WEBRTC TECHNOLOGY ASA SOLUTION FOR A WEB-BASED DISTRIBUTED
SIMULATION

Stepan Kartak®, Antonin K avicka®

@ Faculty of Electrical Engineering and Informatics, University of Pardubice
® Faculty of Electrical Engineering and Informatics, University of Pardubice

@stepan.kartak@student.upce ®antonin.kavicka@upce.cz

ABSTRACT

The modern web browser is a runtime environment
which aspires to replace original (native or desktop)
applications. This article describes a new HTML5

technology called WebRTC, which enables a direct
connection between browsers and which enables to
perform a peer-to-peer network connection, which is
suitable for the creation of a distributed simulation

model. We compare this new technology with original

web-based distributed simulation solutions -

implemented using applets — and present one of the
possible approaches to distributed simulation model
creation.

Keywords: web-based simulation, WebRTC, discrete-
event simulation, HTML5

1. INTRODUCTION

Web browsers are part of daily life today. During the
past few years, web browsers have grown enormously;
standards have been unified — especially JavaScript —
and the present-day web browser succeeds as a platform
for a wide range of applications which used to be
implemented as so-called desktop applications, which
are bound to the operation system, processor
architecture, etc. The web browser overcomes these
dependencies and represents and ideal multi-platform
runtime environment, which, together with extended
HTML5 support, represents minimum restrictions to the
deployment of applications which could only be
implemented as desktop ones in the past.

Since the second half of 2013, major web browsers
have supported WebRTC (included in HTML5), which
enables to initiate a peer-to-peer network connection
between browsers (clients), and thus to perform a
smooth distributed and decentralized simulation. It is
this type of simulation that we elaborate on.

The article also covers available competing
technologies, the technology and use of WebRTC, and
describes a practical implementation of distributed
simulation models running in the web browser.

The aim of the solution is not to compete with the
existing HLA solutions, but to present new possibilities
opened up by modern web browsers, and point out their
advantages (as well as disadvantages). This article is a
follow-up to a previous work (Kartak 2013), where a

Proceedings of the European Modeling and Simulation Symposium, 2014

web-based simulation was implemented using Java
Applets (which was the only possible solution at that
time). The article concludes with a simple comparison
of the two solutions.

2. AVAILABLE TECHNOLOGIES

The aim of a web-based simulation is to create a
browser ecosystem where the deployment of external
elements (applets, extensions, etc.) is reduced to
minimum.

Distributed compute nodes require a bi-directional
communication between individual logical processes in
the network. This purpose is best served using the peer-
to-peer architecture (figure 1).

N

Figure 1: Peer-to-peer Network Topology

2.1. HTML BeforeIntroducing HTML5

As mentioned in the previous paragraph, bi-directional
communication is necessary. In the past, it was the
absence of this functionality that did not allow for this

type of connection among devices (typically, browser-
browser or browser-server).

There were several solutions dealing with this
issue. The simplest one, exclusively at the level of
browsers, was accumulating client requests in a queue
on a server, which was accessible to all clients involved
in the communication, where the requests were waiting
for the retrieval by the original target client (browser),
see Figure 2.

This way, defacto, we pass from the peer-to-peer
communication to the client-server one. It follows that
this solution can be considered as an “emergency” one
and thus not suitable in general. The use of a server
within a distributed simulation may have its purpose;
however, it is only complemental to the planned
simulation topology. Using a server is purposeful for
on-line gathering of information regarding the system
behavior — statistics, animation output, etc.

343

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

Although it works, this solution brings several
disadvantages (the major ones are listed below):

e It requires an efficient server (a network
element which is virtually missing in the peer-
to-peer network architecture).

« As arule, it requires a low response rate of the
client connection. In this case, requests are
repeatedly sent to the server (requests repeated
after several milliseconds). Most of the
requests sent to the central server element are
useless, yet they are necessary for the required
low response rate of the whole system (in our
case, a simulation). This considerably
increases the communication traffic in the
network.

]

Figure 2: Message Queue For Clients On Server

2.2. The Use Of Applets
In the past, the only possibility to deal with the above-
mentioned issue was the use of applets. In web
browsers, it was the use of an external application (e.g.
Java code running in Java Virtual Machine) in the
context of a web page. (Byrne, Heavey and Byrne 2010)
All commonly available applets (Java Applet,
Adobe Flash Player, Microsoft Silverlight) include
features to perform the peer-to-peer connection;
however, most of them (with the exception of Adobe
Flash Player) are “process virtual machines”, which
usually have direct access to the host computer. This is
very dangerous, as applets can be loaded from any web

page, and thus allow an unauthorized user to access the

computer. These applets deal with this issue by using
so-called policy files — files which contain a security
policy definition (i.e. a definition of enabled and
disabled features or operations and network access). In
these files, it is necessary to explicitly allow client call
from a specific server/client, or more generally defined
groups of servers/clients often called “domains”. In
addition, the above-mentioned must be allowed by the
user. The communication is often blocked by a firewall
or another security feature in the target computer or in
the network.

The use of applets is easy due to the well-known
languages (typically Java and Java Applet); however, in
general it is not suitable because of a non-trivial use and
network communication safety issues.

The most applicable out of the above-mentioned
applet types is Java Applet; its safety policies enable a
smooth bi-directional client-server communication
(with the server from where the applet was loaded).
This, of course, contradicts the notion of the peer-to-

Proceedings of the European Modeling and Simulation Symposium, 2014

peer connection, and does not bring any vital benefit
when compared to the above-mentioned solution based
solely on HTML.

All these applet-based solutions had to deal with
connection safety issues (connection blocked by
firewalls, etc.) and incompatibility among browsers,
platforms, or operating systems. (Martin, Rajagopalan
and Rubin 2013)

2.3. New HTML (5) Possibilities

Together with new technologies (often called HTMLS5),
HTML allows all necessary communication in the
network:

e Download and upload data (standard browser
features even before HTML5).

» The WebSocket technology allows for
performing real bi-directional client-server
communication.

* WebRTC technology allows bi-directional
communication directly between browsers —
real peer-to-peer communication.

This solves the issues related to network
communication for the needs of distributed simulation
(see Table 1 for the overview of the availability in web
browsers). For a detailed description of HTML5
network technologies, refer to Chapter 3.

Table 1: The HTML5 Network Technology Availability
In Major Web Browsers

Web Browser WebSocket WebRTC
Chrome 14 23
Firefox 6 22

Internet Explorer 10 -
Opera 12.10 22
Safari 6 -

Available since May 2012 July 2013

HTML5 brings further useful technologies which
find their use in a web-based simulation:

Canvas. Allows for (mainly vector) 2D
drawing using JavaScript. A crucial
disadvantage of Canvas is the necessity to
always redraw the whole scene (there are some
mostly “caching” techniques to minimize the
problem to a certain degree).

e SVG: Allows for drawing (and animation)
using a declarative HTML-like approach.

3. HTML5NETWORK TECHNOLOGIES

3.1. WebSocket

WebSocket technology enables us to perform a network
connection correspoding to the standard behavior of
desktop applications, familiar to us for years. Network

sockets establish a bi-directional connection between
two applications (client 1 can contact client 2 and vice

344

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

versa). In terms of web applications, it means that a web
page (client 1) opens a connection with a server
(responding to client 2) and this connection is bi-
directional — there is no longer a queue (see Figure 2),
the server sends messages directly to the client via the
opened connection.

This solution, of course, requires a server. The
server side does not have to meet any special
requirements; it only needs to follow the WebSocket
protocol. We also have at our disposal a wide range of
ready-made open-source tools, from PHP (e.g. the
Ratchet library), via Python (e.g. the Tornado
framework) to Java (e.g. TooTallNate) or C# (the
Alchemy WebSockets library).

3.2. WebRTC

At first it is crucial to mention that the development of
this technology is still in progress. According to W3C,
WebRTC is in the “Working Draft” phase (as of
September 10, 2013, see References), and the behavior
of some features in different browsers may not be 100%
correct, or different browsers have implemented these
features in different ways. Most of these issues can be
solved using a JavaScript solution, which overcomes
the existing browser-specific differences (at present
only minor differences among browsers).

This technology crucially enhances web browser
capabilities in terms of network communication. It is
possible to perform the peer-to-peer connection without
a server (a server is only required to initiate the
connection, which is, of course, standard for peer-to-
peer communication). To solve routing issues when
communicating with a client in a local network using
NAT, WebRTC implements directly the use of the ICE
(Interactive Connectivity Establishment) protocol. More
information is provided in the following chapter 4.2.

WebRTC transfers data in two ways:

* MediaStream — used for audio and video
streaming.

« DataChannel — used for text message transfer —
it is this type that we wused for the
communication in the simulation.

DataChannel (uses the SCTP protocol for the
communication between clients; this protocol allows for
optional reliability settings). The reliable variant

4.1. Same-Origin Policy

Web browsers require following the same-origin policy.
In practice, a problem arises when JavaScript needs to
call the source — usually to download data — from a
server which is located in a different domain than the
one from where the page was loaded.

This way, browsers prevent the cross-site request
forgery (CSRF or XSRF) attack, where the local script
(loaded on a currently viewed web page) might call a
script (or data containing executable code) which is not
under the control of the application author (is located in
another domain), and thus may present a potential
threat.

We are likely to encounter this issue if we want to
incorporate a logical process (performed using a web
page) into a web-based distributed simulation, where
the simulation is located in a different domain than the
domain where e.g. the initialization server is located.

There are several solutions which can perform this
type of communication. The simplest and most
dangerous solution is an explicit disabling of the cross-
origin request blocked (CORB) in a web browser. The
best and most straightforward solution is the use of a
server script which runs in a domain from where the
web page was loaded. The web page then calls the
script with the respective request for loading the source
from another domain. On request, the script loads the
requested source and sends it to the web page.

4.2. Peer-to-peer Communication via NAT
In the peer-to-peer network architecture, a problem in
the connection between clients may arise when the
clients are located behind NAT (Network Address
Translation) routers. In this case, clients are in a local
network and communicate with a public network via
NAT routers, which serve as a public network gateway.
What causes a problem in this case is the addressing of
the client behind the NAT router, because from the
public network perspective, the client is not visible
(only the NAT router is visible), and is thus
unreachable. In this case, direct initiation of a peer-to-
peer connection is not possible.

The client connection problem can be solved using
the ICE protocol (RFC 5245, see References).

The solution requires the use of an initialization
server, which provides the connection.

The following example of the ICE protocol

ensures that the message is delivered to the addressed function has been simplified to demonstrate the scope of

clients (reliability corresponds to TCP); in the opposite
case, the delivery is not quarranteed (or, only a limited
number of callbacks is quaranteed; this type is similar to
the UDP protocol).

4, NETWORK COMMUNICATION ISSUES IN

A PUBLIC NETWORK
In this section, we elaborate on the two major and
restrictive issues which need to be considered when
communicating in the network (not only in the web
browser).

Proceedings of the European Modeling and Simulation Symposium, 2014

the problem (the performing of this connection
algorithm requires 2 computers (clients) A and B which
are, from the public network perspective, located behind
a single NAT router at maximum (not port-forwarding)
— see Figure 3):

1. Client A contacts a STUN server via port X.
STUN sends back the number of port Y, from
where it was contacted by client A. Based on
the response (the number of the
communication port of the client STUN
request and the number of the port in the

345

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

STUN server response is the samif the
client finds out that the computer is access
from the public network (has a public
address — in this casport X =Y), there is n
problem in the communicath — the client can
peform a connection and ICE protocol F
finished.

2. If the client finds outaccording to the STUI
server responsethat it is not publicly
accessible (the port numbers of the request
of the response amwot the sarm, i.e. X#Y),
client A sends the public port number Y via-
initialization server the port which the STUI
server was able to contadt) client E, with
whichit can then communica

3. Steps 1 and 2 are alperformec by client B.

4. Clients A and B initiate a connection via put
IPs and ports, which they exchanged via
initialization server.

5. If direct communication between clients A ¢
B is not possible (is blocked by the N:
router, firewall, etc.), it is the TURN serv
which can function as a mediating elem
between the two clientsThe TURN server
exchanges messages from one client
another.This does not correspond to the |-
to-peer architecture but to the cli-server-
client network topologyThe use of the TURI
sener is not an ideal solution as there is
latency and server load; however, in this ¢
it is the only solution to connect clients A &
B. This is, however, a rathexaeptional stati

STUN server STUN server
pr— - |
_"ﬂi & “ |

NLS < 323.1q :28esn jo 3u13say 40 43pJQ

NAT NAT =

| pro— - |

= - - R |
&= NAT = NAT s

TURN server

NdNL< N

= Y
Public Inicialization server

for connection

network (signaling server)

Local network Local network

Figure 3: Visualisation Of ICErotocol

From the abovenentioned algorithm it flows
that the procedure is not rividimportantly, boththe
STUN and theTURN servers are available as o-
source, and there are libraries available for the cormr
programming languages (Java, C#, C++, etc.) w
support the ICE protocolWebRTC is no exception, at
when the STUN (eventually TURNjerver address
provided, the wellbrowser itself handles the operati
without the need of human interferer Some publicly
available STUN and TURN servers also exist and
be used, making the facilitation of dire
communication a very easy operation.

Proceedings of the European Modeling and Simulation Symposium, 2014

5. WEBRTC PRACTICAL APPLICATIONS

To be used in practice, WebRTC has to meet
another requirementEach peeto-peer connection
requires aninitialization server, which serves as
“intermediary” while initiating a connection between
clients. WebRTC is no exception; in the context
WebRTC, the initialization server is called a sigha
server. In practice, the situation is morcomplex;
arother (by no means less important) role is the rol
the client, which performa connection using the SL
and ICE protocol.

Signaling server is a server via whi clients
exchange SDP (Session Description Protc
messages, where they provide the rmation about the
network connection via which they are to communis
(It follows that asignaling server is not required if t
SDP message exchange can be facilitated using ar
option). The communication via a signaling server
be facilitated uisig a wide range of optior

» The simplest solution is sending requests
server, or eventually sending the required ¢
information (see Chagr 2.1.).

« A more efficient option is the usage
WebSockets.

« A wide range of other optior

If the initialization process is successful, &
directional communication channebetween clients
(web browsers) is created, with the help of which
canexchange messages (or other data types supy
by WebRTC -especially audio and video streami

We also haveat our disposal a number of of-
source signaling servergyhich we can use anonly
deal with tke logical process modelir

6. IMPLEMENTATION

For testing and application purposes, a collectiol

programming tools and protocols wintroduced to

createa simple ecosystem with focus on reusabi

simplicity and development spe We elaborate on the
implementation in this chapt

6.1. Concept

The central idea was to create a set of (relati
general) logical processes, which can be integratec
the distributed model.The sample implementatic
concerned traffic, where logical processes represt

e Aroad,
* Aroad with a turnof
* Aroad with acrossroad:

The three logical processes canused multiple
times in a single distributed model in arbity
combinations and individual instanconfigurations of
the used logical processéekhe threelogical processes
are sufficient forthe purpose oisimulations of e.g.
trafic infrastructure of a small tow

346

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

We elaborate on a wdiased simulation, i.¢
individual logical processes were implemented as
pages programmed in JavaScriphe communicatiol
among the logical processes waerforme(using the
peer-topeer connection via the HTML5 WebR?
technology.

6.2. Used Synchronization Algorithm

To synchronize logical processes, we usec
conservative synchronizatidechnique of sendinnull
messages with a lookaheadChandy-Misra-Bryant
Distributed Discrete-Event Smulation Algorithm,
Fujimoto 2000). The algorithm was modified to
version wherenull messages are only sent on req
The lookaheacensures that the simulation calculat
proceeds forward in time -there is no risk of .
deadlock.In our logical process creation concept,
logical process lookahedd not dificult to define The
simplest method to define théokahea Ilimit is
registering the most shatitne activities which occur i
the logical process.

The algorithm can be described in the follow
way (the example of simulators SC1 and SC2, w
SC1 receives messages from SCZT = Local Virtual
Time, Calendar = the event queue).

1. SC1 has no planned activites from S

2. SC1 sends the LBTS activity of tRequest”
type, whichis labelled as a “servic; it also
sends its own SC1.LVT.

3. SC1 is waiting.

4. SC2 receiveghe LBTS event; as the LBT
actiity is labelled as a “servic, SC2 does not
queue it but executes it immediately after {
current activity has been finish

5. SC2 performs the LBTS activity: it calculal
SC2.LBTS = SC2.LVT + SC2. Lookahe

6. If SCL1.LVT>SC2.LBTS, SC1 does not acc
such LBTS answer and the sending on
SC2.LBTS answer is scheduled
SC2.Calendar to the SC1.LVT tir

7. Otherwise, thd.BTS event of the‘Response”
type with the SC2.LBTS timis sentto SC1 (it
is no longer labelled as“aervice’).

8. SC2 continues its activities.

9. SC1 queues the LBTS evemhich was sent b
SC2.

10. By this time, SC1 knows the lower limit of tl
SC2 time and can execute the planned e\
before the received LBTS mess.

6.3. Administration interface

To facilitate the administration of the distribut
models, an administration interface was created w
runs as a common web application. It allows fc
simple addition of individual logical processes and t
integration into the simulation.

Proceedings of the European Modeling and Simulation Symposium, 2014

Logické procesy [43] Example Znit Nastaveni sité

The simulation is created using the Drag & D
method in a visual editor directly in an HTML ps
(implemented using the HTML canvas) and brithe
editor a whole range dfinctions (basic features):

Figure 4:Adminisiration Example

A multiple use of individual logicaprocesses
(multiple instances of a single logical proc
type),

* An intuitive connection of logical proce
instances —logical processes have distir
input and output connection poir The
connection distinguishes various types
received entities byogical processes.

e Individual logical process instances
configurable.

» Global configuration of the whole simulation
available.

6.4. A Software Library For Logical Process

I mplementation
To simplify the development, a software library (a se
classes andunctions in JavaScript) was introduc
which allows for a simple creation of logical proces
and an implicit realization of logical proces
synchronization.

The library includes the implementation

* A simulation kerne

e An activity prototype (aclass from which
activites can be created eas

* A network connection using WebR

* A synchronization mechanism (described
Chapter 6.2).

* Animation.

All was implemented using primarily tt
CoffeeScript language, whicsubsequently compiled to
JavaScript.

CoffeeScript was used for faster and m
transparent implementatiothan a comparable Java
Script solution. Both types of source files are at 1
user’s disposal.The whole solution isopened; the
encapsulation of functions and classes has beecced
to minimum to allow for prototyping (and especic
inheritance). This does not represent a typical O
approach; howevelin its very nature JavaScript was

347

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

designed differently. Although this solution m See an an example an administration interface
potentidly be dangerous (the user can ‘“rete” the (Fig. 4 and used logical processes (I5).
code while the program is running), as a result it br
increased flexibility and a possibility exfand classes
(especially as far as inheritanég® concerne, some
parts of the solutions are dependent o

As a result, the programmer is y required to
implement activities which run on the basis of a log
process (eventually to creat@ppropriate animatio
output). The rest is ready to use without &
modifications or alterations.

Simulace: Dalnice + Pravé
7" obéerstveni

Simulace: Dalnice
obéerstveni

ice-stredovy-pr]

6.5. Logical Process Communication M ethods And =
Other Suggested Standards Ll ‘

LCONUINUE | PAUSE

If the logical process creator works with a library wh Figure 5: An Example Ofogical Processes Runninn
has been designed specifically for this purpose (se A Web Browser
previous chapter), they do not have to solve))
implementation of logical process communication As mentionedabove, logical processes can
loading of configuration files at all. freely concate_nated and allow for multiple us In the
It is of course possible to create a logical proi _context Qf testlngthe th_ree Ioglcal processes were u
quite independently of the aboweentioned softwar in a distributed simulation which con_5|sted _of 20 log
library. In this case, we have at our disposa processesAll worked smoothly and without issu
description of the communicatiometweel logical))
processesdgfacto an internal communication protoc 6.7. Comparison Of Java Applet And JavaScript
and a descriptionf configuration XML files usincan Solutions o _
XML schema. As mentioned at the beginning, tiwork is a follow-up
The communication implement very easily. to a previous solution, where logical processes \
JavaScriptimplicitly solves a correct language codi also running in the web browser, yet using Java At
of messagesnformation is transfered in the JSON a This allows us to compare the effort spent on |
format (a common means of data transfer via ;olutlons as well as thelr resu The aim (_)f this chapter
Internet actively supported by JavaScr is notto compare which of .the twcolutions, Java or
The configuration of the whole simulation JavaScript, is better (espe_ually due to the fact tha
available in two XML files (can be processed us two languages are quite different one from anothe
JavaScript): is rather to point outvhich kinds of comparison the tv

solutions inspire.

As expected, the results for the sasimulation
scenarios in both realizations were ec

A much more interesting comparison is that of
implementation of the same probl¢ Both source codes
were written by the same author; we can thus claim
the style and the algorithm solution wd be similar.
The size of thelavaScript source code (realized so
by web technologies) represents approximately 70
the size of the code idava (used in the Java Apple
Provided thatwe do not take into accouithe used
frameworks for theDOM maripulation and for the
facilitation of canvas drawing (to a certain extent, t
include the basic programming tool collection whicl
also provided by Java SDK), we realize that
JavaScript code is less than half the size of the
code.

In slighly exaggerated terms, we can claim the
program which is half the size takes half the time
create and contains half of isst Shorter code is faster
to read and understanBven from this perspectivthe
transfer from applets to web technologis worth to
consider, provided that it is feasibl And this article
demonstrates that the transcertainly is feasible.

The simulation speed was not measured, bec
in both casesthe animation was running real time,

e The logical process configuration, whi
describesspecially the possibilities to connt
with other logical processes and the requ
instance configuratiorThis file uses especial
the administration forcorresponding visug
editor behavior.

e Configuration of the whole distribute
simulation setup. Tén file contains a glob:
simulation configuration and a configuration
all logical process instances and tt
interconnection.

6.6. A Sample Solution And Testing L ogical
Processes

The whole solution was tested on 3 logical proce

representing:

* Highways with turnoffs,
e Two logical process types represent
(highway) fastfood facilities.

The logical processes are accompanied witt
animation, which provides visual information about
events within the logical process.

Proceedings of the European Modeling and Simulation Symposium, 2014 348
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

which itself decreased the speed so that the simulation
could be observed by the user. When compared to the
program itself, there was a significant time lag in the

network communication. In the end, the speed of the
code execution is not essential.

It has to be mentioned that JavaScript has
numerous implementation drawbacks (as any other
programming language, in fact); however, their
description is beyond the scope of this article.

7. SUMMARY

The article introduced the reader into a web-based
simulation and mainly into new HTML5 possibilites of
web browsers, which provide opportunities for a web-
based simulation using only a web browser, i.e. without
complemental third-party software (applets, etc.).
A web-based simulation provides the opporunity to
create logical processes within the public network
irrespective of the platform or processor architecture. A
software platform, which is typically realized as a
desktop application requiring installation, is to be
replaced by the web browser, which is today widely
available free of charge, and for almost any computer.
The creation of a web-based distributed simulation
faces only a limited number of issues (they usually
concern network traffic safety policy); as opposed to
desktop applications, the web browser brings a variety
of ready-made features (in our case, the most important
one is WebRTC), whose realization in common native
applications is not trivial.

Using the web browser as a runtime environment,
we can focus on the main aim, i.e. on the creation of
distributed simulation models running in a web browser
on any device connected to the network, from
computers via cellular phones to e.g. smart TVs. This
opens up an opportunity for a user-friendly, interactive
simulation available for anybody at any time.

REFERENCES

Fujimoto, R.M., 2000. Parallel and distribution
simulation systems. New York: Wiley.

Kuhl, F., Dahmann, J., Weatherly., R., 20@eating
Computer Smulation Systems: An Introduction to
the High Level Architecture. Upper Saddle River,
NJ: Prentice Hall.

Tropper, C., 2002Paralldl and distributed discrete
event simulation. New York: Nova Science Pub
Inc.

Bergkvist, A., Burnett, D.C., Jennings, C., Anant
Narayanan, 2013. WebRTC 1.0: Real-time
Communication Between Browsers. W3C.
Available from: http://www.w3.0rg/TR/webrtc/
[accessed date July 2014]

Rosenberg, J., 2014. Interactive Connectivity
Establishment (ICE). IETF. Available from:
http://tools.ietf.org/html/rfc5245 [accessed date
May 2014]

Martin, D., Rajagopalan, S., Rubin, A., 20Bocking
Java Applets at the Firewall. Available from:

Proceedings of the European Modeling and Simulation Symposium, 2014

http://avirubin.com/block.java.pdf [accessed date
June 2013]

Hridel, J., Kartak, S., 2013. Web-based simulation in
teaching Proceedings of The European Smulation
and Modelling Conference 2013, pp. 109-113.
September 23-25, Lancaster, UK.

Byrne, J., Heavey, C., Byrne, P.J., 2010. A review of
Web-based simulation and supporting tools.
Smulation Modelling Practice and Theory

18: 253-276

Javor, A, Fur, A, 2012. Simulation on the Web with
distributed models and intelligent agents.
Available from: http://sim.sagepub.com/

content/88/9/1080 [accessed date June 2013]
Kartak, S., 2013.The software tool for configuring

distributed simulation model using a web

simulation. Thesis. University of Pardubice.

349

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

