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ABSTRACT
The paper deals with analysis and optimization of produc-
tion performance dynamics expressed by key performance
indicators (KPI). The architecture of a supporting software
tool that integrates into production information systems is
presented. The tool is able to support efficiency indicators
composition, determination of performance influential
variables and building of prediction model that enables a
short-term prediction of the expected performance. The
model can be used within predictive control algorithms,
composing a production management decision support,
which assists production operators at on-line production
management. The tool is built modularly and employs
industrial standards that facilitate the tool integration into
production information systems of different vendors. The
functionality of the tool is demonstrated by simulation
benchmark as well as by real industrial production data.

Keywords: Production control, production efficiency,
key performance indicators, modelling, simulation,
optimization

1. INTRODUCTION
Manufacturing companies are faced with several chal-
lenges in their struggle to gain a competitive advantage.
Among others, energy and resource efficiency are becom-
ing increasingly decisive factors for competitiveness, com-
panies are forced to shorten innovation cycles, and markets
are becoming more volatile.

These challenges can be addressed by the extensive
use of contemporary information technology within all or-
ganization levels of a company. A careful orchestration of
the related information system improvements throughout
the company has to be maintained in order to avoid bottle-
necks on the one hand, and oversized capacity on the other.
In any case, production itself is a base of any manufactur-
ing company operation. Effective production management
is one of the fundamental operational activities that has to
be carefully designed and integrated into the overall man-
agement structure in order to meet the given requirements.

A number of initiatives emerged with a goal to estab-
lish a continual production efficiency improvement frame-
work by the use of the latest technological advancements.
In Europe, the German Industry 4.0 initiative (Industrie 4.0

2013) is perhaps the most known. It proposes to employ
the Internet of Things paradigm on the factory floor and
derive intelligent, intercommunicating autonomously op-
erating production units, co called cyber-physical systems.
This should result in flexible and efficient Smart Factory,
with consideration of ergonomics and customer needs, and
integration of supply-chain partners along the value chain
(Brettel et al. 2014).

A similar North American initiative is Smart Man-
ufacturing Leadership Coalition (SMLC 2011), a coali-
tion of companies, manufacturing consortia and consul-
tants working on Smart Manufacturing. This has been de-
fined as the dramatically intensified application of ’man-
ufacturing intelligence’ throughout the manufacturing and
supply chain enterprise (Davis et al. 2012).

In terms of organizational advancements Japanese
manufacturing has long tradition dating back in 1980’s
with Just-in-time manufacturing and lean production (Hol-
weg 2007). Recently, also other Asian manufacturers are
forced to adopt these advancements as they are faced with
rising consumer sophistication that makes traditional low
cost mass production strategies inadequate.

While these initiatives improve the organization of the
production process and establish a decision-support frame-
work with improved insight into the current state of pro-
duction and its current performance, an obvious further
advancement is to employ sophisticated data analysis and
system modelling methods in order to predict the effect
of production control measures on the future performance.
This way a decision-making process at the production con-
trol level would be substantially improved by the possibil-
ity of beforehand evaluation of the various decisions.

To this end a holistic production control concept is
proposed in Zorzut et al. (2009) and further elaborated in
Glavan et al. (2013a) and Glavan et al. (2013b). The pro-
posed modelling approach uses historical production per-
formance data jointly with history of most influential de-
cision variables to derive a black-box model by contempo-
rary soft computing techniques, e.g. neural networks. Sev-
eral additional steps are provided, such as data preparation,
influential variable selection, etc. (Glavan et al. 2013a).

This paper describes the design and prototype imple-
mentation of a software tool that supports the application
of modelling methodology in the context of production
performance prediction and optimization. This is one of
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the fields where information technology has an immedi-
ate and considerable impact on the efficiency and quality
of production control and related manufacturing processes.
The tool modular architecture is described and the used in-
dustrial standards are presented, which facilitate the tool
integration into production information systems of differ-
ent vendors. The functionality of the tool is demonstrated
through a selection of results from case studies, which in-
clude simulation benchmark as well as historical data from
the actual industrial production.

2. HOLISTIC PRODUCTION CONTROL

The presented tool is based on the holistic production con-
trol concept, which attempts to bring classical feedback
control approach, extensively used on the factory floor,
also to the higher production control levels.

The concept of holistic production control can be best
explained by the scheme depicted in Figure 1. The process
we would like to control is indicated by the blockProduc-
tion process. Note that this block also covers the low-level
process control. Different inputs (u) are available to ma-
nipulate the production process. These inputs are mostly
the reference values for the process control loops and/or
other manipulating variables not used within the stabilisa-
tion loops. On the other hand, there are many measurable
disturbances (d) and outputs (y), which are used to cal-
culate on-line the key performance indicators (K) – KPI
calculationblock. The key performance indicators (KPIs)
are the production variables that are used by production
manager to determine the appropriate input values (u) in
order to optimise the production process. The demands
from the business control level are given as reference KPIs
(K∗). The attempt of the concept described here is to help
the production manager with the decision-making process,
which would close the loop through the introduction of the
Production controller & Optimiser.

One of the possible solutions with this approach is
to apply model-based control concept on the production
management level. To enable this, an appropriate model
describing the behaviour of the process projected on KPIs
is required (theKPI modelM ). The model can be updated
online and can provide the controller with the predicted
outputsK|M . The model can also consider the measur-
able disturbances (d). Based on current valuesK, the pre-
dicted outputsK|M and the reference valuesK∗ (i.e., the
planned business goals) theProduction controller & Opti-
miserdetermines the appropriate input valuesû and in this
way supports (or substitutes) the production manager (Eq.
(1)).

û = argmin
u∈R

C(K,K∗,K|M) (1)

This concept has been introduced in Zorzut et al.
(2009), and further elaborated and extended in Glavan et al.
(2013a) and Glavan et al. (2013b).

How to derive an appropriate KPI model represents
the main challenge of the HPC approach.

K

K

u

u

Figure 1: Holistic production control

2.1. Production modelling for holistic production con-
trol
Modern manufacturing systems are in many cases and for
various reasons too complex to be accurately described an-
alytically from first principles. Instead, one can assume
that the relationship between the inputs and the outputs can
be described by a stochastic, high-dimensional model from
a class of generally nonlinear model structures.

The production model has to include enough details
of the production process to reflect the dynamics for pro-
duction control. This model should be relatively simple
in comparison to the models used for the process control
level, yet because of the overall complexity and the limita-
tions of testing the process, this task is extremely complex.
Production control usually requires that the model is easy
to adapt online as well. Therefore, the main objective is
the development of the concept of identifying a relatively
simple input–output model of the production.

The main steps of the production modelling are shown
in Figure 2. More detailed discussion about each of these
steps and a short overview of the potential methodologies
are given in the following subsections.

Data preprocessing

Special attention is needed when data from a historical
production database are used. From the vast amount of
data, the informative portions need to be identified. These
data segments should cover the interesting dynamics of the
KPIs, for which we would like to determine the future be-
haviour. Furthermore, any outliers or missing data need to
be properly substituted, and to cover all the process oper-
ating conditions an uneven data distribution is needed.

Data-cleaning procedures can be applied to detect and
remove any outliers present in the data. As pointed out
in Pearson (2006), nonlinear data-cleaning procedures are
recommended. We can find many filters in the literature
proposed for this task: the Martin–Thomson filter, the FIR-
median hybrid (FMH) filter, the Hampel filter, etc.
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Figure 2: Holistic production control design steps

Definition of production performance indicators – KPIs

The research field of performance measurement systems
(PMSs) is becoming increasingly important for industry
and academics (Neely et al. 1995). Performance indica-
tors (PIs) are commonly used by organisations to evalu-
ate their overall economic success and many recommen-
dations have been presented on how to specify such indi-
cators (Folan and Browne 2005). These indicators should
cover the relevant business aspects of the specific process,
where the status of the process should be evaluated with
relatively short-term indicators, since longer-scale busi-
ness estimations (e.g., an annual profit report) are useless
for quick process adjustments (Gerry and Buckbee 2005).

The production objectives are usually aggregated in
key production performance indicators (KPIs). The selec-
tion of these KPIs should be performed manually, with ex-
tensive consideration of the production expert’s knowledge
of the process.

Input variables selection

To simplify the model and to enhance model’s accuracy
only the most relevant manipulative variables need to be
identified. On the basis of the historical process data, an
extensive analysis is needed to evaluate which inputs have
the most significant impact on the selected KPIs.

Variable selection is already a widely applied method-
ology in the field of data mining. But, as noted by some
authors, like Smits et al. (2006), in modelling projects it is
mostly assumed that true inputs are a-priori known or all
the available inputs are used in a model. To avoid the so-
called curse-of-dimensionality, which essentially limits the
robustness of a data-based model, only the most relevant
inputs need to be selected. This represents an especially
important step for HPC design, as in real-world production
processes many potential variables are available. Further-
more, as aggregated KPIs are connected with many pro-
cess variables it is often found that some a-priori excluded
inputs are later identified as significant, and vice versa.

In the literature, three major principles for variable
selection are used (Guyon and Elisseeff 2003):

• feature construction,

• variable ranking,

• variable subset selection.

For detailed discussion and evaluation of the related
methods, see Glavan et al. (2013b).

As we are dealing with dynamical systems, the cur-
rent values of production performance indicators are not
dependent only on the current input values, but also on
their time-delayed values. The input–selection problem is
therefore augmented by the selection of lagged inputs and
outputs that are used as regressors.

Black-box process modelling

The HPC efficiency is closely related to the production
model, which should describe the main features of the pro-
duction process with an acceptable level of approximation.
The production process is typically a highly complex pro-
cess, with nonlinear relationships among the vast quantity
of process variables. Since our model should be simple
enough and the development time needs to be short, black-
box modelling techniques are preferred. Furthermore, the
production model should be extracted mainly from the his-
torical process data, since extensive experimentation on the
real process is often too expensive or restricted. If the pro-
cess characteristics were to change during the use of the
production model, new process data should be analysed
and a better model extracted. The cyclical generation and
validation of new models will enable a rather conservative
adaptation of the model-in-use to long-term changes in the
production.

The main idea of the parametric black-box modelling
techniques is to trim some universal input–output func-
tions, with a fixed number of parameters, to represent the
true process dynamics (2).

y(t) = g(ϕ(t), ϑ) + e(t) (2)

The goal is to minimise the mismatche(t) between
the true process responsey(t) and the model predic-
tion g(·), where the trimming is performed solely on
the basis of the process input–output data pairsZN =
{u(t), y(t)}Nt=1

Black-box models can be seen as the connection of
two mappings (Sjöberg et al. 1995). The first mapping
constructs the regression vectorϕ(t) from past inputs and
outputs, which enables a representation of the dynamical
model behaviour. Another mapping predicts the future be-
haviour of the system̂y(t), with the nonlinear mapping
from the regressor space to the system output. This non-
linear mapping is found within a family of functions (3),
parameterised by the parameter vector (ϑ), wheregk refers
to the basis function, usually derived from a single, mother
basis function.

ŷ(t) = g(ϕ(t), ϑ) =
∑N

k=1
αkgk(ϕ(t), βk, γk)

ϑ = [α1 . . . αn, β1 . . . βn, γ1 . . . γn]
T (3)

From such a flexible structure, popular nonlinear
mappings can be derived, like Neural Networks, Wavelets,
Kernel Estimators, Nearest Neighbors, B-splines, Fuzzy
models, etc. (Ljung 1999).

2.2. Optimization and holistic production control
Optimization is a vital component of holistic production
control concept. Once a production performance dynamic
model is derived, a natural way of incorporating the model
in a production control scheme is to apply the model pre-
dictive control (MPC) approach (Maciejowski 2002, Grüne
and Pannek 2011).

The MPC approach is based on repetitive solution of
an optimal control problem, taking measured system state
as the initial state and using system model to evaluate the
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effect of possible system input sequences. A discrete time
representation of system dynamics is used and only the first
sample of the calculated optimal input sequence is applied
to the system. In the next sample time the calculation is
repeated with the newly acquired system state.

The optimization is performed over a finite moving
horizon, which always starts at the current sampling in-
stant. Depending on the method, prediction and control
horizons can be of different lengths. The approach can
be applied to feedback control of nonlinear systems, the
method is then denoted NMPC.

For simplicity, we assume prediction and control hori-
zon of lengthN . The determination of the optimal produc-
tion manipulative valueŝu can therefore be formulated as
an optimal control problem

minimize JN (x0, u(·)) :=

N−1∑

k=0

l(xu(k, x0), u(k))

with respect to u(·) ∈ U
N (x0) (4)

subject to xu(0, x0) = x0,

xu(k + 1, x0) = f(xu(k, x0), u(k))

Herex0 = x(n) ∈ X is the current state of the system at
the sampling instantn = 0, 1, 2 . . ., u(·) ∈ U

N(x0) is a
control sequence whereUN (x0) ⊆ UN is a set of admis-
sible control sequences over which we optimize,l(x, u) is
a distance (deviation) measure,J(x, u) the cost function,
andf(x, u) is the nonlinear state transition map represent-
ing discrete time dynamics.

When the solution is obtained,̂u = u(0) is chosen.
For a non-constant reference and in the presence of termi-
nal constraints the formulation is slightly modified, but the
general idea remains the same.

In any case, the NMPC problem can be reformulated
to match the standard problem in nonlinear optimization
(NLP) (Grüne and Pannek 2011)

minimize F (z)
with respect to z ∈ R

nz

subject to G(z) = 0 and H(z) ≥ 0
(5)

with mapsF : R
nz → R, G : R

nz → R
rg andH :

R
nz → R

rh . Hererg andrh denote the resulting number
of equality and inequality constraints, respectively.

This reformulation, called discretization, can be done
in different ways. Among them, the so-called recursive dis-
cretization recursively computesxu(k, x0) from the open-
loop system dynamics outside of the optimization problem,
thus maintaining low dimension of the optimization vari-
ablez and the number of constraintsp = rg + rh. The op-
timization variablez reduces toz := (u(0)T , . . . , u(N −
1)T ).

Utilizing this form, common solution methods for
NLP problems can be applied, such as Sequential
Quadratic Programming (SQP) or Interior Point Methods
(IPM).

The recursive discretization is optimal regarding the
number of optimization variables and constraints. Still,

the method has some drawbacks compared to the full dis-
cretization. In particular, it is difficult to use the informa-
tion on current control sequence solution in search for good
initial guess in the next step, and the solutionxu(k, x0)
may depend very sensitively on the control sequenceu(·),
in particular whenN is large (Grüne and Pannek 2011).

The advantage of the method is that it separates the
NLP solver from the solver of the dynamics. This is par-
ticularly well suited to models derived by soft-computing
techniques, because an arbitrary numeric implementation
of the model can be used. In the case of HPC, this enables
to use the above mentioned black-box models in the form
of nonlinear mappings in a straightforward way.

2.3. Software support
To assist the modeller in deriving production performance
model for the HPC, and facilitate the application of the
NMPC methods within HPC, a user-friendly software tool
is needed. Using such a support tool, the system integrator
and the production manager would have the possibility to
identify a production model based on the historical opera-
tional data of the process, and integrate it in a model-based
HPC solution.

The main purpose of the developed tool is to facil-
itate implementation of performance indicators, analyze
the main performance influences, automate the model-
development procedure and to support the manipulation
and maintenance of already existing models, as well as
their use in production optimization. As the potential users
of such a tool are non-modelling experts (e.g., production
managers), the program tends to simplify the model iden-
tification and control optimization procedures, where the
user would not need to understand a detailed identification
and control theory.

3. PROOPTER - PRODUCTION DYNAMICS ANA-
LYZER AND OPTIMIZER
ProOpter extends the functionality of classical Manufac-
turing Execution Systems (MES) with embedded intelli-
gence. It enables the analysis of production dynamics us-
ing complex analytical functions and application of ad-
vanced production control concepts that are based on em-
bedded models. The Production dynamics analyser and
optimizer represents an upgrade of classical MES systems,
and thus increases the functionality and efficiency of pro-
duction information systems.

3.1. Architecture
ProOpter enables the analysis of the production dynamics
using advanced methods like data mining, data reduction,
determination of relevant manipulated variables and pro-
duction performance indicators model identification, as de-
scribed in Section 2. The obtained models enable a short-
term prediction of production dynamics, which is the basis
for production optimization. The general architecture is
shown in Figure 3.

ProOpter is composed of several modules, where
some of them are used on-line, and others off-line. Con-
nectivity with classical MES systems is enabled by stan-
dard IT interfaces, described in the following subsections.
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Figure 3: ProOpter architecture

3.2. ProOpter workflow
ProOpter workflow is depicted in Figure 4. The main
ProOpter output is a set of manipulative variable values
that should bring the manufacturing process close to the
optimal operating mode.

The performance of the process is estimated through
a set of KPI values. The indicators are calculated from the
data acquired by the production management information
system (MES) and stored in the production database. Var-
ious data irregularities typically appear in a real produc-
tion environment, therefore the data is preprocessed and
cleaned. During ProOpter development, a particular at-
tention has been devoted to simplification of the KPI def-
inition, and a corresponding data viewer and KPI formula
editor have been implemented. When using on-line, the
performance monitoring module supports various views
with adjustable level of aggregation. Complex KPIs can
be monitored and can also be drilled down to monitor their
components.

The detemination of the most influential variables is
one of the key steps in deriving applicable performance dy-
namic model. To support this a set of standard input vari-
able selection (IVS) methods can be called from ProOpter
IVS module. A user interface has been designed, which en-
ables an aggregate representation and evaluation of results
obtained by various methods. Due to predominantly non-
linear relations within the production process the IVS anal-
ysis results are typically non-uniform, and final decision on
the set of variables that will be used in model identification
has to be performed by the modeller. The developed user
interface assist the modeller by providing graphical repre-
sentation of the variable impact in various configurations.

A separate module has been developed for model
identification support. The modeller can choose the data
segments used for model identification and model valida-
tion, and adjust various identification parameters. Two
soft computing methods are currently supported: neural-
network based identification and fuzzy model identifica-
tion.

The on-line operation of ProOpter provides the in-
sight into production performance as described above, as
well as supports the production manager in determining the
optimal production settings. The nonlinear model predic-
tive control described in Section 2 is applied here with an
important distinction comparing to the classical MPC ap-
plications on the process level: the calculated inputs are not
automatically applied to the production process, the deci-
sion on the application of the calculated manipulative val-
ues to the process is left to the production operator instead.

Some of the described ProOpter features are further
illustrated by case studies in Section 4.

3.3. Data integration and communication standards
ProOpter was designed as an add-on to existing production
management information systems. These typically consist
of ERP and MES systems on the higher levels, which are
connected to SCADA systems, PLCs and other automation
equipment on the factory floor.

One of the main requirements for such an add-
on is to support established industrial standards to be
able to connect and integrate into existing information-
communication infrastructure.

This was achieved by supporting standardized data
interchange message format, which is typically used for
communication among business planning and production
control applications. Equally important is to use standard-
ized communication messages among tool modules. This
enables simple addition or removal of the functional mod-
ules as well as their upgrade without compromising the
functionality of the rest of the system.

Therefore the following standards were considered
and used in the software tool development:

IEC/ISO 62264 (ANSI/ISA 95) standard defines models
and terminology that are used for marking informa-
tion, which has to be exchanged between business
level and production control level. The information is
structured by UML models and is a basis of produc-
tion control integration into overall business informa-
tion systems. The standard is used by IT developers
as a guideline for specifying user requirements and as
a basis of systems and databases development. The
standard can be used in any type of production: con-
tinuous, batch or discrete.

Within the ProOpter tool the standard was used for
designing internal communication messages. The
messages were designed based on XML implemen-
tation of the standard that was developed by WBF
(The Organization for Production Technology). Each
data model of the standard has an XML equiva-
lent within the B2MML (Business to Manufacturing
Markup Language), and the model structure is defined
by XML schemes (XSD).

Among the standard data models ProOpter tool uses
the model that is intended for production response re-
porting (Production Performance).

Open Math is a standard for representation of mathemat-
ical objects that has been developed by OpenMath
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Society. Two equation representations are supported,
XML and binary format. The standard is based on the
use of extendable content dictionaries, which struc-
turally document mathematical definitions and unam-
biguously define mathematical symbols. Their open-
ness enables definition of new functions and symbols.
Custom content dictionaries can be added to common
OpenMath repository and used by all interested par-
ties. The standard does not require that all of the
newly developed content dictionaries are public, but
have to be accessible to all users of the particular con-
cept.

By using OpenMath the KPIs can be described in a
standard way that is recognised by various ProOpter
modules, and can be exported to other tools.

PMML is used for transfer of identified KPI performance
models among the ProOpter modules. PMML (Pre-
dictive Model Markup Language) is a standardized
XML scheme for model representation in the area
of predictive analytics and data mining. The PMML
standard has evolved during the years and the recent
version includes a rich set of model types and is sup-
ported by large number of statistical software tools.

The use of the described standards for inter-module
communication within ProOpter is illustrated in Figure 5.
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3.4. Communication

The use of unified communication protocols within pro-
duction information system is of significant importance.
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Figure 6: ProOpter data module

Use of communication standards guarantees the long term
stability of developed applications as well as easier integra-
tion with the existing information infrastructure. In com-
pliance with IEC 62264 two standard ways of data trans-
mission are used within ProOpter:

• Pull model - data user requests the data from the data
supplier, which sends the data upon request. This is a
point-to-point communication.

• Publish model – data supplier is sending data to the
recipients that are subscribed to specific data. The
communication is carried on according to publish-
subscribe principle.

The use of MOM (Message Oriented Middleware)
systems is best suited for such an asynchronous XML mes-
sage exchange among several clients. It supports both
point-to-point and publish-subscribe communication prin-
ciples. MOM enables distributed communication among
loosely coupled clients, meaning that communicating ap-
plications do not necessarily all have to be active within
the network, nor do they all have to be aware of each other.

Within ProOpter, MOM communication was imple-
mented by JMS (Java Message Service) specification (Fig-
ure 6). Even if JMS originates from Java environment it is
general and extensible enough to be useful also for clients
that are designed within other development environments
and platforms.

4. CASE STUDIES
The performance of the tool was tested through a set of
production monitoring and control case studies of various
production types. The continuous production was covered
by a simulation benchmark, while in discrete and batch
production the tool was tested on a real production data.

4.1. Batch production
Actual batch production data were considered in connec-
tion to performance measurement and influential variable
analysis in water based paints and coatings production.
The production is a typical batch process consisting of dos-
ing and mixing stage, milling stage, production stage, and

packing stage. In between production and packing stages
the quality control is performed, where the acceptability of
product for packing is determined. In the case of negative
result, the product can be scrapped, or can go to re-work
where the quality is improved.

Performance indicators

The performance monitoring in the considered batch pro-
duction was mainly oriented toward determination of suit-
able batch parameter settings. Therefore batch related in-
dicators were of primary concern. In cooperation with pro-
duction managerial staff the following relevant indicators
were identified:

• Quality - calculated per batch as a result of laboratory
analysis. Different products have different measured
parameter sets.

• Raw materials consumption ratio - ratio of the actual
raw material consumption per work order to the nor-
mative consumption.

• Timeliness - difference between the actual finish time
and the planned finish time.

• Scrap rate - ration of the actual scrap quantity to the
planned produced quantity.

Among the chosen indicators, Quality is the most
complex and needs additional explanation. As the mea-
sured parameter sets differ among different products they
have to be normalized and aggregated to derive indicator
values that are comparable among several batches. This is
illustrated in Figure 7. For every product (or product fam-
ily) the relevant set of laboratory measured quality param-
eters is identified, and these are normalized and agregated
into a standard valued quality indicator (common estimate
in Figure 7).
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Figure 7: Aggregated KPI composition

The normalization and aggregation is supported by
ProOpter KPI definition module. Two of the normalization
screens are shown in Figures 8 and 9. For every measure-
ment, the user can chose one of the predefined normaliza-
tion types and then adjust the relevant parameters. Finally,
the normalized measurements are aggregated into a KPI.
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Figure 8: ProOpter normalization

Figure 9: Predefined normalization types

Influential variables

In the considered case of coatings production the qual-
ity indicator is most relevant for the production efficiency.
Bad quality products go either to re-work, which decreases
productivity, or go to scrap, which is a direct cost. The
analysis of influential production variables that determine
the quality level is therefore the most important. Unfor-
tunately, the analysis can not be generalized but has to be
performed for every product family due to various produc-
tion recipes.

The ProOpter tool supports the analysis by embed-
ding several standard and advanced variable selection
methods that are used in data mining: Linear Correla-
tion, Partial correlation (with forward selection approach),
PLS (variable importance in projection – PLS VIP), Non-
Negative Garrote, LASSO, DMS search (pareto search of
minimum error of linear model as objective function), and
others. The problem of variable selection is elaborated in
detail in (Glavan et al. 2013b).

The results for one of the product families are shown
in figure 10. The aggregated results of a subset of avail-
able variable selection methods are shown as a box plot.
In the given case, Max. RPMs of the mixer dominate the
batch quality, and interestingly also the temperature in the
production hall points out to be important as well.

Figure 10 points out another specific of the given pro-
duction case. As several production variables are continu-
ously sampled we typically have a range of corresponding
variable values for a batch. Most of the used variable selec-

0 0.2 0.4 0.6 0.8 1

CURRENT_mean(k−0)

timeGross(k−0)

TEMPERATURE_mean(k−0)

Temp_shop_floor 7(k−0)

RPM_max(k−0)

Figure 10: Selection of Quality indicator influental vari-
ables for a product family

tion methods require for such values to be aggregated into a
single data point when considering the variable influence to
the batch quality. For this purpose a set of standard data ag-
gregation functions are provided within the ProOpter Data
module, e.g. average, min, max.

4.2. Tennessee Eastman benchmark
The Tennessee Eastman (TE) benchmark process was in-
troduced by Downs and Vogel (1993) as a model of a
real chemical production process. The model represents
a test problem for researchers to experiment with differ-
ent control-related solutions. The process consists of five
major units: a chemical reactor, a product condenser, a
vapour–liquid separator, a product stripper and a recycle
compressor. Four reactants (A, C, D, E) and an inert com-
ponent (B) are entering the process, where four exother-
mic, irreversible reactions result in two products (G, H)
and one byproduct (F). The process products leave the pro-
cess through an output stream, and are later separated in a
downstream refining section. The production process has
41 measured variables (y) and 12 different manipulative
variables (u).

A specific combination of the production rate and/or
the product mix are usually demanded by the market or
some capacity limitations. Therefore, six typical opera-
tional modes are defined in the benchmark proposal. The
model also provides 20 different process disturbances,
which imitate the disturbances typical of real TE produc-
tion.

As the research literature provides several results on
the control of TE process by various methods, the proces
was used as a primary test bench for verifying the opera-
tion of the various ProOpter modules and validation of the
obtained results.

Production modelling

The historical data records needed for production perfor-
mance evaluation and modelling were generated by sim-
ulation. To make the problem more realistic the process
measurements have some intensionally added noise, typi-
cal for the specific measurement.

Production performance is monitored through three
KPIs: Costs, Production, and Quality. The definition of
Production KPI is quite straightforward, as the quantity of
product leaving the process is directly measured. Directly
from the process objectives an indicator for the process
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Figure 11: Modelling with ProOpter

quality is also derived, since the product quality can be
viewed as a desired mass ratio between the two final prod-
ucts, G and H. For details on the Cost KPI definition, the
reader is referred to (Downs and Vogel 1993) or (Glavan
et al. 2013a).

Next, the influential variable analysis is performed
considering available manipulative variables and the de-
fined KPIs. As described in Glavan et al. (2013b), five ma-
nipulative variables are selected, and then a neural-network
based model is identified that enables to calculate a short-
term prediction of the defined KPIs, provided chosen ma-
nipulative values are specified. The modelling is supported
by the ProOpter modelling module, shown in Figure 11.

On-line production efficiency monitoring and optimiza-
tion

The use of the derived performance models for real-time
monitoring and performance prediction is illustrated in
Figure 12. Observation variables can be chosen in the
upper part of the window, while the chosen variable his-
tory can be seen in the lower part. The right sections of
the plots indicate the estimated future KPI evolution based
on the identified performance model and the manipulative
values. A detailed investigation of the variables that con-
tribute to the performance measure as well the insight into
the manipulative values is possible by choosing thedrill-
downoption.

Additional optimization module supports the adjust-
ment of the manipulative values in a model based predic-
tive control manner. The identified performance model is
used to determine optimal manipulative variable settings,
while the user has to specify appropriate KPI targets. E.g.,
Figure 13 illustrates how Production and Quality can be
maintained at certain levels while the production Cost is
minimized.

Figure 12: Efficiency monitoring and prediction

Figure 13: Efficiency optimization

6. CONCLUSIONS

Production information systems currently used in produc-
tion companies are very efficient in data collection and data
presentation, but are quite limited in the support of deci-
sion making and production optimization. The ProOpter -
Production dynamics analyser and optimizer enables effec-
tive control of various types of manufacturing processes.
Its main advantage is in use of simplified dynamic KPI
models that are identified from historical data.

ProOpter will unburden the production manager and
help him take better decisions in order to improve the pro-
duction process. With the introduction of Production dy-
namics analyser and optimizer we can expect savings in
various segments in the production through better product
quality, increasing the efficiency, reduction of waste, and
production cost reduction.
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