 

 

 The initial charge: data is allocated to all 
processes associated with the stages of the 
pipeline. In this phase the processes are running 
the same code in the second phase, the 
difference is that you must initialize properly to 
receive the first data, they will come from the 
previous stage or initial program load. 

 The processing of the data stream with 
maximum efficiency: Processes behave 
cyclically in execution. Data support the 
previous stage, process and send the result to 
the next stage. Each process has to be 
synchronized with that of the previous stage to 
not send new data when it has not yet finished 
processing the data streams; but also to the next 
step, to not send the result to the process of this 
stage is not ready to receive it. The final 
process has a special behavior with respect to 
the processes associated with the above steps as 
you have to run a routine or exit code and 

presentation of results of the program. Its 
operation is to obtain the data sent by the 
process of the last stage of the pipeline and 
send them to an output device or send a 
termination condition the main program. The 
series of results it produces the last process 
must match the expected result of the algorithm 
has been parallelized, if the pipeline has been 
successfully parallelized. 

 Download: In this last stage the processes send 
the result of the last processed data and 
themselves detect termination situation, as they 
will no longer receive more data from the input 
stream and should not pose any global control 
in the program tells them when they have 
finished. Processes for transmitting the data 
stored in its stages before completion, is usually 
introduced a special value at the end of the 
input sequence used to unload the pipeline. 

 
To implement the parallel sorting algorithm, a pipeline 

process is used, which receives an unordered set of 

integers by a routine or entry code. It is obtained as a 

result the ordered sequence of integers ascending. The 

number of values in the input sequence cannot be 

greater than the number of pipeline stages. Each 

pipeline processes can store an integer, which will be 

the largest that has been received so far from the 

previous step. In each iteration, a process receives a 

integer, compared to the one that had stored and sends 

the smaller of the next stage of the pipeline, while the 

highest is stored (Barry and Allen 1999; Blelloch 1996). 

Suppose that at a certain moment of the execution of the 

algorithm, the first three stages of the pipeline have a 

stored integer, while the fourth stage has not yet 

received any. Suppose the integer 2 is received from the 

beginning of the pipeline (see figure 6). 

 

 

 
Figure 6:  insertion sequence of integers in a pipeline 

 

The first process compares the value received to its 

stored value, sends the least of them (2) to the next 

stage of the pipeline and stores the largest (4). 

Similarly, the second process, after receiving the integer 

sent by the first (2), sends it to the next stage, keeping 

stored the integer (3). 

The third process, however, sends the integer that was 

stored at the next stage and stores just received (2).  

The fourth process, not having yet a stored integer, 

stores the received by the previous stage (see figure 7). 
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Figure 7: Sort sequence of integers on a Pipeline 

 

The above figure represents the parallel sorting 

algorithm using a Pipeline. CpanPipe design shown in 

figure 8. 

 
Figure 8: Ordering integers using CpanPipe 

 

5. PERFORMANCE 

CpanPipe performance to implement a parallel sorting 

algorithm was carried out on a parallel computer with 

64 processors, 8 GB of main memory, high-speed buses 

and distributed shared memory architecture. 

Performance measures obtained in implementing the 

CpanPipe that solves the problem of sorting is carried 

out with the following restrictions execution: 

 

 The same sequential algorithm of comparing 
values in each of the slave objects associated 
with pipeline stages except the first and last 
step as described in Chapter IV, 

 50000 a set of whole numbers randomly 
obtained in the range of 0-50000 ordered, 
allowing make a sufficient charge for 
processors and thereby observe the 
performance improvement CpanPipe, 

 CpanPipe execution for 2, 4, 8, 16 and 32 full-
time processors. 

 
Table I and figure 9 show the series of measurements 

obtained including their corresponding sequential 

versions, CpanPipe execution time in seconds, cycles 

per instruction executed, magnitude speedup found and 

the upper bound on the magnitude of speedup using for 

that Amdahl's law. 

 

Table I: Cpan Perfomance Pipe Parallel to the 

Management of 50000 Sorting integers 

 

 
Figure 9: Scaling the magnitude of CpanPipe Speedup 

for 2, 4, 8, 16 and 32 exclusive processors 

 

6. CONCLUSIONS 

It has created a programming methodology based on 

High Level Parallel Compositions or CPANs (Rossainz 

and Capel 2008). CPAN Pipeline has been implemented 

which is part of a class library of parallel objects that 

provides the user the pattern cited as CPAN and other 

communication patterns as farms and trees and the 

details of which are published in (Rossainz and Capel 

2012). The CPAN Pipe can be exploited using the 

approach object-oriented to define new communication 

patterns based on the already built. For more details see 

references (Rossainz and Capel 2006, Rossainz and 

Capel 2012). 

Well-known algorithms that solve sequential problems 

in algorithms parallelizable have transformed and with 

them the utility of the method has been proven and of 

the component software developed in the investigation. 

It has become a sequential sorting algorithm on a 

parallelizable algorithm using a Pipeline as CPAN. It 

has implemented the synchronization restrictions 

suggested by the model Cpan: maximum parallelism 

(MaxPar), mutual exclusion (mutex) communication 

and synchronization producer / consumer processes 

(Sync). Of equal it forms the programming in the 

asynchronous future communication way for results 

“futures” within the Cpans it has been carried out in an 

original way by means of classes. 

It has been proven performance Pipe Cpan by metrics 

Speedup, Amdahl's Law and efficiency to demonstrate 

that parallel behavior CpanPipe is better than its 

sequential counterpart. 

 

APPENDIX A. FREE GRAMMAR OF THE 

CONTEXT FOR THE DEFINITION OF CLASS 

PO (PARALLEL OBJECTS) 

 

Definición de una clase PO::=CLASS <tipo de clase> 

<nombre de clase> [herencia] 

        { 

         [<Definición de variables de instancia>] 

         [<Definición de métodos públicos>] 

         [<Definición de métodos privados>] 

        [<Definición de restricciones de sincronización>] 

      }; 
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tipo de clase::= ABSTRACT  CONCRETE 

 

nombre de clase::= <letra mayúscula>{letra  dígito}* 

 

herencia::= EXTENDS OF <nombre de clase> 

 

letra::= <letra mayúscula>  <letra minúscula> 

letra mayúscula::= A B C D E F G . . .  Y Z 

 

letra minúscula::= a b c d e f g . . .  y z 
 

dígito::= 0 1 2 3 4 5 6 7 8  9 

 

Definición de variables de instancia::={<tipo> 

<nombre variable>{,nombre variable}*;}* 

 

tipo::= <tipo primitivo><tipo array><tipo clase> 

ASOCIACION ANYTYPE METHOD  FUTURETYPE  

 

tipo primitivo::= CHAR  INT  REAL  DOUBLE  

LONG  FLOAT  VOID BOOL STRING 

 

tipo array::= <tipo>[ ] 

tipo clase::= <nombre de clase>  

nombre variable::= letra{letra  dígito}*  

 

Definición de métodos públicos::={PUBLIC <tipo> 

<Nombre Método>([<parámetros>]) 

             [<declaración de variables locales>] 

               { 

                <cuerpo> 

               } }* 

 

Definición de métodos privados::= { PRIVATE <tipo> 

<Nombre Método>([<parámetros>]) 

         [<declaración de variables locales>] 

              { <cuerpo> } }* 

 

Nombre Método::= letra{letra}*[{dígito}*] 

 

Parámetros::= <tipo> <nombre parámetro>{,<tipo> 

<nombre parámetro>}* 

 

Nombre parámetro::= letra{letra  dígito}* 

 

Declaración de Variables locales::= VAR 

      <variables locales>{; <variables locales>}*; 

 

variables locales::= <tipo> <nombre 

 variable>{,<nombre variable>}* 

 

cuerpo::=  ABSTRACT;  {<sentencia>}*  

              

sentencia::=   <asignación> 

              <condición> 

              <ciclo> 

              <ejecución de método> 

              RETURN <expresión> 

              <composición de objetos paralelos> 

              

asignación::= <nombre de variable> = <expresión>; 

   <definición de objeto> = <creación de un objeto>; 

                     

<definición de objeto>::= <tipo clase> <nombre de 

objeto> 

 

<nombre de objeto>::= <letra>{letra  digito}* 

 

<creación de un objeto>::=<nombre de clase> 

CREATE ([<parámetros>])  

 

<uso de un objeto>::= <nombre de objeto>. <nombre 

variable>; <nombre de objeto>. <Nombre método>( 

[argumentos]);  

 

expresión::= HEAD(ASOCIACION[ ]) 

            TAIL (ASOCIACION[ ]) 

            CONS( ANYTYPE[ ], ANYTYPE) 

            <creación de un objeto> 

            <uso de objeto>  

           <nombre de objeto> EVAL (<nombre metodo>,  

               argumento) 

         

condicion::= IF (expresión booleana) 

               { 

                sentencia;{sentencia;}* 

               } 

             ELSE { 

                    sentencia;{sentencia;}* 

                  } 

 

ciclo::= <ciclo condicional>  <ciclo no condicional> 

 

ciclo condicional::= WHILE (expresión booleana) 

                        { 

                         sentencia;{sentencia;}* 

                        } 

 

ciclo no condicional::=FOR <nombre 

variable>=(expresión entera, expresión entera) 

               { 

                sentencia;{sentencia;}* 

               } 

 

ejecución de método::=<nombre método>( 

[argumentos]) 

 

composición de objetos paralelos::= <modo síncrono> 

                                   <modo asíncrono> 

 

modo síncrono::= <nombre de objeto>.<nombre 

método>([argumentos]); 

 

modo asíncrono::=THREAD<nombre de 

objeto>.<nombre método>([argumentos]); 

 

Definición de restricciones de sincronización::=  

        MUTEX ( <nombre método> ) 
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     MUTEX ( <nombre método>, <nombre método> ) 

     SYNC (<nombre método>, <nombre método>) 

    MAXPAR(<nombre método>) 
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