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ABSTRACT 
Key features of modern healthcare services in 
developed countries, in a general context characterized 
by strict cost control and aging population, are 
flexibility in access to care for different types of patient 
flows (e.g. inpatients, ED patients and outpatients) and 
capability of adapting to quantitative service demand 
change, commonly posed by outpatients. An expensive 
resource, such as a CT scanner or an MRI machine, is 
often shared  by diverse patient flows and this single 
server has to assure satisfactory performances  (in terms 
of waiting time) to both the random and the planned 
service demand component, implementing appropriate 
buffering and priority rules. For outpatients, requesting 
access to an appointment service in general, waiting 
time is represented by waiting time for the appointment 
day and waiting time experienced at the facility. The 
governing rules determining these performance results 
can be treated as separate problems and, in the present 
paper, the first kind of wait, commonly related to the 
existence of long waiting lists, is considered. A simple 
general analytical model, adopting statistical 
considerations, is proposed and, successively, 
applications in a CT scan facility in a public hospital, 
supported by simulation, are illustrated. 

Keywords: appointment scheduling, queues, health care, 
simulation  

1. INTRODUCTION
In many European countries, healthcare services still 
represent a basic pillar of the welfare system; however, 
public expenditure for new investment is often 
unrealizable by the local NHS (National Health Service) 
Departments/Authorities.  

As a consequence, it is not uncommon that, at the 
examination facility, an expensive resource for digital 
imaging diagnosis (e.g. a CT scanner, MRI equipment) 
is unique and shared among diverse patient flows. On 
the other hand, for patients in critical conditions (e.g. 
patients from the Emergency Department in a hospital), 
an immediate response is crucial, but, ideally, it would 
require dedicated equipment. As a trade-off solution, in 
a  single-server system, appropriate buffering and 
priority rules have to be implemented in order to assure 
satisfactory performances (in terms of waiting time) to 

both the random and the planned service-demand 
component. 

The last consists of outpatients who are given 
appointments well in advance with respect to the 
examination date; for them a booking method, in most 
cases supported by IT tools, is in place. The coexisting 
presence of a random component can be considered 
beneficial in order to attain a “satisfactory” utilization 
level of expensive resources, but, on the other hand, as 
well-known, “emergency medical (ambulance) and fire 
service systems operate at only 10-15% utilization. 
Short response time is essential for these systems and 
hence excessive waiting times are simply not allowable. 
Since variability is unavoidable (people don’t schedule 
their heart attacks), the only way to keep waiting to a 
minimum is to have a great deal of excess capacity” 
(Hopp 2008). Therefore, two opposite needs must be 
conciliated. On the one hand “hospital managers have 
every incentive to keep these machines fully utilized” 
and “this is often done by filling most, if not all, 
examination slots during the day with outpatient 
appointments” (Green et al. 2006). On the other hand, 
this is in contrast with the outlined features of an 
emergency service, since, in order to keep short waiting 
time, urgent cases should find, ideally, the server idle 
upon their arrival (null waiting time) or working at low 
utilization levels (which means the server is found idle 
most of the times). Because of the presence of 
appointed patients and/or inpatients (when the service 
facility is inside a hospital), priority rules must 
necessarily be adopted and, inevitably, longer waiting 
times for outpatients result.  

Extensive literature exists, regarding the analysis 
of system performance in terms of waiting time at the 
facility for different patient classes and the risk of 
overtime (prolonged working time beyond the daily 
shift), in relation to appointment scheduling and other 
problem parameters. However, the investigation on 
specific characteristics of healthcare appointment 
systems in relation to the existence of long waiting lists 
for outpatients appear to be overlooked. 

The present paper is organized as follows: in 
Section 2, a brief literature overview is given; in Section 
3, some general considerations about the behavior of a 
generic appointment system in steady-state conditions 
are illustrated. In Sections 4 and 5 a possible analytical 
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approach, adopting statistical results, for the description 
of the outpatient buffer in unsteady-state conditions is 
proposed. In Section 6, basic simulation models, 
adopting the illustrated concepts for the specific case-
study of a CT scan facility, are introduced and results 
are discussed. Finally, remarks and general conclusions 
are drawn in Section 7. 

  
2. LITERATURE SURVEY 
The kind of system illustrated in the introduction can be 
treated of as a single-server queue model with a non-
preemptive priority rule (Adan and Resing 2002). 

In fact, even though ED patients are served as soon 
as possible (and the FCFS, first-come-first-served, rule 
is adopted for patients of the same class), the process 
cannot be interrupted once started for any patient, even 
if he belongs to a lower priority class. Using Kendall’s 
notation, it isn’t possible to describe the system in a 
short comprehensive manner, because of the diverse 
nature of these patient flows. For the appointed patients, 
an appropriate representation could be in the form 
D/G/1 (deterministic arrivals based on the appointment 
schedule in place and general pdf for service times). 
However, the mathematical model becomes easily 
untreatable when service time moves away from a 
Markovian distribution or when it is not assumed to be 
deterministic, or when phenomenons like no-shows or 
unpunctuality must be taken into account (D + 
noise/M/1 models, cited, for example, in (Hassin and 
Mendel 2008). In (Kuiper 2012), the author illustrates 
the solution method for finding the optimal appointment 
schedule (which minimizes a cost function of the sum 
of expected patients’ waiting times and server’s idle 
times) by means of a phase-type distribution 
approximation of service time (D/PH/1 setting), 
neglecting the mentioned disturbances. (Kaandorop and 
Koole 2007) find the optimal outpatient appointment 
schedule, with no-shows and exponential service time, 
for the minimization of an objective function which 
includes tardiness (time exceeding the given session 
period), discretizing the time session and employing a 
local search algorithm. Exploring over a limited number 
of time points for appointments, derived dividing the 
continuous time session into discrete intervals, makes 
sense for practical applications and doesn’t limit the 
general principles behind the optimal solution, found to 
be in “dome shapes”, as observed in literature. (Hassin 
and Mendel 2008) use a continuous time analytical 
model D/M/1, including  no-shows and an objective 
function to be minimized (linear combination of waiting 
time cost and server’s availability time cost). They 
obtain “what is believed to be an optimal solution by 
applying sequential quadratic programming (SQP)”. 

The possibility of including in a mathematical 
model additional types of patients aside the appointed 
ones often implicates the assumption of deterministic 
service times and rigidly fixed slot durations. For 
example, (Green et al. 2006) formulate the real-time 
capacity allocation problem for a medical diagnostic 
facility (MRI) accessed by outpatients, inpatients and 

emergency clients (with associated arrival probabilities 
and a daily expected total reward function, with 
overtime implicitly included in the form of penalty 
costs for unseen patients), as a finite horizon dynamic 
programming problem. They highlight the relationship 
between the “strategic” decision level of the system 
represented by the Appointment Schedule (AS) rule, 
and the “tactical” decision level regarding the set of 
dynamic priority rules for admitting patients into 
service. For the latter, they investigate the properties of 
the optimal capacity allocation policy,  and propose a 
simpler linear approximation (LA) heuristic too. Results 
are illustrated for different heuristic appointment 
policies (”fill all slots”, “balanced” and “newsvendor”) 
and problem parameters. The mentioned decision levels 
could also be framed in the more general context of 
healthcare planning-and-control as “offline” and 
“online” operational levels (Hans et al. 2011), in which 
the first “concerns the in-advance planning of 
operations” and the second “involves control 
mechanisms that deal with monitoring the process and 
reacting to unforeseen or unanticipated events”. 
(Kolisch and Sickinger 2008) examine the same 
maximization mathematical model, in the form of a 
Markov Decision Process, for a CT scan facility, 
serving the above mentioned patient classes. They 
illustrate the results of the optimal tactical decision 
policy (found by the “backward induction algorithm”)  
and compare them with simpler decision rules, which 
can be applied manually (Linear approximation, FCFS 
and random choice), under three commonly adopted AS 
schemes. (Sickinger and Kolisch 2009) illustrate the 
results of the objective function, obtained optimally 
solving the associated stochastic dynamic decision 
problem, for a Generalized Bailey-Welch (GBW) 
schedule, compared to optimal and Neighborhood  
Search (NS) heuristic, under various combinations of 
problem parameters. (Patrick 2012) develops a Markov 
Decision Process model of an outpatient clinic and 
“demonstrates that a short booking window does 
significantly better then open access”. The model takes 
into account the no-show rate, but assumes a 
deterministic service-time.  

In order to remove the numerous assumptions that 
a mathematical model poses, extensive literature, 
adopting discrete event simulation models, exists and 
the authors follow an experimental approach.  (Klassen 
and Rohleder 1996) carry out a full factorial ANOVA 
analysis on a simulation model (with lognormal service 
time and no-shows), taking as decision variables 1) 
three possible positions of a couple of open slots to 
accommodate urgency; 2) a total of 10 known pre-
defined AS rules. They illustrate results for server idle 
time, total client waiting time and a linear combination 
of the two, for various environmental factors.  In 
(Rohleder and Klassen 2002), attention is shifted to the 
observation of the system from the wider perspective of 
the scheduler of appointments, considering a rolling-
horizon environment with fluctuating demand loads. 
The model takes into account the additional client 
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performance measure of the number of days between 
call and appointment, and the server oriented measure 
of the ending time of the session (possible overtime). 
Different trade-off solutions for the combination of 
overloading rules and rule delay choices are illustrated, 
under six examination demand patterns, highlighting 
that the managerial choice depends on which 
performance measure is considered to be the most 
important. In (Hutzschenreuter 2004) a simulation 
model, which accounts for no-shows and unpunctuality 
of patients, is utilized to test the performances of a 
general outpatient clinic (in terms of mean patient 
waiting time and mean physician’s idle time), adopting 
three well-known AS rules and under different 
combinations of mean service time and variability. (Zhu 
et al 2009) find empirically, on a simulation model of a 
specialist outpatient clinic, the optimal number of 
scheduled patients per session for three system 
configurations, considering four performance measures 
(queue length, patient waiting time, overtime and 
doctors’ utilization) and a previously established AS 
rule for each configuration. They point out how the 
result can vary according to the chosen performance 
measure. (Wijewickrama 2006) examines the simulation 
model of an outpatient department with different patient 
flows (appointed and not, with priority rule for the first 
ones), not including no-shows and unpunctuality. He 
illustrates the efficient frontier of results in terms of 
weighted average of patient waiting time and servers’ 
idle time, adopting four basic AS rules and some 
combinations. 

3. GENERAL MODEL FRAMEWORK
As initially stated, healthcare services open to different 
patient flows are usually subject to demand variations. 
These variations are quite ordinary for the random 
component in the course of a day (e.g. ED patients) and 
in simulation models are usually averaged as HPP.  

In the longer term, also the appointed component 
of the demand can exhibit variations, whereas the 
number of appointment slots could not have been 
adjusted adequately in the course of time. As a result, in 
case of average demand greater then the number of 
available appointments in a time period (for example, a 
week), the backlog represented by the list of waiting 
outpatients will increase and, correspondingly, mean 
waiting time for an appointment. Attention can also be 
focused on the opposite case, when a long waiting list 
exists and, with the aim of reducing it, agreed decisions 
between managers and medical staff have to be taken 
about possible increments of the number of 
appointments (exceeding the current demand). A 
question in this case could regard how long time it is 
necessary to maintain the system’s workload greater 
then normal to attain the objective and to reach a 
balanced situation. 

It’s to keep in mind that short waiting time for an 
appointment may be an external constraint, set at the 
legislative level for specific patient classes. The last 
classification is often based on urgency criteria 

(outpatient priority classes) and must be adopted by 
family or specialty doctors, when they prescribe a 
diagnostic examination, as in the case of CT scans (for 
example, for patients to be followed-up). 

Setting a greater number of appointments, when 
needed, should be framed in the general context of a 
demand-offer problem, disjointed from the assignment, 
which could be addressed on a second step, regarding 
how to displace additional appointments appropriately 
(avoiding excessive waiting time at the facility and/or 
overtime). 

Looking at the entire appointment process, at the 
origin, we can find the service request generation, for 
example phone-calls at call-centers, which, as a whole, 
constitute the demand. Service requests are 
differentiated for each outpatient class and enqueued 
into the corresponding buffer, usually processed on a 
FAFS (first-appointment-first-serve) basis. A patient is 
given an appointment date corresponding to the first 
available slot (for that priority class/buffer) and slots in 
the future are filled so on. Therefore, any appointment 
system, at a macroscopic scale, can be thought of as a 
“black-box”, which processes the random demand with 
a set “productive capability”, equal to the number of 
appointments given in a time period, according to the 
current schedule in place.  

Typically, in healthcare systems, a repetitive 
scheduling scheme is specified over a week, with 
possible variations from day to day, setting time and 
number of appointments for each class of outpatients, 
when separated booking agendas are in place 
(commonly corresponding to the mentioned priority 
classes). The approach presented herein treats each 
buffer (making up a particular booking agenda) 
separately. Therefore, if we consider the time 
measurement unit equal to the repetitive schedule time 
horizon (for example, one week) and we renounce the 
exact quantification of patient waiting time within one 
time unit (the week during which he will be given the 
appointment), we can look at each buffer in the system 
as a G/D/1 single server queue. Our attention is focused 
on waiting time for an appointment and on how it is 
related to the buffer length. 

The arrival process of clients (with an associated 
pdf for inter-arrival times in general form) is 
represented by the service request generation. Service 
time is not related to real machine times, but it’s 
determined by the set “productive capability”, or 
number of appointments. It can be considered a 
fictitious deterministic time, under the hypothesis that, 
during each period (time unit), the stated number of 
appointments will be processed for sure and no patient 
will be re-scheduled. Therefore, disregarding the way in 
which appointments are really allocated in the course of 
the scheduling period of time length T=1 [time unit], 
we are just interested in their total number per period, 
said NP. Assuming an equally spaced distribution of the 
appointments, the fictitious deterministic service time t0 
is simply equal to T/NP [time units], with constant 
service rate  = NP/T. Of course, the real utilization of 

Proceedings of the European Modeling and Simulation Symposium, 2014 
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

506



the server isn’t related to t0, because, for the feasibility 
of the scheduled appointments, the mean processing 
time must necessarily be smaller (e.g. mean time for an 
examination / a visit). Furthermore, the real overall 
utilization of the service will be the result of sharing the 
resource among all the different patient flows. 
Nevertheless, such a system G/D/1 can describe 
appropriately what happens in the outpatient-buffer (not 
beyond it) and the above defined service rate is the 
fundamental parameter to be compared to the average 
arrival rate of clients during a time period. If we define 

AN  as the average number of service requests (arrivals) 

in T and, correspondingly,  as the arrival rate TN A / , it 

is well-known that the system can remain in steady-state 
conditions as far as the condition < is met, that’s to 
say 

A
<NN

ng form: 

P. An approximate expression of the 

expected waiting time in the buffer is given writing 
Kingman’s equation in the followi
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U = / = 
PA NN / ; 

ca: coefficient of variation of the arrival process; 
c0: coefficient of variation of the fictitious service 
process; being the process deterministic = 0; 
T = 1 [time unit]. 

The U ratio, although isn’t the real utilization of the 
server, represents the utilization of the capacity at 
disposal. Under the assumption of a purely random 
arrival process with average 

AN , a Poisson distribution 

can be adopted, the system can be denoted as M/D/1 
and in this case ca=1.  Then, it’s possible to observe 
that, since NP must be an integer number (scheduled 
number of appointments), adopting the following very 
simple rule that assures the demand/offer balance of the 
system (steady-state conditions): 

.1}{int upper      AP NN (2) 

the calculated value of b would always remain lower 
then 0.5 T [time units], as shown in Fig.1. 

Furthermore, from Little’s law, the average 
number of clients in the buffer b, which represent 
the waiting list length, would remain lower than h f al

AN . Numerically, it is also possible to verify that for 

2.7AN  and for 1.17AN  the value of U always results 

above 0.8 and 0.9, respectively, which means that, 
adopting (2), the system would be over-capacitated in 
percentages from +25% to +11.1%, respectively, with 
reference to the demand. 

Average waiting time for an appointment within 
one period T (for example, one week) implies that for 
the scheduler it’s possible to implement an approach 
very similar to “open access”, since service demand is 
met quite immediately. Of course, it will always be 
possible to set appointments far in the future (e.g. for 

examinations which require previous particular 
treatments), but the deriving waiting time becomes a 
scheduler’s choice and is not determined by the 
governing laws of the system.  
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Figure 1: Expected Waiting Time in the buffer b and U 
versus 

AN  for the M/D/1 system adopting (2) 

In general, it’s possible to affirm that for such 
appointment systems (in steady-state conditions), which 
can be summarized by the G/D/1 notation, filtering the 
demand has the advantage of isolating just one source 
of variability, determined by the arrival process. 
Moreover, as observable from Kingman’s equation, 
assumed a Markovian arrival process, the term 
accounting for stochasticity is 1/2 and, differently from 
what happens for other generic queue systems, average 
waiting time can’t reach elevated values, unless 

AN  is 

very close to NP. In fact, conversely, from equation (1) 
and defined  as the difference (

AP NN  ), it’s possible 

to derive limiting values of  for which b is k times 
smaller than the period T.  In mathematical form: 

.
21

1
:

k/N
 ΔkT

P
b 

 (3) 

For high values of NP, neglecting 1/ NP,   1/(2k).   
In Fig. 2, example values for  and U are reported for 
k=1,2,3 (sub-index of labels). 
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Figure 2:  and U derived from (3) versus NP 

As an example of a practical application, set NP=10, the 
average waiting time in the buffer will never exceed one 
period T (k=1) as far as   0.4762, that’s to say 

5238.9AN . It’s interesting to note that, for k=1,   is 

always less than 0.5 and, practically, becomes 
independent from NP, for increasing values.  

The elements outlined so far highlight the 
importance of monitoring the behavior of the demand of 
a healthcare service in a systematic manner, in order to 
take corrective actions and keep backlog under control.  
 In the following two sections, the behavior of the 
buffer of a generic appointment system in unsteady-
state conditions will be investigated by means of an 
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analytical approach. Firstly, the case with increasing 
buffer (

AN >NP) and secondly the case with initial 

backlog and decreasing buffer (
AN <NP) will be 

discussed. 
 

4. CASE WITH INCREASING BUFFER 
In the following, the unbalanced situation with  >   is 
examined, starting from an empty system and 
considering the instantaneous number of patients/clients 
in waiting list Nb(t) and the instantaneous value of 
b(t), defined as waiting time a patient exiting at time t 
has experienced. Successively, average values are 
calculated. 

 
4.1. Instantaneous values 
Adopting the discretization of time in intervals of length 
T, the following notation is introduced: 

 
 Nbi: number of waiting patients in the buffer at 

 the end of the i-th period; 
 NAi: number of requests for appointments 

arrived at the system and taken into 
consideration for processing during the i-th 
period (indeed collected at call-centers in the 
course of the previous (i-1)-th period, for 
practical reasons of scheduling assignment); 
neglecting waiting time within one period of 
time, as a “physiological” wait, it’s then 
possible to assume the number of requests NAi 

as arrived during the i-th period and the server 
always able to process them, within the limit of 
its productive capability NP for each period. 

 
At the end of each period: 
Nb1 = max {0, NA1 – NP }; 
Nb2 = max {0, Nb1 + NA2 – NP }; 

 
.... 
Nbi = max {0, Nb (i-1) + NAi – NP };   i.
Assuming that the buffer does not empty (it always 
remains a positive integer), also during the initial 
intervals, from the recursive expression of Nbi, it’s 
possible to derive: 

 

.
1




i

k
PAkbi iNNN   (4) 

 
From (4), assuming that arrivals belong to a Poisson 
distribution, applying the Central Limit Theorem (see 
Appendix A.1 for details), it’s possible to derive: 
 

  ).2(for   ; 1 

  iitNNNi N
γ
ivalue 

APAbi
 (5) 

 
(of course, because of the statistical uncertainty and 
approximation, Nbi isn’t anymore an integer number 
and negative values are not consistent). In Fig. 3, the 
factor in (5) due to uncertainty and depending solely on 
i is reported, together with power interpolation 
functions (dashed lines) in the form aib, in the interval 

0-500, for the two confidence levels 90% and 95%. In 
particular, setting lower limits for i so that the 
percentage difference between the function and its 
interpolation is lower than 20% also for initial values of 
i (then, it rapidly decreases to around 1%), it’s possible 
to find (a=1.8255; b=0.4814) for =90%, with i5 and 
(a=2.2206; b=0.4778) for =95%, with i6. 
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Figure 3: Values of it )value  (i 1

 versus i for =90% and 

=95% and respective interpolating functions (dashed). 
 
Considering now Nb as a time-continuous function, 
being t=iT and substituting time as variable in the 
above reported interpolating function, it’s possible to 
write: 

 

  . 
b

APAb T

t
aN

T

t
NN  (t)N 






  1  (6)   

 
with t5T and t6T for =90% and =95% respectively. 
The second quantity to be analyzed is waiting time in 
the buffer for each patient and the following quantities 
are considered: 

 
   i:  total flow-time time (tout i – tin i) for the i-

th patient, assuming that the time instant of the 
appointment request generation is shifted one 
period later (requests must be collected and 
scheduled at least in a previous period and 
waiting time within one period of time can be 
considered unavoidable and neglected). In 
particular, it is assumed tin1 = 0. 

 bi: waiting time in the buffer for the i-th 
patient; assuming that the server is always 
busy (which is the same previous assumption 
regarding the buffer never empty) and patients 
are served on a FCFS basis, exit time tout i is 
deterministic and equal to it0 = iT/NP; 
moreover,   bi =  i – t0.   

 
Observing that tin i (time instant of the appointment 
request) can be viewed as the sum of the preceding (i-
1), for i2, inter-arrival times tak between two generic 
contiguous requests, it’s then possible to write: 

 
b1 = 1 – t0 = tout1 – tin1 – t0 = 0 ; 

                                                           
1 Indeed, also for the function Nb(t), it should be considered max{0; 
calculated value} t, but a resulting empty buffer at any time instant 
would invalidate the expression because it would be equivalent to 
shifting time back to zero. 

Proceedings of the European Modeling and Simulation Symposium, 2014 
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

508



b2 = 2 – t0 = 2t0 – ta1 – t0 = t0 – ta1 ; 
 ; b3 = 3 – t0 = 3t0 – ta1 – ta2 – t0 = 2t0 – ta1 – ta2

.... 

. (7) )2(for    ; )1(
1

1
0  





i tti
i

k
akbi

Adopting analogous considerations illustrated for the 
buffer and applying the Central Limit Theorem (see 
Appendix A.2 for details), waiting time can be rewritten 
as: 
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This discrete values function could be approximated by 
a time-continuous function recalling that exit time for 
the i-th patient tout i is equal to iT/NP. Confounding 
waiting time of the i-th patient with waiting time of the 
preceding (i–1)-th patient, then, in (8), i could be 
considered in place of (i–1) and for the term     

12  it )value  (i
, which is the same reported in Fig. 3, the 

same interpolation function of i can be adopted. Finally, 
the time-continuous function b(t), representing waiting 
time for the patient exiting from the system at time t= 
iT/NP, can be written as: 
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with the reported couple of coefficients (a,b) for the 
considered values of   (90% and 95%) and lower limits 
t  5 T/NP and t  6 T/NP respectively. 
Considering now the ratio Nb(t)/b(t) and taking the 
same sign for the term due to uncertainty for numerator 
and denominator one at a time, it’s possible to write: 
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The multiplication factor of the term TN A / , with the 

above reported values of the coefficients (a,b) for 
=90%, is reported in Fig. 4 as a function of t (assumed 
T=1 [time unit]) and for various combinations of NP 
and 

PA NN  . It’s possible to observe that in the 

deterministic case (deterministic arrivals) Nb(t)/b(t)= 
TN A / =, whereas uncertainty, represented by the 

reported factor, tends to unity for larger values of t. It 
assumes relatively low scattered values around 1, except 
for initial periods, for increasing values of NP and/or . 
From the knowledge of the number of patients in the 
queue at a generic time, taking into account the previous 

assumptions, then it could be possible to esteem grossly 
current waiting time of an exiting patient as Nb(t)/

AN T. 
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Figure 4: Values of the multiplication factor of TN A /  in 

(10) as a function of t for =90%. 

4.2. Average values 
The time-average 

i bN  of the first i terms Nbk 

(k=1,2,...,i) can be calculated assuming, for the sake of 
simplicity, that each value Nbk is maintained over the 
time interval of the k-th period. From the definition of 
average (see Appendix A.3 for details), it’s possibile to 
write: 
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In Fig. 5, the right hand term in (11) depending solely 
on i and t-value and due to uncertainty is reported, 
together with power interpolation functions (dashed 
lines) in the form cid, in the interval 0-500, for the two 
confidence levels 90% and 95%. In particular, setting 
lower limits for i so that the percentage difference 
between the function and its interpolation is lower than 
15% also for initial values of i (then, it rapidly 
decreases to around 2% in the considered interval), it’s 
possible to find (c=1.3993; d=0.4585) for =90%, with 
i8 and (c=1.802; d=0.4456) for =95%, with i14. 
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Figure 5: Values of the term depending on i and t-value 
in (11) versus i (for =90% and =95%) and respective 
interpolating functions (dashed). 

Finally, considering for )(tNb
 a time-continuous 

function, confounding the term (i+1) with i, which is 
equal to t/T, and taking into account the interpolation 
functions, it’s possible to write: 

  ; 
2

1
d

APAb T

t
cN

T

t
NN(t)N 






 (12)
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with the shown values of (c, d) for =90% and =95% 
and with t8T and t14T respectively. 
As regards the average value 

bi  of the first i terms bk 

(k=1,2,...,i), it’s possible to write (see Appendix A.4 for 
details): 
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Adopting the same previous approximation consisting 
of considering i in place of (i-1), for the factor 
depending on t-values and i, the same previously found 
interpolation function can be used2. Moreover, 
considering 

b  as a time-continuous function: 
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with the lower limits t   8 T/NP and t  14 T/NP for 
=90% and =95%, respectively. 
Considering the ratio of the average values: 
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The multiplication factor of the term TN A / , with the 

above reported values of coefficients (c,d) for =90%, 
is reported in Fig. 6 for various combinations of NP and 

PA NN   as a function of t. As observable, also the 

ratio of average values tends to TN A / =, for increasing 

t and the same considerations for the ratio of 
instantaneous values apply. Of course, this result 
derives from the linearity with t of the part of the 
functions Nb(t) and b(t) not related to uncertainty, 
which makes also their average values, apart from the 
second term, proportional to 1/2 t. 
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Figure 6: Values of the multiplication factor of TN A /  in 

(14) as a function of t for =90%. 

5. CASE WITH DECREASING BUFFER
In this section, the opposite unsteady-state situation 
with  >  (that’s to say 

AP NN  ) is discussed,  starting 

2 In detail, 



 
 

 
  

1

2
1

3
2

1
1

1 i

j γ
jvalue 

i

k γ
kvalue 

jt
i

kt
i

and (i–1), upper limit of the summation term, is substituted by i. 

with a buffer containing a backlog of Nb0 patients. Of 
course, once the backlog has been cancelled, the system 
will be in the condition illustrated in Section 3, with 
fluctuating instantaneous values, but constant limit 
values (for t) for averages. Therefore the following 
analysis is limited to the period during which the buffer 
level remains above zero. 

5.1. Instantaneous values 
With the same meaning of the above defined quantities: 

Nb1 = max {0, Nb0  – (NP – NA1)} ; 
 Nb2 = max {0, Nb1  – (NP – NA2)} ;

.... 
Nbi = max {0, Nb (i-1)  – (NP – NAi)} ;

under the assumption that the server is always busy. 
Moreover, as far as the second term in the brackets isn’t 
negative, the recursive expression Nbi can be written as: 
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Adopting the same above considerations: 
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The function it )value  (i 1
 could be interpolated by the 

same power function aib, already shown, for given 
values of . Finally, stated that t = iT and for Poisson 
arrivals 

APOP N , considering Nb as a time-

continuous function: 
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Since it’s relevant to find, in an immediate way, values 
of i (or of t) for which Nb=0 and observing that the 
coefficient b is around 0.5, the slightly different 
interpolation function a’i0.5 can be adopted (with 
neglectable differences in the same interval)3. In 
particular, a’=0.675 for =50%, with i4, a’=1.65 for 
=90%, with i8, and a’=1.97 for =95%, with i7 
(percentage difference between the function and its 
interpolation lower than 15%). Therefore, it’s possible 
to find, under the illustrated assumptions, the roots of 
the equation representing the time interval extremes (for 
a given confidence level) within which the buffer is 
expected to become empty: 
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In Fig. 7, two simple examples of Nb(t) are reported, 
both starting from Nb0=200 and with 38AN , for two 

3 This means assuming a constant value of tvalue (i-1) for a given . 
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possible values of NP (40 and 45). These last 
parameters are realistic values, implemented in the 
successive simulation model. 
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Figure 7: Nb(t) and Time Limits from (16) for Nb(t)=0 
for different  (Nb0=200, 38AN , NP=40 and NP=45) 

It’s possible to observe how, for each alternative, the 
limit values of the interval aren’t symmetric around the 
zero for the linear term of (15) (dashed lines), but are 
shifted to the right. Moreover, comparing the two 
alternatives, the range of the uncertainty interval, with 
the same , is lower for greater values of NP. Therefore, 
if the objective of management is the abatement of the 
waiting list, doing so in a shorter period of time could 
be preferable also for the reduced uncertainty. 
As regards waiting time in the buffer, with the same 
assumptions of the case with an increasing buffer (the 
server is always busy and patients are served on a FCFS 
basis), exit time tout i is deterministic and equal to 
(Nb0+i)t0.  Also in this case, tin i  can be written as the 
sum of the preceding (i-1) inter-arrival times tak, for 
i2, and therefore: 

b1 = 1 – t0 = tout1 – tin1 – t0 = Nb0t0 ; 
b2 = Nb0t0+t0 – ta1 ; 
.... 
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Recalling (20) in Appendix A.2: 
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Confounding waiting time of the i-th patient with 
waiting time of the (i– 1)-th patient, then i could be 
used in place of (i–1) and for the term linked to 
uncertainty the same previous interpolating function can 
be adopted. Considering b as a time-continuous 
function and deriving i as a function of exit time t as 
(t/t0 – Nb0), it’s possible to write: 
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with the lower limits t  (Nb0+5)t0 and t  (Nb0+6)t0 
or =90% and =95% respectively.f     

Finally, taking into consideration the ratio Nb(t)/b(t): 
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 (17) 

The multiplication factor of the term TN A / , with the 

above reported values of the coefficients (a,b) for 
=90%, is reported in Fig. 8 as a function of t (T=1 
[time unit]), for various combinations of 

AN , 

AP NN   and different values of Nb0, set in such a 

way that the liner term of (15) is zero at t=200. 
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Figure 8: Values of the multiplication factor of TN A /  in 

(17) as a function of t for =90%. 

It’s possible to observe that in the deterministic case 
(deterministic arrivals) Nb(t)/b(t)= TN A / =, whereas 

uncertainty, represented by the reported factor, is 
around 1 in the previous period approaching the empty 
buffer condition.  

5.2. Average values 
For the average value of the buffer, it’s possible to 
write: 
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With the same previous assumptions and interpolation 
function for the term depending on t-values and i and 
considering a time-continuous function: 
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As regards the average value 
bi  of the first i terms bk 

(k=1,2,...,i), proceeding analogously as before: 
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With the same previous assumptions, considering a 
time-continuous function: 
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with the lower limits t  (Nb0+8) T/NP and t  
(Nb0+14) T/NP, for =90% and =95% respectively. 
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Considering the ratio of the two above quantities, we 
have: 
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 (18) 

Numerically, it’s possible to verify that the 
multiplication factor of TN A /  is always greater than 

one (as shown in Fig. 9 for =90%) and therefore an 
upper limit for the instantaneous average waiting time 
in the buffer  )(tb  can be assumed as   TN(t)N Ab / . 
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Figure 9: Values of the multiplication factor of TN A /  in 

(18) as a function of t for =90%. 

6. SIMULATION MODELS
In this section two simple DES models, coded with the 
process algebra language  (Hofkamp and Rooda 2007), 
are presented and applied to real cases of a CT scan 
facility inside a public hospital. 

Outpatient access to the diagnostic service (one 
multi-slice CT scanner) is managed during two six hour 
work shifts from 8:00 a.m. to 8:00 p.m., from Monday 
to Friday. During this weekly period T, normally 8 
appointments each day are scheduled. The first model 
reproduces exactly an M/D/1 system and a deterministic 
machine, with a fictitious service time t0, is 
implemented in order to simulate a scheduling process 
with NP served patients for each period T (t0=T/NP). 
Therefore, in such a model, detailed information about 
the really adopted scheduling plan (i.e. information 
regarding appointment times) is not needed, with the 
assumptions already illustrated in Section 3, since a 
deterministic service time is equivalent to assuming the 
scheduled patients’ access uniformly distributed during 
the time period. Two cases are examined, respectively 
with NP=40 and, adding one further slot per day, 
NP’=45 weekly scheduled patients, starting, in both 
situations, with an assumed initial buffer Nb0=200 
patients and an hypothesized value of 38AN  weekly 

average demand. 
Attention is focused on the decreasing buffer case 

because it meets more practical interest than the 
opposite one. The aim is verifying that the resulting 
range of time necessary to empty the buffer is within the 
values derived from (16). Successively, once the 
backlog is over and the system has reached steady-state 
conditions (since 

AN <NP), average waiting time is 

tracked in order to verify relation (1). It should be 
remarked that a huge backlog could have been caused, 

during preceding unbalanced periods, by greater 
demand and/or less planned appointments. Moreover, a 
generic buffer level Nb0 implies that the first 
appointment slot for a patient entering the system at that 
time will be available in Nb0/NP T periods (value of 
b1). If this level were a constant, with Nb0=200, 
waiting time would always be 5 (with NP=40) or 4.4 
(with NP’=45) weeks; with Nb0=100 it would be 
reduced to 2.5 or 2.2 weeks, which can be considered 
generally acceptable. Therefore, also a partial drop 
down of Nbo from 200 to 100 patients could represent a 
managerial objective (in (16) the difference of the two 
values should be used in place of Nbo to esteem the 
needed time). Successively, under the hypothesis 

AN  is 

not variable, NP should vary in order to keep the buffer 
level fluctuating around the desired level; this could be 
advantageous for freeing resource time for other 
purposes, fixing periods with less appointments then 
normal (and, correspondingly, buffer increasing). 

The second model, reported in Fig. 10, is a 
simplified adaptation of a more complete and detailed 
model of a CT scan facility open to diverse patient 
flows, described in (Boenzi et al. 2013), in which the 
scheduling process of outpatients is simulated by means 
of a controlled release mechanism from the buffer. 

G BP
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SP

c

M E

b
natc

patienta, b

data-typechannels

natc

patienta, b

data-typechannels

Figure 10: Complete Model Processes, truncated 
portion (hatch box) and resulting Simplified Model 

In the simplified examined case, the illustrated general 
framework refers to one buffer only (for a specific class 
of outpatients). Moreover, for the aims of this paper, a 
truncated model can be considered. Patients are 
generated by process G (adopting a HPP) and stored in 
BP. Their access to the service is regulated by means of 
a scheduling process SP, which repeats a daily cycle, 
according to the particular schedule in place. SP 
controls BP requesting the release of established 
numbers of patients at particular time instants to a daily 
working-list buffer DB. From process DB (in which, 
normally, priority rules are adopted to manage diverse 
patient flows) a patient can access service M, when it is 
not busy (representing a common shared resource in the 
complete model). Finally, patients leave the system in 
process E. However, since we are interested, in terms of 
simulation results, only in waiting time in BP (time 
interval from the examination request to the 
appointment day) and not in waiting time in DB (at the 
scan facility), the processes involved beyond BP are out 
of the scope of the model. For this reason BP can be 
linked directly to the exit process E, in which data are 
collected.  
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6.1. Simulation results for the first model 
The unity of measurement of time is the week (T =1 
week) and, in the following figures, results for two 
groups of 10 simulation runs (with the mentioned 
parameter values and the two values of NP, shown in 
different colors) are reported. In Fig. 11, the time-
history of the instantaneous buffer level is reported, 
terminated when the buffer becomes empty. 
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Figure 11: Buffer Level time-history for ten simulation 
runs for NP=40 (blue) and NP=45 (green) 

In particular, Fig. 12 shows in detail how the resulting 
values of time are within the expected confidence 
interval limits calculated from (16) for the respective 
case, reported as box edges. Finally, in Fig. 13, the 
time-history of the average waiting time is reported for 
10000 weeks. It can be observed that, after a transition 
period, the value stabilizes around the limiting values 
0.25 T  and 0.07 T for NP=40  and NP=45 
respectively, in agreement with (1). 
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Waiting list abatement - resulting time and confidence limit range (at 95% - 90% - 50%)

50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time [T]

Figure 12: Time for which Nb=0 in ten simulation runs, 
(NP=40: blue, NP=45: green) compared to interval 
limits derived from (16) for =50%-90%-95% 
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Figure 13: Time-history of the Mean Waiting Time in 
the Buffer for ten simulation runs for NP=40 (blue) and 
NP=45 (green) 

6.2. Simulation results for the second model 
In the second model, two slightly different appointment 
schedules have been specified in more detail and 
implemented. In general, at the facility, outpatients are 
admitted one at a time (each patient is assigned a 
specific slot). The time interval between two 
consecutive appointments is set at one hour in the 

morning (because of the presence of a more intense 
internal service request in the hospital), starting at 8:00, 
and half a hour in the afternoon, starting at 15:00. 
Maintaining the same weekly number of appointments 
NP adopted for the first model, the total number of daily 
patients in the first schedule is equally divided as four 
patients in the morning shift and four patients in the 
afternoon shift (last appointment at 16:30). In the 
second schedule, an additional appointment has been set 
at 17:00. It’s to remark that the feasibility of this new 
plan, in particular with respect to the risk of over-time, 
could be assessed by a more detailed simulation model, 
but is beyond the scope of the present work. The unity 
of measurement of time is one hour, but results are 
presented in weeks (T =1 week = 60 hours in the 
simulation). The following Figures from 14 to 16 are 
analogous to those referring to the first model and the 
same considerations could be made. A slight difference 
between the two models can be found with regard to 
average waiting time in the buffer. In fact, considering 
each group of ten simulations, time terminated after 
10000 weeks, this value is 0.283 T when NP=40 and 
0.087 T when NP=45. This is due to the different 
distribution of patient appointments, which is not 
perfectly uniform in the course of time in the second 
model. 
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Figure 14: Buffer Level time-history for ten simulation 
runs for NP=40 (blue) and NP=45 (green) 
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Figure 15: Time for which Nb=0 in ten simulation runs, 
(NP=40: blue, NP=45: green) compared to interval 
limits derived from (16) for =50%-90%-95% 
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Figure 16: Time-history of the Mean Waiting Time in 
the Buffer for ten simulation runs for NP=40 (blue) and 
NP=45 (green) 
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Finally, in the model adopting the first schedule, a 
buffer control mechanism has been introduced, through 
the monitoring of the current waiting list length. The 
aim is maintaining the buffer at a constant level, which 
can be beneficial both to the facility staff (in order to 
manage possible cancellations with other appointments) 
and to the customers, who can plan their examinations 
well in advance (sometimes this is unavoidable because 
of additional examinations and/or preparation). In Fig. 
17, the time-history (terminated at 210 weeks) of the 
instantaneous number of patients in the buffer and of 
current waiting time (for the patient currently exiting 
from the system) for three simulation runs (in different 
colors) are reported, starting with Nbo=200 patients. 
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Figure 17: Time-history of Current Buffer Level 
(above) and Current Waiting Time (below) for three 
simulation runs for NP=40 adopting Buffer Control  

The lower limit for the buffer has been set at 80 patients 
because this implies a lower waiting time limit equal to 
2 weeks (assuming NP=40 patients/week), which can be 
considered a good compromise. In the simulation 
model, the buffer level control is done at the end of each 
day and, if the level is below the set limit, no 
appointments are scheduled for the subsequent day. Of 
course this is a simplification, being unfeasible in a real 
appointment system. In the last, a day without 
appointments could be set within the already booked 
period. However a problem is that as this time is set far 
in the future, as the lag-time between the signal and the 
corrective action increases. Anyway, this day could be 
better utilized for other patient flows (for example, 
additional appointments for a different booking agenda 
could be placed). Solutions different from control reveal 
to be ineffective. For example, implementing a cyclic 
alternate schedule, made of 19 days with 8 
appointments per day and one day without 
appointments, would realize, for the assumed value 

38AN  patients/week, the exact balance between 

demand and offer in a four week period. However, since 
this cycle is completely unrelated to variability of the 
demand, the system state variables are highly 
fluctuating. Therefore, some type of control loop in 
these systems should be enforced. Once adopted, 
demand variability could be turned into an opportunity, 
with the appropriate flexibility in the work organization. 

7. CONCLUSION
In the present work, some common features of an 
appointment system in general have been highlighted, 
by means of an analytical approach for non-steady state 
conditions; successively, applications to a real case of a 
CT scan facility have been presented. It can be observed 
that, at a macroscopic level, the main factors 
characterizing the system are on the one side the 
appointment demand and, on the other side, the offer of 
planned appointments. 

At this level, details regarding the acceptability of 
a scheduling plan in terms of overtime and/or excessive 
waiting time experimented at the facility can be put 
apart and analyzed successively. The only source of 
variability is represented by the appointment demand, 
since setting the number of appointments in a period of 
time T means specifying the system “productive 
capability”. Therefore, it can be treated as a G/D/1 
queue. In particular, in the M/D/1 case, from Kingman’s 
equation it’s possible to observe that waiting time in the 
buffer can’t exceed one period T, as far as the difference 
between the set number of appointments and the 
expected number of requests in T remains above 0.5. 
Therefore, in such systems, the existence of long 
waiting time for appointments can only be explained by 
current demand greater then offer (increasing buffer and 
waiting time) or by former relevant backlog, created in 
preceding unbalanced periods. An analytical approach 
has been proposed in order to study the two situations 
represented by increasing buffer and decreasing buffer 
with initial backlog. In particular, in the latter case, 
statistical considerations permit to define confidence 
intervals for estimation of time necessary to clear the 
backlog, which could be useful in managerial decisions. 
It should be noticed that also an intermediate solution, 
aiming at maintaining a set number of patients in the 
waiting list, could be an objective. However, it would 
require a very strict control of the buffer and of the 
demand. Finally, two simulation models, adopting 
parameter values of a CT scan facility, have been 
illustrated. Results obtained from the two models are 
similar and show, on the one hand, agreement with the 
predicted statistical intervals; on the other hand, results 
show that the M/D/1 model can well describe the 
behavior of the buffer as with a more refined model. 
Future work will be focused on the detailed 
investigation, by means of simulation, of the 
appointment schedule in place at the CT facility inside a 
public hospital, differentiated for each day of the week, 
in order to verify, in particular, the impact of different 
alternatives with increased numbers of appointments on 
the probability of overtime.         

APPENDIX A 
A.1 The summation term of (4) can be thought of as the 
sample average 

AiN  of the first i arrivals multiplied by 

i. Applying the Central Limit Theorem, this sample
average can be approximated by the population average 

AN , with a specified confidence level , expressed by 

the amplitude of a variability range, which is the 
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product of the critical t-value of the t-probability 
distribution, for  and (i-1) degrees of freedom, and 

iPOP , being 
POP  the population standard deviation: 
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In particular, when arrivals belong to a Poisson 
distribution, 

APOP N . 

A.2 For the summation term of (7), applying the 
Central Limit Theorem, the sample average of the first 
(i–1) terms can be approximated by the population 
average  

at : 
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In particular, when the number of requests follows a 
Poisson distribution, inter-arrival times belong to an 
exponential distribution with 

Aa NTt //1    and 

AaPOP NT//λtσ  1 . 

A.3 From (4) and (19):  
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A.4 From (7) and (20):  
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As done similarly for the buffer expression, the term 
  itt aa /1   can be neglected and, assuming a Poisson

arrival process, 
APOP NT/σ  . 
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