
APPLYING AN ADAPTIVE PETRI NET TO CALCULATE THE MAKESPAN IN THE JOB

SHOP SCHEDULING PROBLEM

Joselito Medina-Marin
(a)

, Juan Carlos Seck-Tuoh-Mora
(b)

, Norberto Hernandez-Romero
(c)

,

Nayeli Jazmin Escamilla-Serna
 (d)

(a,b,c,d)Autonomous University of Hidalgo State, Advanced Research Centre in Industrial Engineering,

Pachuca de Soto, Hidalgo, México

(a)jmedina@uaeh.edu.mx, (b)jseck@uaeh.edu.mx, (c)nhromero@uaeh.edu.mx, (d)nj_esser@hotmail.com

ABSTRACT

The Job Shop Scheduling Problem (JSSP) is one of the

typical problems that engineers face on designing

Flexible Manufacturing Systems (FMS). In this

problem, it is important to find the optimal scheduling

to perform a set of tasks in the minimum time.

Moreover, the JSSP has some restrictions, such as the

tasks order and the number of shared resources where

the tasks are carried out. To find the optimal tasks

sequence it is necessary to obtain the makespan for each

sequence. On this way, FMS can be modeled with Petri

nets (PNs), which are a powerful tool that have been

used to model and analyze discrete event systems. So,

the JSSP can be analyzed in a PN representation of the

FMS, and the makespan can be calculated by using the

PN model. In this work we propose an adaptive PN to

obtain the makespan by applying PN analytical tools.

Keywords: job-shop scheduling problem, makespan,

Petri nets, state equation.

1. INTRODUCTION

A Flexible Manufacturing System (FMS) is a discrete

event dynamic system that is composed by jobs and

shared resources (Zhou and Venkatesh 1999). The

typical problem that engineers faced when they are

either designing a Flexible Manufacturing System or

planning the master production plan for the FMS, is

how they should make the best sequence of jobs in the

FMS in order to carry all operations out in the minimum

time (Pinedo 2012; Lenstra 1977).

This problem is called the Job Shop Scheduling

Problem (JSSP), which is a combinatorial problem

classified as NP-Complete (Lenstra et al., 1977). There

have been published several research papers about

finding the minimum value of makespan in the JSSP

(Shuai, and Zhi-Hua 2014; Qing-dao-er-ji, and Wang

2012; Zhao, Zhang, and Bing 2011; Ardakan,

Hakimian, and Rezvan 2014). The makespan is the time

that all the jobs are processed in the FMS, and it

depends on the order that all the tasks are performed.

Several exact methods have been analyzed to find

the minimum value for the makespan (Dey, Sarkar and

Basu 2010; Wang, Cai, and Feng 2010; Wang and Zou

2003). These methods such as branch and bound, linear

programming and Langrangian relaxation can find the

global minimum value, however for problems with a

bigger number of resources and jobs they need a huge

amount of computational time to have the final result.

On the other hand, there are also research papers

that apply meta-heuristics and/or evolutionary

computing to find the minimum makespan time (Qing-

dao-er-ji, and Wang 2012; Zhao, Zhang, and Bing

2011). In this case, these proposals can find reasonable

results in less time than exact methods. The main

drawback of these methods is that the global minimum

could not be found, but good approximations are

obtained in a short time.

FMSs have been modeled via Petri Nets (PNs) in

order to simulate and analyze them. PN theory is

adequate to represent in a graphical and mathematical

way Discrete Event Systems (DES) such as FMSs,

because their dynamic behavior based on event

occurrence can be modeled by PN elements (places and

transitions) (Murata 1989; Zhou and Venkatesh 1999).

Moreover, PN theory offers analytical tools to study the

modelled systems, based on the relationship among the

FMS resources denoted as PN elements.

One important point in search methods is the

calculus of the makespan, taking into account a certain

processing order of the tasks. In this paper, we propose

the use of an adaptive PN to calculate the makespan by

means of the PN state equation.

2. JOB SHOP SCHEDULLING PROBLEM

Scheduling tasks in a FMS is a typical combinatorial

problem where it is needed to organize the processing

of a set of jobs divided in operations, and each

operation is carried out in a shared resource (Gonzalez-

Hernandez 2011; Quen-dao-er-ji and Wang 2012).

In the JSSP there are n jobs, and each job consists

of m operations, and each operation is processed in a

shared resource or machine during a fixed time. Some

restrictions should be considered: operations of the

same job have a sequence established previously, a job

can visit each machine only once, each machine can

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

463

mailto:jmedina@uaeh.edu.mx
mailto:jseck@uaeh.edu.mx
mailto:nhromero@uaeh.edu.mx
mailto:nj_esser@hotmail.com

process only one job at any time, and there are not

restrictions about the precedence among operations of

different jobs.

The aim of JSSP is to find a sequence order for

operation processing with the minimum value for the

makespan.

For instance, Table 1 shows a FMS taken from

(Zhang 2010) with some modifications to respect the

JSSP restrictions. This example has three machines,

four jobs, and each job has three serial operations.

Table 1: FMS configuration with operation times.

Items Jobs
Operation Serial Number

1 2 3

Machine

utilization

J1 M3 M1 M2

J2 M2 M3 M1

J3 M3 M1 M2

J4 M2 M1 M3

Operation

time

J1 O1,1,396 O1,2,1 90 O1,3,235

J2 O2,1,274 O2,2,3 57 O2,3,191

J3 O3,1,313 O3,2,1 5 O3,3,2 7

J4 O4,1,271 O4,2,1 23 O4,3,338

Where Oi,j,k denotes the j-th operation of the i-th

job to be carried out by the k-th machine.

3. PETRI NETS CONCEPTS

A PN is a graphical and mathematical tool that has been

used to model concurrent, asynchronous, distributed,

parallel, non-deterministic, and/or stochastic systems.

The graph of a PN is directed, with weights in their

arcs, and bipartite, whose nodes are of two types: places

and transitions. Graphically, places are depicted as

circles and transition as boxes or bars. PN arcs connect

places to transitions or transition to places; it is not

permissible to connect nodes of the same type. The state

of the system is denoted in PN by the use of tokens,

which are assigned to place nodes.

A formal definition of a PN is presented in table 2

(Murata 1989).

Table 2: Formal definition of a PN

A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where:

P = {p1, p2, …, pm} is a finite set of places,

T = {t1, t2, …, tn} is a finite set of transitions,

F  {P  T}  {T  P} is a set of arcs,

W = F  {1, 2, 3, …} is a weight function,

M0 = P  {0, 1, 2, 3, …} is the initial marking,

P  T =  and P  T ≠ .

The token movement through the PN represents

the dynamical behaviour of the system. In order to

change the token position, the following transition

firing rule is used (Murata 1989):

1. A transition t T is enabled if every input

place p  P of t has w(p,t) tokens or more.

w(p,t) is the weight of the arc from p to t.

2. An enabled transition t will fire if the event

represented by t takes place.

3. When an enabled transition t fires, w(p,t)

tokens are removed from every input place p of

t and w(t,p) tokens are added to every output

place p of t. w(t,p) is the weight of the arc from

t to p.

A Timed Place Petri Nets (TPPN) is an extended

PN, where a new element is added. It is a six-tuple

TPPN = {P, T, F, W, M0, D), where the first fifth

elements are similar to PN definition presented above,

and D = {d1, d2, …, dm} denotes the time-delay for each

place pj  P (Zhao, Zhang, and Bing 2011). Output

transitions ti for each pj will be enabled once the time

indicated in pj is reached.

3.1. Analysis methods

In this paper, we are applying the matrix equation

approach as the analytical method of PN theory in order

to calculate de makespan of the FMS modelled.

3.1.1. Incidence matrix and state equation

A PN with n transitions and m places can be expressed

mathematically as an n  m matrix of integers A = [aij].

The values for each element of the matrix are given by:

aij = aij
+ - aij

-, where aij
+ is the weight of the arc from ti

to pj, and aij
- is the weight of the arc from pj to ti.

The state equation is used to determine the

marking of a PN after a transition firing, and it can be

written as follows:

Mk = Mk-1  ATUk, k=1,2,… (1)

where uk is a n  1 column vector of n - 1 zeros and

one nonzero entries, which represents the transition tj

that will fire. The nonzero entry is located in the

position j of uk. A
T is the transpose of incidence matrix.

Mk-1 is the marking before the firing of tj. And Mk is the

reached marking after the firing of tj denoted in uk.

4. ADAPTIVE TIMED PLACE PETRI NET

In this paper we propose an adaptive TPPN

(ATPPN), which adds some arcs according to tasks

sequence of the FMS.

The formal definition of an ATPNN is as follows:

An ATPNN is a seven-tuple (P, T, F, W, M0, D, Fd),

where the first six elements are similar to TPNN

elements, and the last one, Fd, is the set of dynamic arcs

that change depending on the job operations order. Fd 

{P T}  {T  P}. F  Fd = .

4.1. One operation modelling

The ATPNN to model one operation Oijk of a job Ji

processed by machine Mk is depicted in figure 1.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

464

Ps Oijk Pf

Mk

ts tf

Figure 1: Operation Oijk processed by machine Mk

denoted as a PN model.

4.2. One job modelling

As we mentioned above, one job Ji is composed of

operations Oijk, so the PN model for each Ji is a

concatenation of its operations Oijk (Figure 2).

Ps Oi11

M1

t1 t2

Ps Oi22

M2

t3 t4

Ps Oijk

Mk

tn-1 tn

...

Figure 2: Operations Oijk of job Ji processed by

machines Mk denoted as a PN model.

4.3. FMS modelling

In order to model the whole FMS, we add the PN

structure for each job Ji and connect every Mk place

with its corresponding input (output) transition from

(to) operation Oijk. Figure 3 shows the PN model for the

FMS described in Table 1.

d=
13

p15

t13

p16

t14

d =
5

p17

t15

p18

t16

d =
7

p19

t17

p20

t18

p21

d=
71

p22

t19

p23

t20

d=
23

p24

t21

p25

t22

d=
38

p26

t23

p27

t24

p28

p31

d=
96

p1

t1

p2

t2

d=
90

p3

t3

p4

t4

d=
35

p5

t5

p6

t6

p7

d=
74

p8

t7

p9

t8

d=
57

p10

t9

p11

t10

d=
91

p12

t11

p13

t12

p14

p29

p30

J1 J2 J3 J4

O1

O2

O3

M1

M2

M3

Figure 3: PN model for the FMS described in Table 1.

In Figure 3, each column corresponds to each job

Ji, and some places have a label d, which denotes the

time delay for processing an operation Oijk in the

connected machine Mk.

4.3.1. Algorithm to convert a TPPN into an ATPPN

At this time, PN model of figure 3 only represents the

FMS, but it is also necessary to set the priority in the

operations processing by means of arcs connection in

the PN model. So, we need to define the elements of Fd

to denote this priority.

First of all, the operations sequence is defined in a

row vector OS = [os1 os2 … osij], where each OS value

corresponds to one operation Oijk. The following

algorithm receives as inputs the row vector OS and the

TPPN model, as output of the algorithm we obtain the

ATPPN.

Algorithm TTPN_into_ATPPN

Input: TPPN, OS

Output: ATPPN

1. For q=1 to ij
k = machineOf(OS(q))

add(MO(k),OS(q))

End For

2. For k = 1 to NumberOfMachines

For i = 1 to NumberOfJobs – 1

p1 = placeOf(MO(k,i))

p2 = placeOf(MO(k,i+1))

t1 = p1


t2 =

p2

p3 =

t2

W(t1, p3) = 1

W(p3, t2) = 2

End For

End For

In Step 1, a ki matrix called MO is created.

Operations os  OS (Oijk) carried out by the same

machine Mk are added in the row k of MO. The sequence

order for the same machine is taking into account.

In Step 2, new arcs (t,p)  Fd are created, which

connect output transitions of places representing

operations Oijk with the input place of next operation

Oijk in the sequence order defined in MO. Moreover, a

value 2 is assigned to weight W(p3,t2), to assure the

order in the operations processing.

To illustrate the algorithm result, figure 4 shows

the ATPPN obtained, based on the operations denoted

in figure 3 and following the order: OS = [O1J2, O1J4,

O2J2, O1J3, O2J4, O1J1, O3J2, O3J3, O2J1, O3J1, O2J3,

O3J3].

The ATPPN model presented in figure 4 is used to

calculate the makespan for the sequence defined in

vector OS.

5. ALGORITHM TO OBTAIN THE MAKESPAN

The proposed algorithm takes into account the

mathematical representation of the ATPPN. In

particular, the incidence matrix and the state equation

are utilised to obtain the time delay for each Oijk.

As input data the algorithm needs the ATPPN

which includes its input arcs matrix (aij
-), the output

arcs matrix (aij
+), the time delays column vector D, and

the initial marking M0, the total number of jobs (nj), the

total number of operations per job (no), and the total

number of shared machines (nm).

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

465

d=
13

p15

t13

p16

t14

d =
5

p17

t15

p18

t16

d =
7

p19

t17

p20

t18

p21

d=
71

p22

t19

p23

t20

d=
23

p24

t21

p25

t22

d=
38

p26

t23

p27

t24

p28

p31

d=
96

p1

t1

p2

t2

d=
90

p3

t3

p4

t4

d=
35

p5

t5

p6

t6

p7

d=
74

p8

t7

p9

t8

d=
57

p10

t9

p11

t10

d=
91

p12

t11

p13

t12

p14

p29

p30

J1 J2 J3 J4

O1

O2

O3

M1

M2

M3

2

2 2 22

2 2

2

Figure 4: ATPPN model obtained applying the

algorithm TTPN_into_ATPPN.

Algorithm Calculate_Makespan

Input: ATPPN, aij
-
, aij

+
, D, M0, nj,

no, nm

Output: makespan

1. Initialise variables:
 txj = |T| / nj

 pxj = (|P| - nm) / nj

 AT = [0 0 … 0]’ |P| x 1

 TV = [0 0 … 0] 1 x (nj)

2. ET = enabledTransitions(M0, aij
-
)

3. et  ET, Uk (et) = 1
4. While |ET| > 0

 For each t  ET
 indexT = ceil(t/txj)

 Uktmp
T
 = [0 0 … 0]’ |T| x 1

 Uktmp(t) = 1

  = D'  (aij
-
)'  Uktmp

 accum = AT’  (aij
-
)'  Uktmp

 max_accum = max(TV(indexT), accum/2) + 

 For each p  t
 indexP = ceil(p/pxj)

 If indexT == indexP

 TV(indexP) = max_accum
 Else

 AT(p) = max_accum
 End if

 End For

 End For

 Mi = Mi_1 + (aij)' * Uk

 ET = enabledTransitions(Mi, aij
-
)

 Uk
T
 = [0 0 … 0]’ |T| x 1

 et  ET, Uk(et) = 1
End While

5. makespan = max(TV)

In step 1, four variables are initialised: the number

of transitions per job (txj), the number of places per job

(pxj), a column vector AT to assign the accumulative

time for each place, and a row vector TV utilised to

save the time used for each job.

Step 2 obtains the enabled transitions (ET) for an

initial marking M0. Step 3 creates the Uk vector from

ET transitions.

Step 4 makes an iterative process while the

ATTPN is alive, i.e., while there exists at least one

enabled transition in the current marking. So, for every

enabled transition t, we identify the job Ji where the

transition belongs (indexT), initialise a temporal Uk

(Uktmp) to fire transition t. The time delay 

corresponding to current operation Oijk is calculated

multiplying the transpose of the time delay vector D’ by

the transpose of the input arcs matrix (aij
-), and the

result is multiplied by the firing vector Uktmp taking into

account only transition t.

 The accumulated time, denoted as accum,

represents the time that the needed machine Mk has been

busy previous to the current operation Oijk. And it is

calculated in a similar way that , but in this case we

use an auxiliary vector AT where the accumulative time

for each place is stored, instead of the time delay vector

D.

Then, we compare both times, the time when the

machine Mk is ready and the time when the operation

Oijk is also ready to be processed. The maximum time

plus the time delay for operation Oijk is assigned to

max_accum. For every p  t, if p and t are in the same

job line then max_accum is assigned to the time vector

variable TV. On the other hand, if p and t belong to

different job lines, max_accum is assigned to the vector

AT.

Finally, the ATPPN marking Mi changes according

to the result of the equation state. From this new

marking Mi, the new enabled transitions are assigned to

vector ET and vector Uk is generated from them.

6. APPLICATION EXAMPLE

In order to show the applicability of this approach, the

FMS configuration showed in Table 1 is taken. This

FMS has four jobs, and each job is divided in three

operations performed in three different machines.

Operation times showed in Table 3 come from the

transposed matrix corresponding to operation times

from Table 1.

Table 3: Processing time for each operation per job.

Operation

serial

number

J1 J2 J3 J4

1 96 74 13 71

2 90 57 5 23

3 35 91 7 38

Furthermore, to identify every operation in the

whole FMS, an operation number was assigned to each

one. (Table 4).

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

466

Table 3: Number assigned to each operation.

Operation

serial

number

J1 J2 J3 J4

1 1 4 7 10

2 2 5 8 11

3 3 6 9 12

Finally, the machine utilization in the FMS is

showed in Table 5.

Table 5: Machine utilization.

Operation

serial

number

J1 J2 J3 J4

1 3 2 3 2

2 1 3 1 1

3 2 1 2 3

Based on the operation numbers from Table 4, we

take the following operation sequence: OS = (4 10 5 7

11 1 6 12 2 3 8 9), which is a valid sequence.

From this sequence, the algorithm

TPPN_into_ATPPN is executed which has as input data

the operation sequence OS and the TPPN of figure 3,

obtaining as output the ATPPN showed in figure 4. The

dashed arcs represent the sequence of the machine

operation on the PN model.

Next, the algorithm Calculate_Makespan needs the

following data:

1. ATPPN (figure 4)

2. aij
+ (figure 4)

3. aij
- (figure 4)

4. D311, is a column vector with 31 elements,

denoting the processing time in the

corresponding place (figure 4). For instance,

place p2 is holding a processing time of 96

time units, so D(2) = 96, which represents the

operation time of machine 3 for the operation

number 1 (Table 4), and so on.

5. M0 is the initial marking, where M0(i) = 1, for i

= 1,8,15,22,29,30,31. And M0(j) = 0 for j≠i,1≤

j ≤31. This marking denotes the starting of

FMS operations (p1, p4, p15, p22) and the

availability of the machines M1, M2 and M3

(p29, p30, p31).

6. nj = 4 (number of jobs)

7. no = 3 (number of operations per job)

8. nm = 3 (number of machines)

Under these conditions, the algorithm

Calculate_Makespan starts the transition firing and the

token game animation. In order to obtain the processing

time for each transition that is fired, the Eq. (2) is

computed.

 = D’  aij
-‘  uk (2)

The accumulated time for each job line is saved in

vector TV14. Table 6 shows the TV values for each

transition firing. There are some cases where two

transitions were fired simultaneously.

Table 6: Time vector state after transition firings.

Transitions

fired

Time Vector (TV)

J1 J2 J3 J4

t7 0 0 0 0

t8 0 74 0 0

t9 t19 0 74 0 74

t10 t20 0 131 0 145

t13 t21 0 131 131 145

t14 t22 0 131 144 168

t1 t11 144 168 144 168

t2 t12 240 259 144 168

t3 t23 259 259 144 240

t4 t24 349 259 144 278

t5 t15 349 259 349 278

t6 t16 384 259 354 278

t17 384 259 384 278

t18 384 259 391 278

At the end, the maximum value of TV (391 time

units) represents the makespan for this operation

sequence.

The Gantt chart obtained, is showed in figure 5,

where the maximum time is 391 time units. The value

#n over each bar denotes the operation number assigned

in Table 4.

Figure 5: Scheduling chart Gantt for the operation

sequence (4 10 5 7 11 1 6 12 2 3 8 9).

The makespan obtained from the scheduling Gantt

chart is equal to the makespan obtained from the

proposed approach.

7. CONCLUSIONS AND FUTURE WORK

JSSP is a NP-hard problem that has been analysed

applying different kinds of techniques, such as exact

models and heuristics strategies. One important calculus

in the JSSP is the makespan value, which depends on

the sequence of operations for each job and the order of

machine utilisation.

In this paper, we propose a different way to

calculate the makespan by means of mathematical tools

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

467

of Petri nets, such as the equation state and the

incidence matrix. Firstly, we describe an algorithm to

create an ATPPN from a FMS description. The ATPPN

arcs indicate the order in which operations Oijk must be

done in each job. Moreover, arcs are connected

adequately to set the operations order for each machine.

And secondly, the marking evolution by using the state

equation is taken into advantage to calculate the

makespan. We added a time delay vector in order to

consider the processing time for every operation

involved in the FMS, and it is included in the matrix

operations to be able to obtain the makespan for each

job.

As future work, we are including these algorithms

as part of a study based on evolutionary computing.

Moreover, we are interested in analyse the feasibility of

PN tools as part of an heuristic to obtain de minimum

makespan in the JSSP.

REFERENCES

Ardakan, M. A., Hakimian, A., Rezvan, M. T., 2014. A

branch-and-bound algorithm for minimising the

number of tardy jobs in a two-machine flow-shop

problem with release dates. International Journal

of Computer Integrated Manufacturing. 27(6):

519-528

Dey, S., Sarkar, D., Basu, A., 2010. A tag machine

based performance evaluation method for job-shop

schedules. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,

29(7):1028-41.

Gonzalez-Hernandez, M.A., 2011. Metaheuristics

solutions for “Job-Shop Scheduling Problem with

sequence-dependent setup times”. PhD Thesis.

Universtiy of Oviedo.

Lenstra, J.K., Kan, A.H.G., Brucker, P., 1977.

Complexity of machine scheduling problem.

Annals of Discrete Mathematics, 1: 343 – 362.

Murata, T., 1989. Petri Nets: Properties, Analysis and

Applications. Proceedings of the IEEE, 77(4), 541

– 580.

Pinedo, M.L., 2012. Scheduling: Theory, Algorithms,

and Systems, Fourth Edition, New York:Springer.

Qing-dao-er-ji, R., Wang, Y., 2012. A new hybrid

genetic algorithm for job shop scheduling

problem. Computers and Operations Research,

39:2291-2299.

Shuai, J., Zhi-Hua, H., 2014. Path-relinking Tabu

search for the multi-objective flexible job shop

scheduling problema. Computers and Operations

Research, 47: 11-26.

Wang, L., Cai, N., Feng, H.Y., 2010. An adaptive setup

planning approach for dynamic machine

assignments. IEEE Transactions on Automation

Science and Engineering, 7(1): 2-14.

Wang, S.F., Zou, Y.R., 2003. Techniques for the job

shop scheduling problem: a survey. Systems

Engineering – Theory & Practice, 23: 49-55.

Zhao, Z., Zhang, G., Bing, Z., 2011. Scheduling

Optimization for FMS Based on Petri Net

Modeling and GA. Proceedings of the IEEE

International Conference on Automation and

Logistics, pp. 422-427. August 2011, Chongqing,

China.

Zhou, M.C., and Venkatesh, K., 1999. Modeling,

Simulation, and Control of Flexible

Manufacturing Systems. New York: World

Scientific.

AUTHORS BIOGRAPHY

Joselito Medina-Marin. He received the M.S. and

Ph.D. degrees in electrical engineering from the

Research and Advanced Studies Centre of the National

Polytechnic Institute at Mexico, in 2002 and 2005,

respectively. Currently, he is a Professor of the

Advanced Research in Industrial Engineering Centre at

the Autonomous University of Hidalgo State at

Pachuca, Hidalgo, México. His current research

interests include Petri net theory and its applications,

active databases, simulation, and programming

languages.

Juan Carlos Seck-Tuoh-Mora. He received the M.S.

and Ph.D. degrees in electrical engineering (option:

Computing) from the Research and Advanced Studies

Centre of the National Polytechnic Institute at Mexico,

in 1999 and 2002, respectively. Currently, he is a

Professor of the Advanced Research in Industrial

Engineering Centre at the Autonomous University of

Hidalgo State at Pachuca, Hidalgo, México. His current

research interests include cellular automata theory and

its applications, evolutionary computing and simulation.

Norberto Hernandez-Romero. He received the M.S.

degree from Department of Electrical Engineering,

Laguna Technological Institute at México, in 2001 and

the Ph. D. from Autonomous University of Hidalgo

State at México in 2009. Currently, he is a professor of

the Advanced Research in Industrial Engineering Centre

at the Autonomous University of Hidalgo State at

Pachuca, Hidalgo, México. His current research

interests include system identification, feedback control

design, genetic algorithms, fuzzy logic, neural network

and its applications

Nayeli Jazmin Escamilla-Serna. She is a postgraduate

student in Industrial Engineering in the Advanced

Research in Industrial Engineering Centre at the

Autonomous University of Hidalgo State at Pachuca,

Hidalgo, México.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

468

