
SPEEDSIM.NET - AN OPEN .NET BASED SIMULATION SYSTEM

Wiedemann, Thomas a), Wendt, Karsten (b)

(a) University of Applied Science Dresden
(b) DUALIS GmbH IT Solution

(a) wiedem@informatik.htw-dresden.de, (b) KWendt@dualis-it.de

ABSTRACT
As a result of the contradictory characteristics of
existing simulation systems, there is a gap between
component based simulators and programming
language based simulators. This paper will discuss
possible approaches and tool candidates for filling this
gap.

The presented approach and the developed
simulation system SpeedSim.Net are flexible and
powerful options for defining future, complex
simulation environments. The system can be used in a
standalone mode inside a larger software system or
together with a predefined GUI-framework like a
traditional simulation system. All components are
managed by tools of the Visual Studio, like the property
editor or tree list dialog boxes, so experienced VS-
developers can start modeling very fast.

Interested simulation experts can participate in the
future development of the tool.

Keywords: .NET component based standalone

1. INTRODUCTION
The main algorithms and mathematical foundations of
discrete simulation systems are well defined and
efficient (Wiedewitsch and Heusmann 1995)
(Wiedemann, T., 2002), (Zeigler, B. P. (1990).
Nevertheless, the real application of simulation systems
is still difficult (Kuljis and Paul 2000), because there is
no optimal system. Especially the modelling comfort
and the performance and software flexibility are
contradictory, comparing different levels of existing
types of discrete simulation tools (see colored triangles
in fig. 1).

As a result of the contradictory characteristics of
the simulation systems, there is a gap between
component based simulators and programming
language based simulators. This paper will discuss
possible candidates for filling this gap. If such an
optimal system could be defined, it should combine all
the good characteristics of the different system classes
(see right site of fig. 1).

Universal PROGRAMMING languages

Universal SIMULATION languages

COMPONENT based simulators

COMPONENT based simulators
 WITH SCRIPTING EXTENSIONS

Existing simulation tool classes + + +

Modelling comfort Best solution in
relation to

GUI and
Modeling
concept

Adaption on
simulation level

Adaption on
system level

The system - GAP ?

+++ +++

Performance Flexibility

Figure 1: The actual system classes in discrete event simulation
 and their main characteristics

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

457

mailto:wiedem@informatik.htw-dresden.de
mailto:KWendt@dualis-it.de

2. DEFINITION OF MAIN SYSTEM
REQUEIREMENTS

Based on the discussed characteristics of existing
discrete simulation systems, we define the following
requirements for an optimal discrete simulation system:

1. Use a standard programming language and its

integrated developing environment (IDE) for
modeling and simulation control.

2. Provide a comfortable and affordable modeling
environment similar to modern component based
simulation systems.

3. Use the existing standard programming language(s)
for scripting at the model level.

4. Provide high simulation performance for complex
simulation scenarios and long optimization cycles.

5. Apply sophisticated software technologies for
defining simulation components, basic simulation
functions like random number generators and
statistical modeling and analysis tools (autofit tools,
empirical function definitions).

6. Use databases for storing all models and model
input and output data.

7. Provide state-of-the-art interfaces for data import
and export and for system integration and
communication.

This “wish list” will never be complete and should add
new software technologies like web-based standards
such as HTML5 for user interfaces or web services for
system integration and data exchange.

Figure 2 The software libraries

3. DISCUSSION OF IMPLEMENTATION
OPTIONS
3.1. Selection of the IDE

Comparing all existing integrated developing
environments, there are two main options: the Visual
Studio by Microsoft (VS2013) and the Eclipse IDE
from the Eclipse Foundation (Eclipse Foundation 2013).
Both options have their advantages and disadvantages:

- Microsoft’s Visual Studio is a very complex

environment based on the .NET-architecture and
supports all relevant IT-technologies in the desktop
and web area. The main problem is the focus on
Microsoft operating systems, which limits the
application area. But if the customer or end-user
uses MS-OS, it is t a very good solution.

- The Eclipse IDE is based on Java and runs on any
operating system, especially on Unix- and Linux-
based systems. If a customer runs such OS, Eclipse
is the only solution.

Both environments do not generate native code for the
processor but some Intermediate code (MSIL / Java
Byte Code). In general, this is a disadvantage under
performance considerations, but the actual state of the
art of code generators and the optimized code
interpreters at the execution level allow execution rates
at the level of native code. In some special cases the
execution speed of the MSIL code was higher than the
speed of native code. In conclusion, the intermediate
code is no longer seen as a performance issue, but as a
good option for migrating the compiled simulation
model to different platforms.
The question of the overall development speed with the
IDE´s was tested with two groups of students, working
with Visual Studio and the Eclipse IDE on a standard
Database oriented web-application. It was impressive
that the Visual Studio group could finish the task in
only 25% of the time and with a better end user quality
than the Eclipse group. The main reason for this huge
difference was the high quality of supporting solution
assistants and a seamless integration in the Microsoft
webserver environments. The Eclipse group finished
the main Java programming in nearly the same time, but
then lost a lot of time with configuration issues and run-
time errors in the web server environment.
 As a result of this development test and already
existing .NET code at the partner software company
DUALIS, the Visual Studio option was selected. In
general, the main approach, which will be shown on the
following pages, could also be migrated to the Eclipse
IDE. In Eclipse, there would be the option for using
Java for the GUI, but C++ should be used in the
simulation core to get a good performance and to reuse
the code form the Visual Studio version (Skeet 2013).

3.2. Selection of programming and language

Taking the selection of Visual studio (VS) into account
and comparing all possible .NET programming
languages for their usability, flexibility and user

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

458

acceptance, C# was the logical solution. The old C /
C++ were used in an older version of the system, but
they are no longer supported by the managed code
system of Microsoft and there are increasing limitations
and problems (Skeet 2013)..

3.3. Standalone user interface

Using the VS IDE as a basic modeling tool, a first
simple .NET-like modeling is possible. All the
simulation knowledge and functionality is provided by
one DLL with a number of predefined simulation
classes and additional supporting libraries (see fig. 2).
The simulation model is created as a standard .NET-
Windows form. The GUI-buttons call the simulation
control methods and simulation results are displayed in
the log field (see fig. 3).

Figure 3 A simple Stand-alone

simulation model in Visual Studio

The source code behind the form window of a very
simple simulation model is shown in fig. 5. After
defining the model, the simulation is started by calling
the _Model.ResumeSimulation(); method with
the start button from the user interface.
The standalone modeling option is a good solution for
small and quick simulation experiments. It takes about
15 minutes for experienced VS-developers to build a
running .NET simulation model.
 Further types of applications are highly integrated
simulation models. The code of the model from fig. 3
could be migrated to any .NET application, like ERP-
backend interfaces or business intelligence tools. By
using web based technologies like web services, the
input data for the simulation run and the simulation
results can be distributed over the web.

3.4. A traditional desktop user interface

Simulation users without advanced programming
knowledge will encounter problems with the
programming orientated approach. For this group of

users the system offers a second method of designing
and manipulating models.
To meet specific simulation needs, an experienced VS-
programmer will prepare a set of simulation
components. The resulting component library is
compiled as a DLL file and then a precompiled complex
user interface – the SpeedSim.Net framework - is
started. The simulation user will load the component
library into the SpeedSim.Net framework. Afterwards,
he can design and configure complex simulation models
like in traditional simulation systems (see fig. 4)

Fig. 4: The SpeedSim.Net user interface framework

Fig. 5: The GUI-view of a loaded component
library from the user component DLL

public Form1()
{ InitializeComponent(); // Init Form

Simulation
atorBase.Simulation.CSimModel();

 // Define Model for
odel1=new SpeedSimulm

 model1.Initialize();
 // Register SimObjects in Model
 sim1object1 = new mySimObject();
 sim1object1.Initialise(model1,true,false);
 sim1object2 = new mySimObject2();

se);

Figure 6: The source of a stand alone model

 sim1object2.Initialise(model1,true,fal

 // Define Simulation
 ();

 simulation1 = new CSimulation
 sim
 /

ulation1.Initialize(model1);#
/ Define Simulation Duration
simulation1.MaxSimTime = 100;
simulation1.SecoundsPerTick = 0.01;

 }

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

459

All model components can be managed by the
well-known Visual Studio property editor (see upper
dialog box of fig. 7). Newly designed methods of the
simulation components are automatically part of the
property list (see properties “MaxContent” in fig. 7).

During the simulation all dynamic objects like
products or other moving objects are shown in the
dynamic object tree list (see lower dialog box of fig. 7).
The values of any dynamic object can be displayed and
also changed during runtime.

Fig. 7: The VS-based property editor and the list
of dynamic object during simulation runtime

Results are written in external files and can be
displayed also during run time in different chart
windows, which are interactive (see fig. 8)

Fig. 8: Visualization of run-time statistics
 and results

4. THE DEVELOPERS VIEW
4.1 The SpeedSim.Net OBJECT model

The full object model of the developed simulator is
shown in fig. 8. Beside the core modules for building
the simulation model, there are a lot of other modules
for simulation control and interfacing (see fig. 9).

Fig. 9: The S SpeedSim.Net Object Model and
basic system architecture (from (Wendt 2013))

This basic system architecture is concentrated in a
single DLL. By uploading this DLL to a Visual Studio
environment (VS), the VS becomes a simulation
environment.
Customer specific changes to the basic algorithm could
be added in two ways:

- Single changes of parameter values can be
done with the SpeedSim.Net editor according to
fig. 7.

- Much more complex and long-term
modifications can be concentrated in customer
specific libraries (see Fig. 10). It will be possible
to build up a system of application specific libraries
e.g. for logistics, IT-network or traffic models.

It should be mentioned again, that all changes of model
or simulation algorithm will be done with one of the
.NET-programming languages and the resulting project
will be still a standard .NET-project! This allows the
integration of all existing and future software
technologies from Microsoft, like Web Services,
SOAP--and database interfaces to Data Mining and
Business Intelligence tools.

Fig. 10: Framework and customer driven
project linraries (from Wendt, 2013)

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

460

The simulation object life cycle is shown in fig. 11.
After the setup phase the object state is scheduled
between the active states, like “Action” or “Event
handler”, and the delay state, where the object is
waiting in the future event list of the simulation control
for the correct simulation time to be activated again.
It is very important that all object states and their
corresponding event handlers can be changed by the
core or model developer. Again, changes of the
algorithms could be saved in the model specific project
or if useful in general also in the customer specific
libraries.

Fig. 11: The simulation object life cycle (Wendt 2013))

4.2 Optimization of visualization and animation

The SpeedSim.Net framework for non-programmers
supports a multi-threaded module architecture and will
also provide 3D visualization options in the future.
In order to optimize simulation speed, not all simulation
events are displayed in the front end view.
Time measurements by the authors show that the time
needed for displaying a 5 digit number on the screen is
about 1000..2000 longer than the time for any single
calculation for getting this number.
In conclusion, there should also be the option to switch
off nearly all visualization options in order to achieve
maximum speed. The decision of the visualization level
is not coded in the simulation core, but is defined on a
multi-level control structure (see Fig. 12.) The different
levels of this message chain can also be changed for
non- desktop purposes.
If the simulation core is running as a standalone
program with no visible windows (or only an icon in the
system tray), all user input and simulation output could
be managed by web based technologies or web services.

Therefore, a remote simulation service is possible,
which could be integrated in larger IT-environments
like ERP- or business intelligence solutions.

Fig. 12: Thread- and visualization Management

5. ACTUAL STATE AND DEVELOPMENT

The shown modeling options – standalone and
framework based, are fully operational and could be
used by experienced customers.

The system was already introduced in a master course
“Discrete events simulation” at the University of
Applied Sciences Dresden. The simulation with
SpeedSim.Net was introduced to computer science
students with one 90 minutes lecture and one double
hour of student exercises. After some small, predefined
example projects the students were able to successfully
model and simulate a model with 6 model objects.

The actual work focusses on defining complex libraries
for customer oriented production models and other
typical application areas such as network and transport
simulations.

Interested simulation experts can participate in the
future development of the tool. Although the
development is not yet finished, the shown approach
and the existing tools could fill the gap in the actual
hierarchy of simulation tools (see fig. 13).

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

461

REFERENCES

Kuljis, Jasna and Ray J. Paul, 2000: A Review of web
based simulation: whiter we wander?, Proceedings
of the 2000 Winter Simulation Conference,
Orlando Florida, page 1872-1881

Schriber T.,Brunner D., Smith J.: Inside Discrete Event
Simulation Software: How It Works and Why It
Matters. Proceedings of the 2013 Winter
Simulation Conference, Pages 424-438

Skeet, Jon: C# in Depth. Manning Publications; 3rd
revised edition. 2013

Wendt, K. (2013) : SPEEDSIM Documentation Version
1.3. Dualis IT Solutions GmbH Dresden, 2013

Wiedemann, T., 2002. Next generation simulation
environments founded on open source software
and XML-based standard interfaces, Proceedings
of the 2002 Winter Simulation Conference

Wiedewitsch J. and Heusmann J. 1995. "Future
Directions of Modeling and Simulation in the
Department of Defense", Proceedings of the
SCSC'95, Ottawa, Ontario, Canada, July 34-26,
1995

Zeigler, B. P. . Object-oriented simulation with
hierarchical, modular models. Academic Press,
Boston. 1990

AUTHOR BIOGRAPHIES

THOMAS WIEDEMANN is a professor at the
Department of Computer Science at the University of
Applied Science Dresden (HTWD). He has finished a
study at the Technical University Sofia and a Ph.D.
study at the Humboldt-University of Berlin. His
research interests include simulation methodology, tools
and environments in distributed simulation and
manufacturing processes, intranet solutions and
database applications.
Email : wiedem@informatik.htw-dresden.de

KARSTEN WENDT, born 1980 in Dresden; 2007
diploma in Information System Technology at the TU
Dresden; 2007, is -now a scientist and PhD student at
the Chair of Highly-Parallel VLSI-Systems and
Neuromorphic Circuits, Faculty of Electrical
Engineering, TU Dresden, implementing operating
systems and multi-criteria cluster algorithms for large-
scale neuromorphic hardware; 2008-now senior
developer at the Dualis GmbH IT Solution Dresden,
responsible for Speedsim.Net
Email : b) KWendt@dualis-it.de

+++

+++

Universal PROGRAMMING languages

Universal SIMULATION languages

COMPONENT based simulators

COMPONENT based simulators
WITH SCRIPTING EXTENSIONS

Existing simulation tool classes

+ + +

Modelling comfort

Flexibility Performance

GUI and
Modeling
concept

Simulation
level

IT system
level

Best solution in
relation to

Closing the gap with SpeedSim.Net (?)

Figure 13: SpeedSim.Net as a candidate for closing the gap in in discrete event simulation

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

462

mailto:wiedem@informatik.htw-dresden.de
mailto:KWendt@dualis-it.de

