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ABSTRACT 

In this work we present a comparison of several 

Artificial Neural Networks weights initialization 

methods based on Evolutionary Algorithms. We have 

tested these methods on three datasets: KEEL 

regression problems, random synthetic dataset and a 

dataset of concentration of different chemical species 

from the Bioethanol To Olefins process. Results 

demonstrated that the tuning of neural networks initial 

weights improves significantly their performance 

compared to a random initialization. In addition, several 

crossover algorithms were tested to identify the best one 

for the present objective. In the post-hoc analysis there 

were found significant differences between the 

implemented crossover algorithms when the network 

has four or more inputs. 

 

Keywords: Evolutionary Algorithm, Artificial Neural 

Networks, hyperparameter tuning 

 

1. INTRODUCTION 

The hyperparameter tuning of soft computing modelling 

techniques, such as Artificial Neural Networks (ANN) 

or Support Vector Machines (SVM), is an important 

step in the model development. This task used to be 

performed manually based on expert experience and 

using a reduced number of trials because of the low 

computational power available (Bardenet et al. 2013). 

Presently, computer clusters and GPU processor are 

able to run more trials, allowing the use of some 

methods and algorithms to automate the procedure such 

as Estimation of Distribution Algorithms  (EDA) 

(Nannen and Eiben 2007), local search based algorithms 

(Hutter and Leyton-brown 2009) or sequential 

hyperparameter optimization algorithms (Bergstra et al. 

2011).  
In other areas of knowledge such as image 

processing, it was proved that state of the art of image 

classification could be improved not only by building 

new algorithms but also by tuning the hyperparameters 

of existing techniques (Pinto et al. 2009; Bergstra et al. 

2011). In the case of ANN, the tuning of some 

hyperparameters such as layers, number of neurons, 

activation functions or recurrencies has been widely 

researched (Murata, Yoshizawa, and Amari 1994; 

Hagiwara, Toda, and Usui 1993; Panchal et al. 2010; 

Leung et al. 2003). Nonetheless, ANN initial weights 

are quite often not tuned with the above mentioned 

hyperparameters but only initialized by training 

functions. Frequently used training functions like 

Levenberg-Marquart backpropagation (Marquardt 1963; 

Hagan and Menhaj 1994) or Bayesian Regularization 

backpropagation (MacKay 1992), use random weight 

initializations. However, as final results are dependent 

of the neural network initial weights, optimization of 

these parameters should be considered as a technique 

for the improvement of training functions performance. 

Moreover, optimizing the initial weights reduces both 

the possibility of stalling at local optima and the number 

of iterations required to achieve the objective training 

error criterion (Yam and Chow 2000; Lee, Oh, and Kim 

1991). 
The simplest techniques are random samples or 

grid search strategies over the hyperparameters 

operating ranges. The first case uses pure random 

sampling while the second option defines a grid of 

points evenly distributed over the whole operation 

range. However, as the number of hyperparameters 

becomes large these techniques are inviable because 

their computational cost (Do, Foo, and Ng 2008). 

Evolutionary Algorithms (EA) are, in general, more 

efficient as intelligent tuning strategies. Based on 

biological evolution, EA allow a selective exploration 

of the operation range using fitness functions that 

determine which is going to be the next point to be 

sampled (Holland 1975). In hyperparameter tuning 

problems, EA have been proved to perform better than 

grid search techniques based on accuracy-speed ratio 

(Martino et al. 2011; Friedrichs and Igel 2005; 

Huang and Wang 2006). 
In the case of ANN, many weight initialization 

methods have been proposed (Yam and Chow 2000). 

Some of these methods are quite simple, like the 

methodology proposed by Waghmare, consisting on 

initializing all weight to the same value (usually 0 or 1) 

instead of random initialization (Waghmare, Bidwai, 

and Bhogle 2007). Other researchers use statistical 

techniques such as the Independent Component 

Analysis (ICA) to extract useful information from 

training datasets in order to determine the network 

weights (Y.-F. Yam et al. 2002), or Partial Least-

Squares (PLS) algorithms to determine the initial 

weights and the optimum node number of hidden layers 

(Ryan Hsiao, Lin, and Chiang 2003). 
EA have been used to improve or to develop new 

training algorithms for ANN. Some researchers 
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maintain a random initialization and use EAs for the 

training itself (Montana and Davis 1989), while others 

use these techniques both for the initialization and 

training of neural network weights (Al-Shareef and 

Abbod 2010). Initial weight optimization followed by 

backpropagation training algorithms has also been used 

with very good results (Venkatesan, Kannan, and 

Saravanan 2009; Chang et al. 2012). These works have 

been implemented only using two-point and four-point 

crossover operations respectively. Although, the use of 

EA in the ANN models weight initialization improves 

the performance compared to a random initialization, 

the results obtained by the previous algorithms could be 

further improved by selecting the optimal genetic 

operators.  

This paper demonstrates not only that the tuning of 

initial weights by EA improves the performance of 

ANN, but also the existence of significant differences 

between some genetic operators. The current study 

allows determining which of the implemented crossover 

operators for weight initialization provide better results. 
This paper is arranged as follows. Section 2 

explains the implemented evolutionary algorithm. The 

datasets used for the experimentation are explained in 

Section 3. Experimental results are in Section 4. 

Conclusions and future works are in Section 5. 

 

2. EVOLUTIONARY ALGORITHM 

EA are optimization algorithms that operate by 

modifying a set of candidate solutions (population) 

according to certain rules called operators. In this study 

we will consider EA as the algorithms that follow the 

pseudocode of Figure 1. One of the main advantages of 

the EA is their generality, i.e., they can be used in a 

broad range of conditions due their simplicity and 

independence of the underlying problem. In this sense, 

only the codification of the population and the 

FitnessOperator depends on the specific problem, the 

rest of the operators are (almost) independent of it. 

In this paper, the problem to be resolved is the 

optimization of the initial weights and biases of an 

ANN. In this sense, we have codified a solution as two 

weights matrices and two biases vectors (Figure 2). The 

first matrix represents the relationship between the input 

layer and hidden layer and the second one represents the 

relationship between the hidden layer and output layer. 

In the case of the biases, each vector sets the biases for 

the neurons of each layer. Please note that crossovers 

operators only cross matrices and vectors that have 

same code position within the individual. 

As our main objective is to assess the performance 

of different crossovers operators, in order to do so we 

have defined a broad collection of them using strategies 

of other EA. 

 

 Arithmetic crossover (A): Being P1 and P2 the 

individuals to be crossed and λ a random variable 

uniformly distributed between [0,1] the two 

offsprings C1 and C2 are defined as: 
 

 

 
Figure 1: Pseudocode of the Evolutionary Algorithm 

 

 
Figure 2: Structure of an individual 

 

C1 = λ · P1 + (1- λ) · P2   (1) 

C2 = λ · P2 + (1- λ) · P1   (2) 

 

 Differential crossover (D): Being P1, P2 and P3 

the three individuals to be crossed and λ a random 

variable uniformly distributed between [0,1] the six 

offsprings are: 

 

Cx = Py + λ(Pz – Pw),     (3) 
 

where {y, z, w} are all possible permutations of the 

set {1,2,3}. 

 Uniform crossover (U): Given two individuals P1 

and P2 with L attributes, L binomial random 

variables λi with probability 0.5 are flip. C1 is made 

Using the GenesisOperator, a population of 

randomly generated individuals is initialized; 
Using the FitnessOperator, evaluate each individual 

of the population; 
while a criteria is satisfied do 

  Create an empty new population; 

Select between crossover and mutation 

GeneticOperators; 

     repeat 
Use SelectionOperator to select the parents 

from the old population; 
Apply a GeneticOperator to generate 

offsprings; 

Calculate the offsprings fitness values; 

   With ReproductionOperator select between 

the parents and the offsprings and add them 

to the new population; 
           until A new population is filled; 

Apply the EliteOperator to maintain the best 

individual from previous generation; 

Substitute the old population with new 

population; 

end 
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with the features from P1 such that λi are 0 and the 

features from P2 such that λi are 1. C2 is made 

switching P1 with P2. 

 Swarm crossover (S): For each position i in the 

population we denote by Pi
e
 as the best 

qualification obtained by the elements at that 

position. Moreover, P
e
 will represent the best 

individual in the population. If the element P to be 

crossed is at position i in the population, then the 

crossover could be defined as: 
 

C = λ1Pi + λ2(Pi
e
 - Pi) + λ3(P

e
 - Pi),  (4) 

 

where λ1, λ2 and λ3 are three random real numbers 

uniformly distributed over the range [0, 1]. 

 2 Points crossover (2P): Given two individuals P1 

and P2 as a matrix of size mxn as attribute and two 

randomly chosen cross points t1, t2 ϵ (1, m) we 

define the two point crossover as: 
 

C1 = [P1(1,t1)x(1,n) , P2(t1+1,t2)x(1,n), P1(t2+1,m)x(1,n)],  (5) 

C2 = [P2(1,t1)x(1,n) , P1(t1+1,t2)x(1,n), P2(t2+1,m)x(1,n)],  (6) 
 

where C1 and C2 are the offsprings generated by the 

operator. 

 

The rest of operators are as follow: 

 Mutation Operator (Non Uniform): If P is the 

individual to be mutated and mini, maxi the inferior 

and superior limits of its i attribute, Pi, the two 

offsprings are defined as: 
 

C1 = Pi + Δ(t, maxi - Pi),    (7) 

C2 = Pi – Δ(t; Pi - mini),   (8) 
 

where Δ(t, y) = yr(1-t/T), being r a random number 

uniformly distributed between [0,1] and T the 

maximum number of generations. 

 Genesis Operator: The values of the three 

matrices and vectors are initialized using 

uniform  random variables between [0,1]. 

 Fitness Operator: In order to avoid overfitting 

(Hawkins 2004) we have used as fitness function 

the validation error of the ANN over the dataset. 

The datasets have been divided in two parts: the 

training set and the validation set. In order to 

determine the performance of the developed 

models, k-cross validation has been used. This 

technique uses an iterative procedure in which the 

validation data section is changed at each 

simulation. Training each time with the training 

dataset section and validating the models with the 

portion of data that have been excluded from the 

training. In our case the validation error is based in 

the Mean Absolute Percentage Error (MAPE) 

defined by Equation 9: 
 

           
 

 
∑ |

     ̅̅ ̅

  
| 

   ,   (9) 

 

where n is the number of samples in the dataset, xi 

is the real value and  ̅  the output of the trained 

neural network. The validation strategy will be 

different depending of the dataset so we will 

discuss this topic further in the next section. 

 Selection Operator (Round Robin): Being P the 

population and S the size of the population then the 

selected individual for k + 1 iteration would be 

Pϕ(k+1) where ϕ(k+1) = mod(ϕ(k), S) + 1. In the 

first iteration ϕ(1) is assigned a random value 

between 1 and S. 

 Reproduction Operator (N-Different): The best N 

different individuals are selected where N is the 

number of individuals that will survive. 

 Elite Operator (best selection): Selects the 

individual with the lowest prediction error. Please 

note that the last individual selected by this 

operator will be the solution. 

 

3. EXPERIMENTAL SETUP 

The proposed method has been validated on three 

different datasets: KEEL dataset, a synthetic dataset 

built by random sampling the space of neural networks 

and a dataset containing the concentrations over the 

time of several chemical species in a catalytic reaction. 

The KEEL dataset repository was created with the aim 

of providing the researchers with a set of benchmarks to 

analyze the behavior of their learning algorithms. There 

are benchmarks for classification, regression and 

unsupervised learning (Alcalá-Fdez et al. 2011). The 

FitnessOperator used in this experiment is the mean of 

the MAPE errors obtained applying 10-fold cross-

validation by initializing the ANN with the weights of 

an individual. 

The synthetic datasets were created by randomly 

creating feedforward Neural Networks (rNN). A rNN is 

defined as a neural network with the number of inputs, 

outputs, layers and neurons selected randomly within 

some range values. Several random inputs are given to 

the rNN and outputs are recorded as a dataset. Using 

this technique infinite datasets can be obtained 

representing each rNN a different process to model. In 

order to create realistic conditions, normally distributed 

noise is added to the outputs of the training set. It was 

also taken into account the curse of dimensionality 

phenomenon (Bellman 1961) by increasing the amount 

of data according to the number of inputs, that is, the 

more number of inputs the bigger the training dataset 

has to be. For this reason, the size of the synthetic 

dataset has been set to depend on the number of inputs 

following the relation m = 100n where m is the number 

of instances in the training data and n the number of 

inputs. Rigorously, the relationship should be m = 100
n
, 

however this would yield an exponential grow in the 

training set that would be impossible even to store. In 

this dataset, the FitnessOperator used is the same as the 

previous one. 

The last used dataset contains the concentration of 

different chemical species of a Bioethanol To Olefins 

(BTO) process. This dataset comes from experimental 

results in a laboratory scale reactor (Gayubo et al. 

2010). The BTO process consists on the catalytic 

transformation of bioethanol, as a substitute of oil, into 
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olefins, which are commodities for the petrochemical 

industry. The modelling objectives are the olefins 

production rate curves at different operational 

conditions. The activity of the catalyst is one of the 

most important variables to take into account because of 

its influence in the final production of olefins. The 

FitnessOperator used in this problem is the results of 

applying Leave-One-Out Cross Validation to the 23 

experiments available. The fitness value is the 

maximum absolute error obtained from the 23 

iterations. 

Regarding to evolutionary algorithms, 75 

generations with 50 individuals in the population for 

each experiment are done. In all the experiments the 

evolutionary algorithm is set with non-uniform 

mutation in company with a crossover. ANN with only 

one hidden layer are used with the number of neurons 

determined by the relation h = 10n where h is the 

number of neurons in the hidden layer and n represents 

the number of inputs. Sigmoid function is used as 

activation function and Levenberg-Marquardt 

backpropagation is used as a training algorithm with 

initial weight given by our algorithm. 

We have used Nguyen-Widrow (NW) random 

weight initialization as contrast method. This method 

generate weights that follow a normal distribution 

(Nguyen and Widrow 1990). In order to be fair with the 

rest of the proposed methods, 75·50 = 3750 repetitions 

are made. Please note that in all the proposed methods 

we have selected the neural network with best 

validation error as the solution of the problem. 

 

4. EXPERIMENTAL RESULTS 

In order to assess if the differences between proposed 

methods are significant, we have executed a Friedman 

test with Hochberg’s and Bergmann’s post hoc analyses 

(Demšar 2006; Derrac et al. 2011; Bergmann and 

Hommel 1988). First, a Friedman test was carried over 

the results of the different crossovers. The null 

hypothesis of this test states that the outcomes of each 

algorithm have the same probability distribution. I.e. 

this means that all algorithms show the same 

performance. In the case of positive results, i.e. the p-

value is less than 0.05, this test only states that there are 

differences, but not between which pair of methods. In 

this case a post hoc analysis is needed. We have used 

Hochberg’s post hoc to compare all methods against 

NW (as the statistical power of this method is low but it 

is computationally simple) and Bergmann’s method to 

compare the crossover operators between them (as this 

method gives us a better statistical power but has 

exponential complexity). 

Table 1 shows the results of the different crossover 

operators over every dataset of the KEEL regression 

database. These results show that ANN without 

hyperparameter tuning (NW) tends to be the poorest 

(around 7 points worse than the others) while there are 

little differences between the rest of used techniques. 

The p-value of the Friedman test carried on over the 

KEEL regression is 4.5·10
-9

 way below the significance 

level so we can assure without any doubt that there are 

significant differences between at least one of the 

methods. Table 2 shows the results of Hochberg’s post 

hoc analysis over the KEEL database. Please remember 

that this method compares all crossovers against NW. 

The adjusted p-values are way below the significance 

level given by the Hochberg’s post hoc analysis (the 

second column is way below the third one) so we can 

conclude that the NW is worse than the rest of proposed 

methods. Finally, Bergmann's procedure has been 

carried out in order to test if there are significant 

differences between any pair of crossovers. In this case 

the procedure did not found any significant differences 

between the crossovers. 

Table 3 shows the results of the different crossover 

operators over the 100 synthetic datasets. We only show 

the mean result for space purposes. Again, the NW 

seems to be the poorest but in this case the differences 

are smaller. However, the p-value of the Friedman test 

carried on over this dataset is 5.1·10
-11

, again way 

below the significance level so we can assure without 

any doubt that there are significant differences between 

at least one of the methods. Table 2 shows the results of 

Hochberg’s post hoc analysis over this dataset. Once 

again, the adjusted p-values below the significance level 

so we can conclude that the NW is worse than the rest 

of proposed methods. Next, we use the Bergmann's post 

hoc to study the synthetic datasets. In this case we have 

divided the samples in two groups: datasets with 3 or 

less inputs (group A) and the rest (group B). In group A 

Bergmann's procedure only found significant 

differences between NW and the rest of crossovers. 

However, in the case of group B we have found three 

groups. The first one consists on NW. The second group 

is composed by U, S, A, and 2P crossovers; between 

them the Bergmann’s procedure has not found any 

significant difference. The final group consist only on 

the D crossover that has a result significantly better. 

Figure 3 shows this information graphically. Please note 

that algorithms that are linked are not statistically 

different according to Bergmann’s procedure. 

 

 
Figure 3: Groups of crossover operators that are 

statistically different for examples of the synthetic 

dataset with more than 3 inputs (group B) 
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Table 1: KEEL Dataset Results with the Different Crossover Algorithms. MAPE (%) 

Dataset A D U 2P S NW Random 

ANACALT 1,99 1,93 2,04 2,01 1,94 2,09 

abalone 10,66 10,75 10,46 10,60 10,76 13,27 

ailerons 8,32 8,45 8,71 8,51 8,33 9,93 

autoMPG6 24,71 24,53 23,91 24,68 24,73 29,37 

autoMPG8 10,43 9,32 10,41 10,35 10,18 10,66 

california 134,72 152,16 133,92 148,02 152,72 264,34 

compactiv 14,27 15,17 14,33 14,56 14,57 15,90 

concrete 50,77 50,47 50,55 49,81 51,07 51,84 

dee 13,29 13,23 13,37 13,48 13,3 15,6 

diabetes 36,33 37,54 33,34 36,28 33,64 53,29 

ele-1 15,11 15,37 14,92 15,24 14,92 15,55 

ele-2 1,13 1,14 1,12 1,14 1,15 1,16 

elevators 92,64 81,65 92,43 91,57 93,42 94,36 

forestFires 7,90 8,09 8,04 8,12 8,08 8,20 

friedman 24,74 24,77 24,74 24,68 25,05 25,03 

house 2,40 2,38 2,41 2,41 2,40 2,41 

laser 2,44 2,47 2,50 2,46 2,64 2,84 

machineCPU 85,43 79,72 87,42 87,33 81,27 82,81 

mortgage 2,07 2,01 2,26 2,26 1,82 2,26 

mv 2,48 2,37 2,38 2,44 2,29 2,47 

plastic 1,57 1,53 1,59 1,64 1,51 1,67 

quake 8,53 8,79 8,39 8,40 8,48 10,36 

stock 8,81 8,67 8,42 8,30 8,53 11,22 

tic 50,26 54,16 52,68 52,01 51,67 76,19 

treasury 25,76 25,91 26,08 25,96 25,34 26,06 

wankara 2,62 2,60 2,65 2,62 2,60 2,66 

wizmir 20,52 21,04 20,01 20,74 20,09 22,44 

MEAN 24,44 24,67 24,41 25,02 24,91 31,63 

 

Table 2: Post Hoc Analysis done for the Different Crossover Algorithms of KEEL datasets and Synthetic datasets 

KEEL datasets  Synthetic datasets 

Null hypothesis  p-value Significance level  Null hypothesis  p-value Significance level 
A = NW? 2.47·10

-9 0.006  D = NW? 2.15·10
-22 0.006 

S = NW? 6.10·10
-9 0.007  S = NW? 5.14·10

-15 0.007 
U = NW? 1.10·10

-8 0.008  2P = NW? 4.52·10
-12 0.008 

D = NW? 6.08·10
-8 0.010  A = NW? 1.33·10

-11 0.010 
2P = NW? 1.43·10

-6 0.012  U = NW? 1.81·10
-8 0.050 

 

Table 3: Synthetic Dataset Results with the Different Crossover Algorithms. MAPE (%) 

Group A D U 2P S NW Random 

A 2,91 2,54 2,88 2,79 2,68 3,41 

B 30,01 27,44 30,79 29,00 30,63 31,19 

Total 16,46 15,00 16,84 15,90 16,66 17,30 

 

Finally, the results of the BTO process modelling 

using swarm crossover are shown in Table 4. Taking 

into account that this experiment is very time 

consuming (more than one week for of computation for 

each crossover), we can only afford executing this 

simulation with one of the crossovers. We have selected 

the swarm crossover as it seems the most promising 

given the previous results. Fortunately, using this 

method we have been able to reduce the error of the 

model in 4 points when using EA for ANN 

hyperparameter optimization. This represents a 

significant improvement in this particular dataset. 

 

Table 4: BTO Process Modelling Dataset Results 

Error S NW 

MAPE (%) 18.09 22.04 

 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper it is statistically demonstrated that the 

tuning of artificial neural network initial weights 
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improves significantly the performance compared to 

Nguyen-Widrow random initialization. Moreover, it is 

also demonstrated that when the number of inputs is 

four or more, there are significant differences between 

the results shows by the different crossover operators 

used internally in the evolutionary algorithm. For 

synthetic data the differential crossover present 

significantly better results than other crossover operator 

types. 
As future work it is necessary to improve the 

weight initialization techniques by customizing the 

existing crossover algorithms in order to make an 

intelligent selection of parents attributes taking into 

account the neural nodes specialization. 
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