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ABSTRACT 

The Job Shop Scheduling Problem (JSSP) is one of the 

typical problems that engineers face on designing 

Flexible Manufacturing Systems (FMS). In this 

problem, it is important to find the optimal scheduling 

to perform a set of tasks in the minimum time. 

Moreover, the JSSP has some restrictions, such as the 

tasks order and the number of shared resources where 

the tasks are carried out. To find the optimal tasks 

sequence it is necessary to obtain the makespan for each 

sequence. On this way, FMS can be modeled with Petri 

nets (PNs), which are a powerful tool that have been 

used to model and analyze discrete event systems. So, 

the JSSP can be analyzed in a PN representation of the 

FMS, and the makespan can be calculated by using the 

PN model. In this work we propose an adaptive PN to 

obtain the makespan by applying PN analytical tools. 

Keywords: job-shop scheduling problem, makespan, 

Petri nets, state equation. 

1. INTRODUCTION

A Flexible Manufacturing System (FMS) is a discrete 

event dynamic system that is composed by jobs and 

shared resources (Zhou and Venkatesh 1999). The 

typical problem that engineers faced when they are 

either designing a Flexible Manufacturing System or 

planning the master production plan for the FMS, is 

how they should make the best sequence of jobs in the 

FMS in order to carry all operations out in the minimum 

time (Pinedo 2012; Lenstra 1977).  

This problem is called the Job Shop Scheduling 

Problem (JSSP), which is a combinatorial problem 

classified as NP-Complete (Lenstra et al., 1977). There 

have been published several research papers about 

finding the minimum value of makespan in the JSSP 

(Shuai, and Zhi-Hua 2014; Qing-dao-er-ji, and Wang 

2012; Zhao, Zhang, and Bing 2011; Ardakan, 

Hakimian, and Rezvan 2014). The makespan is the time 

that all the jobs are processed in the FMS, and it 

depends on the order that all the tasks are performed. 

Several exact methods have been analyzed to find 

the minimum value for the makespan (Dey, Sarkar and 

Basu 2010; Wang, Cai, and Feng 2010; Wang and Zou 

2003). These methods such as branch and bound, linear 

programming and Langrangian relaxation can find the 

global minimum value, however for problems with a 

bigger number of resources and jobs they need a huge 

amount of computational time to have the final result.  

On the other hand, there are also research papers 

that apply meta-heuristics and/or evolutionary 

computing to find the minimum makespan time (Qing-

dao-er-ji, and Wang 2012; Zhao, Zhang, and Bing 

2011).  In this case, these proposals can find reasonable 

results in less time than exact methods. The main 

drawback of these methods is that the global minimum 

could not be found, but good approximations are 

obtained in a short time. 

FMSs have been modeled via Petri Nets (PNs) in 

order to simulate and analyze them. PN theory is 

adequate to represent in a graphical and mathematical 

way Discrete Event Systems (DES) such as FMSs, 

because their dynamic behavior based on event 

occurrence can be modeled by PN elements (places and 

transitions) (Murata 1989; Zhou and Venkatesh 1999). 

Moreover, PN theory offers analytical tools to study the 

modelled systems, based on the relationship among the 

FMS resources denoted as PN elements. 

One important point in search methods is the 

calculus of the makespan, taking into account a certain 

processing order of the tasks. In this paper, we propose 

the use of an adaptive PN to calculate the makespan by 

means of the PN state equation. 

2. JOB SHOP SCHEDULLING PROBLEM

Scheduling tasks in a FMS is a typical combinatorial 

problem where it is needed to organize the processing 

of a set of jobs divided in operations, and each 

operation is carried out in a shared resource (Gonzalez-

Hernandez 2011; Quen-dao-er-ji and Wang 2012). 

In the JSSP there are n jobs, and each job consists 

of m operations, and each operation is processed in a 

shared resource or machine during a fixed time. Some 

restrictions should be considered: operations of the 

same job have a sequence established previously, a job 

can visit each machine only once, each machine can 
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process only one job at any time, and there are not 

restrictions about the precedence among operations of 

different jobs. 

The aim of JSSP is to find a sequence order for 

operation processing with the minimum value for the 

makespan. 

For instance, Table 1 shows a FMS taken from 

(Zhang 2010) with some modifications to respect the 

JSSP restrictions. This example has three machines, 

four jobs, and each job has three serial operations. 

Table 1: FMS configuration with operation times. 

Items Jobs 
Operation Serial Number 

1 2 3 

Machine 

utilization 

J1 M3 M1 M2 

J2 M2 M3 M1 

J3 M3 M1 M2 

J4 M2 M1 M3 

Operation 

time 

J1 O1,1,396 O1,2,1 90 O1,3,235 

J2 O2,1,274 O2,2,3 57 O2,3,191 

J3 O3,1,313 O3,2,1 5 O3,3,2 7 

J4 O4,1,271 O4,2,1 23 O4,3,338 

Where Oi,j,k denotes the j-th operation of the i-th 

job to be carried out by the k-th machine. 

3. PETRI NETS CONCEPTS

A PN is a graphical and mathematical tool that has been 

used to model concurrent, asynchronous, distributed, 

parallel, non-deterministic, and/or stochastic systems.  

The graph of a PN is directed, with weights in their 

arcs, and bipartite, whose nodes are of two types: places 

and transitions. Graphically, places are depicted as 

circles and transition as boxes or bars. PN arcs connect 

places to transitions or transition to places; it is not 

permissible to connect nodes of the same type. The state 

of the system is denoted in PN by the use of tokens, 

which are assigned to place nodes. 

A formal definition of a PN is presented in table 2 

(Murata 1989). 

Table 2: Formal definition of a PN 

A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where: 

P = {p1, p2, …, pm} is a finite set of places, 

T = {t1, t2, …, tn} is a finite set of transitions, 

F  {P  T}  {T  P} is a set of arcs, 

W = F  {1, 2, 3, …} is a weight function, 

M0 = P  {0, 1, 2, 3, …} is the initial marking, 

P  T =  and P  T ≠ . 

The token movement through the PN represents 

the dynamical behaviour of the system. In order to 

change the token position, the following transition 

firing rule is used (Murata 1989): 

1. A transition t T is enabled if every input

place p  P of t has w(p,t) tokens or more.

w(p,t) is the weight of the arc from p to t.

2. An enabled transition t will fire if the event

represented by t takes place.

3. When an enabled transition t fires, w(p,t)

tokens are removed from every input place p of

t and w(t,p) tokens are added to every output

place p of t. w(t,p) is the weight of the arc from

t to p.

A Timed Place Petri Nets (TPPN) is an extended 

PN, where a new element is added. It is a six-tuple 

TPPN = {P, T, F, W, M0, D), where the first fifth 

elements are similar to PN definition presented above, 

and D = {d1, d2, …, dm} denotes the time-delay for each 

place pj  P (Zhao, Zhang, and Bing 2011). Output 

transitions ti for each pj will be enabled once the time 

indicated in pj is reached. 

3.1. Analysis methods 

In this paper, we are applying the matrix equation 

approach as the analytical method of PN theory in order 

to calculate de makespan of the FMS modelled. 

3.1.1. Incidence matrix and state equation 

A PN with n transitions and m places can be expressed 

mathematically as an n  m matrix of integers A = [aij]. 

The values for each element of the matrix are given by: 

aij = aij
+ - aij

-, where aij
+ is the weight of the arc from ti

to pj, and aij
- is the weight of the arc from pj to ti.

The state equation is used to determine the 

marking of a PN after a transition firing, and it can be 

written as follows: 

Mk = Mk-1  ATUk, k=1,2,… (1) 

where uk is a n  1 column vector of n - 1 zeros and 

one nonzero entries, which represents the transition tj 

that will fire. The nonzero entry is located in the 

position j of uk. A
T is the transpose of incidence matrix.

Mk-1 is the marking before the firing of tj. And Mk is the 

reached marking after the firing of tj denoted in uk. 

4. ADAPTIVE TIMED PLACE PETRI NET

In this paper we propose an adaptive TPPN

(ATPPN), which adds some arcs according to tasks 

sequence of the FMS. 

The formal definition of an ATPNN is as follows: 

An ATPNN is a seven-tuple (P, T, F, W, M0, D, Fd), 

where the first six elements are similar to TPNN 

elements, and the last one, Fd, is the set of dynamic arcs 

that change depending on the job operations order. Fd  

{P T}  {T  P}. F  Fd = . 

4.1. One operation modelling 

The ATPNN to model one operation Oijk of a job Ji 

processed by machine Mk is depicted in figure 1. 
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Figure 1: Operation Oijk processed by machine Mk 

denoted as a PN model. 

4.2. One job modelling 

As we mentioned above, one job Ji is composed of 

operations Oijk, so the PN model for each Ji is a 

concatenation of its operations Oijk (Figure 2). 

Ps Oi11

M1

t1 t2

Ps Oi22

M2

t3 t4

Ps Oijk

Mk

tn-1 tn

...

Figure 2: Operations Oijk of job Ji processed by 

machines Mk denoted as a PN model. 

4.3. FMS modelling 

In order to model the whole FMS, we add the PN 

structure for each job Ji and connect every Mk place 

with its corresponding input (output) transition from 

(to) operation Oijk. Figure 3 shows the PN model for the 

FMS described in Table 1. 
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Figure 3: PN model for the FMS described in Table 1. 

In Figure 3, each column corresponds to each job 

Ji, and some places have a label d, which denotes the 

time delay for processing an operation Oijk in the 

connected machine Mk. 

4.3.1. Algorithm to convert a TPPN into an ATPPN 

At this time, PN model of figure 3 only represents the 

FMS, but it is also necessary to set the priority in the 

operations processing by means of arcs connection in 

the PN model. So, we need to define the elements of Fd 

to denote this priority. 

First of all, the operations sequence is defined in a 

row vector OS = [os1 os2 … osij], where each OS value 

corresponds to one operation Oijk. The following 

algorithm receives as inputs the row vector OS and the 

TPPN model, as output of the algorithm we obtain the 

ATPPN. 

Algorithm TTPN_into_ATPPN 

Input: TPPN, OS 

Output: ATPPN 

1. For q=1 to ij
k = machineOf(OS(q))

add(MO(k),OS(q))

End For 

2. For k = 1 to NumberOfMachines

For i = 1 to NumberOfJobs – 1

p1 = placeOf(MO(k,i)) 

p2 = placeOf(MO(k,i+1)) 

t1 = p1


t2 = 

p2 

p3 = 

t2 

W(t1, p3) = 1 

W(p3, t2) = 2 

End For 

End For

In Step 1, a ki matrix called MO is created. 

Operations os  OS (Oijk) carried out by the same 

machine Mk are added in the row k of MO. The sequence 

order for the same machine is taking into account. 

In Step 2, new arcs (t,p)  Fd are created, which 

connect output transitions of places representing 

operations Oijk with the input place of next operation 

Oijk in the sequence order defined in MO. Moreover, a 

value 2 is assigned to weight W(p3,t2), to assure the 

order in the operations processing. 

To illustrate the algorithm result, figure 4 shows 

the ATPPN obtained, based on the operations denoted 

in figure 3 and following the order: OS = [O1J2, O1J4, 

O2J2, O1J3, O2J4, O1J1, O3J2, O3J3, O2J1, O3J1, O2J3, 

O3J3]. 

The ATPPN model presented in figure 4 is used to 

calculate the makespan for the sequence defined in 

vector OS. 

5. ALGORITHM TO OBTAIN THE MAKESPAN

The proposed algorithm takes into account the 

mathematical representation of the ATPPN. In 

particular, the incidence matrix and the state equation 

are utilised to obtain the time delay for each Oijk. 

As input data the algorithm needs the ATPPN 

which includes its input arcs matrix (aij
-), the output

arcs matrix (aij
+), the time delays column vector D, and

the initial marking M0, the total number of jobs (nj), the 

total number of operations per job (no), and the total 

number of shared machines (nm). 
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Figure 4: ATPPN model obtained applying the 

algorithm TTPN_into_ATPPN. 

 

Algorithm Calculate_Makespan 

Input: ATPPN, aij
-
, aij

+
, D, M0, nj, 

no, nm 

Output: makespan 

1. Initialise variables: 
 txj = |T| / nj 

 pxj = (|P| - nm) / nj 

 AT = [0 0 … 0]’ |P| x 1 

 TV = [0 0 … 0] 1 x (nj) 

2. ET = enabledTransitions(M0, aij
-
) 

3. et  ET, Uk (et) = 1 
4. While |ET| > 0 

 For each t  ET 
   indexT = ceil(t/txj) 

   Uktmp
T
 = [0 0 … 0]’ |T| x 1 

   Uktmp(t) = 1 

     = D'  (aij
-
)'  Uktmp 

   accum = AT’  (aij
-
)'  Uktmp 

   max_accum = max(TV(indexT), accum/2) +  

   For each p  t 
     indexP = ceil(p/pxj) 

     If indexT == indexP 

       TV(indexP) = max_accum 
     Else 

       AT(p) = max_accum 
     End if 

   End For 

 End For 

  Mi = Mi_1 + (aij)' * Uk 

  ET = enabledTransitions(Mi, aij
-
) 

  Uk
T
 = [0 0 … 0]’ |T| x 1 

 et  ET, Uk(et) = 1 
End While 

5. makespan = max(TV) 

 

In step 1, four variables are initialised: the number 

of transitions per job (txj), the number of places per job 

(pxj), a column vector AT to assign the accumulative 

time for each place, and a row vector TV utilised to 

save the time used for each job. 

Step 2 obtains the enabled transitions (ET) for an 

initial marking M0. Step 3 creates the Uk vector from 

ET transitions. 

Step 4 makes an iterative process while the 

ATTPN is alive, i.e., while there exists at least one 

enabled transition in the current marking. So, for every 

enabled transition t, we identify the job Ji where the 

transition belongs (indexT), initialise a temporal Uk 

(Uktmp) to fire transition t. The time delay  

corresponding to current operation Oijk is calculated 

multiplying the transpose of the time delay vector D’ by 

the transpose of the input arcs matrix (aij
-), and the 

result is multiplied by the firing vector Uktmp taking into 

account only transition t. 

 The accumulated time, denoted as accum, 

represents the time that the needed machine Mk has been 

busy previous to the current operation Oijk. And it is 

calculated in a similar way that , but in this case we 

use an auxiliary vector AT where the accumulative time 

for each place is stored, instead of the time delay vector 

D. 

Then, we compare both times, the time when the 

machine Mk is ready and the time when the operation 

Oijk is also ready to be processed. The maximum time 

plus the time delay for operation Oijk is assigned to 

max_accum. For every p  t, if p and t are in the same 

job line then max_accum is assigned to the time vector 

variable TV. On the other hand, if p and t belong to 

different job lines, max_accum is assigned to the vector 

AT. 

Finally, the ATPPN marking Mi changes according 

to the result of the equation state. From this new 

marking Mi, the new enabled transitions are assigned to 

vector ET and vector Uk is generated from them. 

 

6. APPLICATION EXAMPLE 

In order to show the applicability of this approach, the 

FMS configuration showed in Table 1 is taken. This 

FMS has four jobs, and each job is divided in three 

operations performed in three different machines. 

Operation times showed in Table 3 come from the 

transposed matrix corresponding to operation times 

from Table 1.  

 

Table 3: Processing time for each operation per job. 

Operation 

serial 

number 

J1 J2 J3 J4 

1 96 74 13 71 

2 90 57 5 23 

3 35 91 7 38 

 

Furthermore, to identify every operation in the 

whole FMS, an operation number was assigned to each 

one. (Table 4). 
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Table 3: Number assigned to each operation. 

Operation 

serial 

number 

J1 J2 J3 J4 

1 1 4 7 10 

2 2 5 8 11 

3 3 6 9 12 

Finally, the machine utilization in the FMS is 

showed in Table 5. 

Table 5: Machine utilization. 

Operation 

serial 

number 

J1 J2 J3 J4 

1 3 2 3 2 

2 1 3 1 1 

3 2 1 2 3 

Based on the operation numbers from Table 4, we 

take the following operation sequence: OS = (4 10 5 7 

11 1 6 12 2 3 8 9), which is a valid sequence. 

From this sequence, the algorithm 

TPPN_into_ATPPN is executed which has as input data 

the operation sequence OS and the TPPN of figure 3, 

obtaining as output the ATPPN showed in figure 4. The 

dashed arcs represent the sequence of the machine 

operation on the PN model. 

Next, the algorithm Calculate_Makespan needs the 

following data: 

1. ATPPN (figure 4)

2. aij
+ (figure 4)

3. aij
- (figure 4)

4. D311, is a column vector with 31 elements,

denoting the processing time in the

corresponding place (figure 4). For instance,

place p2 is holding a processing time of 96

time units, so D(2) = 96, which represents the

operation time of machine 3 for the operation

number 1 (Table 4), and so on.

5. M0 is the initial marking, where M0(i) = 1, for i

= 1,8,15,22,29,30,31. And M0(j) = 0 for j≠i,1≤

j ≤31. This marking denotes the starting of

FMS operations (p1, p4, p15, p22) and the

availability of the machines M1, M2 and M3

(p29, p30, p31).

6. nj = 4 (number of jobs)

7. no = 3 (number of operations per job)

8. nm = 3 ( number of machines)

Under these conditions, the algorithm 

Calculate_Makespan starts the transition firing and the 

token game animation. In order to obtain the processing 

time for each transition that is fired, the Eq. (2) is 

computed.  

 = D’  aij
-‘  uk (2) 

The accumulated time for each job line is saved in 

vector TV14. Table 6 shows the TV values for each 

transition firing. There are some cases where two 

transitions were fired simultaneously. 

Table 6: Time vector state after transition firings. 

Transitions 

fired 

Time Vector (TV) 

J1 J2 J3 J4 

t7 0 0 0 0 

t8 0 74 0 0 

t9  t19 0 74 0 74 

t10  t20 0 131 0 145 

t13  t21 0 131 131 145 

t14  t22 0 131 144 168 

t1  t11 144 168 144 168 

t2  t12 240 259 144 168 

t3  t23 259 259 144 240 

t4  t24 349 259 144 278 

t5  t15 349 259 349 278 

t6  t16 384 259 354 278 

t17 384 259 384 278 

t18 384 259 391 278 

At the end, the maximum value of TV (391 time 

units) represents the makespan for this operation 

sequence. 

The Gantt chart obtained, is showed in figure 5, 

where the maximum time is 391 time units. The value 

#n over each bar denotes the operation number assigned 

in Table 4. 

Figure 5: Scheduling chart Gantt for the operation 

sequence (4 10 5 7 11 1 6 12 2 3 8 9). 

The makespan obtained from the scheduling Gantt 

chart is equal to the makespan obtained from the 

proposed approach. 

7. CONCLUSIONS AND FUTURE WORK

JSSP is a NP-hard problem that has been analysed 

applying different kinds of techniques, such as exact 

models and heuristics strategies. One important calculus 

in the JSSP is the makespan value, which depends on 

the sequence of operations for each job and the order of 

machine utilisation.  

In this paper, we propose a different way to 

calculate the makespan by means of mathematical tools 
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of Petri nets, such as the equation state and the 

incidence matrix. Firstly, we describe an algorithm to 

create an ATPPN from a FMS description. The ATPPN 

arcs indicate the order in which operations Oijk must be 

done in each job. Moreover, arcs are connected 

adequately to set the operations order for each machine. 

And secondly, the marking evolution by using the state 

equation is taken into advantage to calculate the 

makespan. We added a time delay vector in order to 

consider the processing time for every operation 

involved in the FMS, and it is included in the matrix 

operations to be able to obtain the makespan for each 

job. 

As future work, we are including these algorithms 

as part of a study based on evolutionary computing. 

Moreover, we are interested in analyse the feasibility of 

PN tools as part of an heuristic to obtain de minimum 

makespan in the JSSP. 
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