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ABSTRACT 
Considering multimodal optimization problem and 

potentially run times for continuous simulation systems, 
Particle Swarm Optimization (PSO) method based on 

Support Vector Machine (SVM) and Cluster Analysis 

(CA) is proposed. SVM, a global metamodel of 

simulation system, is built and PSO algorithm is used to 

search for local optimal points based on SVM. To 

determine local optimums, the population individuals of 

PSO are classified by CA. Consequently, six typical 

multimodal function optimization problems are selected 

to verify the optimization performance. 

 

Keywords: simulation system, multimodal optimization, 

SVM metamodel, cluster analysis 

 

1. INTRODUCTION 
Simulation optimization is optimization of 

performance measures based on outputs from 

simulations (Fu 2001). Optimization problems exist 
widely in aviation, aerospace, shipbuilding, information 

and other fields, which is also the main research 

direction of simulation (Fu 2002, Yang Zhang and 

Wang 2004, Kleijnen 2007, Min Ma and Yang 2007, Fu 

and Chen 2008). Therefore, simulation optimization is 

an important part of simulation theory research.  

In this paper, we consider the potentially extensive 

run times and multimodal optimization problem for 

continuous simulation system. Multiple extreme values 

usually exist in real systems, which is the same as 

simulation systems. The essence of this optimization 

problem is multimodal function optimization. In the 

field of simulation, there is little research on multimodal 

optimization problems. At present, intelligent 

optimization algorithms are applied for multimodal 

optimization problem, getting optimization solution by 

the iteration of population. However, expensive 
simulation limits simulation run times, leading the 

result that intelligent optimization algorithms can not be 

applied directly (Barton and Meckesheimer 2006, 

Barton 2009, Jin Chen and Simpson 2001). On the other 

hand, the last generation individuals are located around 

local optimums. The individuals near the same local 

optimum cannot be guaranteed to be coincident 

completely. How to determine the number of local 

optimal solutions, and obtain the corresponding values 

is also a valuable problem to study. 

Based on the two problems above, PSO 

optimization method based on SVM metamodel and CA 

is proposed. The method is applied to multimodal 
function optimization problems, which is aimed to valid 

that the method proposed in this paper can get all the 

effective local optimal solutions in different situations 

of multimodal optimization. 

 

2. RESEARCH ON THE KEY PROBLEMS 
 

The multimodal optimization problem and 

determination of the local optimal points will be 

discussed, Section 2.1 for the first one and Section 2.2 

for the second. As the evaluation of multimodal 

optimization is different from the general optimization, 

the evaluation indexes are given in Section 2.3. 

 

2.1. Multimodal Optimization Problem 
 

In view of the limitations of optimization method based 
on gradient, intelligent optimization algorithms are 

selected for multimodal optimization problem. 

Simulation optimization based on metamodel has ad-

vantages of rapid and practical. In order to avoid too 

many run times for simulation system, metamodel is 

introduced to the multimodal optimization method. In 

this paper, PSO based on SVM metamodel is proposed.  

 

2.1.1. PSO method 
In 1995, J. Kennedy and R. Eberhart proposed an 

intelligent algorithm named PSO based on the foraging 

behavior of birds, with many advantages such as clear 

meaning of parameters, small computation of iteration, 

breaking away from local optimum and so on (Cui and 

Zeng 2011). The main iterative equation is given as Eq. 

(1). From the equation, what can be seen is that the 

population individual is affected by current velocity, the 
best position of this individual in history and the best 

position of all the individuals in history. If acceleration 

C1 is increased and C2 is decreased properly, population 

individual will be stable at/near local optimal points, 

which can achieve the purpose of local optimum 

searching.  
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where, ( )ijv t denotes the j th dimensional velocity of 

individual i  in the t th generation. w  is a inertia 

constant. C1 and C2 are acceleration constants. 1 ( )jr t  

and 2 ( )jr t  are random numbers independently. ( )ijP t  is 

the best position in j th dimensional of individual i  

until the t th generation. ( )ijx t  is the j th position of 

individual i  in the t th generation. ( )gjP t  is the best 

position in j th dimensional of all population 

individuals until the t th generation. 

 

2.1.2. SVM metamodel 
SVM is based on statistical learning theory, which 

uses structure-risk-minimum criterion instead of 

empirical risk minimization criterion and transforms 

low dimensional nonlinear problem into high dimension 

linear problems. It has the advantages of simple 

mathematical formula, intuitive geometric meaning, 

good generalization ability and so on (Pasolli Melgani 

Tuia et al 2014). 

Given a training sample set:
1 1{( , ),S x y  

,( , )}l lx y , 
ix R , 

iy R , 1,2, ,i l . The 

Regression function ( )f x x b    satisfies the 

following conditions (Nello and John 2004, Mountrakis 

Im and Ogole 2011): 
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where 
*, , 1,2, ,i i i l    are slack variables.  -

insensitive function is the loss function. By introducing 

Lagrange function, using kernel function ( , )K x y  

instead of inner product ( ), ( )x y   and combined 

with the KKT condition, the regression model 

expression is as shown in Eq. (3). 
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2.2. Determination of the local optimal points 
Since the population individuals of PSO algorithm 

are stable near the local optimal points of metamodel, 

each of the local optimal points gathers many 

individuals. Fig. 1 is an example for single input single 

output system where  denotes the PSO individual and 

 denotes the relationship of input and output variable. 
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Fig. 1 PSO individuals of last generation 

 

From Fig. 1, it is easy for human to determine how 

many local optimums the curve has from the curve or 

the PSO individuals. But for computer, it need specific 

algorithm. If there are multiple input variables, the 

input/output relationship could not be shown in a figure 

and even for people it is hard to find all the local 

optimal points from dozens or even hundreds of 

individuals.  
In order to solve the problem, CA method is 

applied to cluster the individuals automatically. CA is a 

prevail method for data analysis (Yang 2005). It is 

widely applied in machine learning, data mining and 

statistics, etc. The basic process is mentioned which 

consists of 4 basic steps: 1) every sample is a cluster 

and compute similar measure; 2) the most similar two 

clusters are incorporated. 3) compute similar measure 

for new clusters and incorporate the most two clusters 

again; 4) iteration is done again and again until all the 

samples are summed up to one cluster. 

Due to the advantages of local population gathered, 

we cluster individuals according to the distance of input 

variables and get the best output value in each cluster 

considered as the local optimal points. Suppose the 

input variable of population individual 

 1 2, , ,i i i imA    , where m  is the dimension of 

input. The distance of input variable is selected to be the 

similar measure as in Eq. (4). 
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Since the population individuals are near the local 

optimum, similar measure values called linkage 

distances near the same local optimum are little and the 

opposite are very large relatively. So the number of 

clusters can be determined by linkage distances in 

hierarchical diagram. Suppose that linkage distances 

between the two clusters are 1 2, , , kd d d . We use a 

threshold seen in Eq. (5). If the linkage distance is lower 

than threshold, the linked two clusters are incorporated 

to one cluster. 
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where, 
1,2, ,
max ( )i

i k
d


 is the maximum of id  and scC  is a 

constant. 
 

2.3. Evaluation indexes of optimization results 
Four indexes are used to evaluate the ability of 

searching local optimal points (Yang 2004). As bad 

local optimums have no meaning for the decider, only 

the local optimums close to the optimization one on the 

numerical value are required to consider. The detail 

content of five indexes is as bellow: 

Definition 1: Number of Effective Peaks (NEP) 

for h : suppose that optimization algorithm gets n peak 

values, denoted by ip , 1,2, ,i n . If ip  meets 

ip p h  (in this paper h = 0.9 ), where p is the 

corresponding peak value of ip . Then, ip  is an 

effective peak for h. For ip , 1,2, ,i n , the number 

of effective peaks is NEP for h . 

Definition 2: Maximum Peak Ratio (MPR): 

suppose that the algorithm gets n peaks, denoted by ip , 

1,2, ,i n  and the corresponding peak values are 

iq , 1,2, ,i n . Then MPR is equal to 
1 1

n n

i i

i i

p q
 

  . 

Definition 3: Degree of Precision (DP): suppose 

that the algorithm gets n peaks, denoted by ip , 

1, 2, ,i n  and the corresponding testing function’s 

peak values are iq , 1,2, ,i n . Then DP is equal to 

2

1

( )
n

i i

i

q p


 . 

Definition 4: Relative Maximum Absolute Error 

(RMAE): suppose that the algorithm gets n peaks, 

denoted by ip , 1,2, ,i n  and the corresponding 

peak values are iq , 1,2, ,i n . Then RMAE 

is max ( )i i iq p q . 

 

3. PSO METHOD BASED ON SVM AND CA 
 

In this study, we focus on the ability of searching 

effective local optimums for the optimization method. 

We consider the simulation system as a black box and 

that the number of local optimums is unknown. It is 
assumed to get the maximum value while the opposite 

situation is similar. The detailed steps for the method 

are given as follows: 

(i) Sampling and Metamodeling.  
Select a proper experiment design method for 

sampling, and then build a SVM metamodel of 

simulation system. The SVM metamodel is as shown in 

Eq. (3). 

(ii) Metamodel evaluation.  

There are three common performance measures to 

evaluate metamodel: Multiple Correlation Coefficient 

(R
2
), Relative Average Absolute Error (RAAE) and 

Relative Maximum Absolute Error (RMAE). They are 

shown in Eq. (6-8). In engineering application, the main 

evaluating index, R
2
, should be more than 0.9 and the 

assistant evaluating indexes are good as small as 

possible. Under ideal condition, R
2
 equals to 1 while 

RAAE and RMAE equal to 0. If the evaluating indexes 
are satisfied, Step (iii) is executed. Otherwise, 

implement (i). 
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where iy  is the i th output value. , 1,2, ,ip i n  is the 

i th predictive value. , 1,2, ,ip i n  is the mean of 

outputs. 

 

(iii) Multimodal optimization.  

Suppose that the PSO individual 
k

iA  = 

1 2, ,...,k k k

i i im      and the predicted fitness from SVM 

metamodel ˆ kF  = 1 2
ˆ ˆ ˆ, ,...,k k k

n   
 

, where 1,2,...,k n , 

m  is the number of input variables and n  is the size of 

PSO population. The parameters of PSO algorithm is 

modified properly, making individuals could not skip 

from local optimum. After repeated iteration as in Eq. 

(1), all population individuals are stable near several 

local optimal points. 

(iv) Preliminary Screening.  
Some individuals at the last generation will be 

rejected if their fitness is too bad. The screening 

equation is shown in Eq. (9). 

 

max
ˆ ˆCi ps

        (9) 

Where ˆ
i

  is the predicted fitness of individual iA
 at 

the  th generation.   is the number of last generation. 

max
ˆ  is the maximum value of individual fitness until 

the  th generation. C ps  is a constant and its maximum 

value equals to 1. Go to step (v) directly if there is no 

need to screen. 
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(v) Cluster Analysis.  
Confirm the number and values of local optimal 

points as follows: 

1) In consideration of magnitude difference, the 

population individuals of PSO algorithm at the last 

generation are standardized as shown in Eq. (10). 

 

ij j

ij

j j

b

a b




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
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


     (10) 

Where ij

  is the j th variable of individual 
iA . ja  is 

the maximum value of the j th variable and jb  is the 

minimum one. 
 

2) Every individual k

iA  can be seen as a cluster, so 

there are n  clusters, denoted by 
1 2, ,..., nG G G .The 

distance ijs  can be given in Eq. (4) and the distance 

matrix { }ijS s . 

3) Get the minimum value from the matrix S , 

denoted by ijs . The cluster ,1 ,2 ,{ , ,..., }j j j j tG A A A    is 

incorporated into the cluster 
,1 ,2 ,{ , ,..., }i i i i rG A A A   . 

We get the new cluster 
,1 ,2 ,{ , ,..., ,i i i i rG A A A    

,1 ,2 ,, ,..., }j j j tA A A  
. Go to the step 2) until only one 

cluster exist. 

4) Hierachical diagram can be drawn and the number 

of clusters can be determined from the linkage distance. 

The clusters are denoted by 
1 2, ,..., vG G G . 

5) From the cluster 
,1 ,2 ,{ , ,..., }k k k k tG A A A   , we can 

get the corresponding fitness set 
,1 ,2

ˆ ˆ{ , ,...,k k kH F F   

,
ˆ }k tF 

. The maximum value of set 
kH  is the local 

optimal value denoted by 
,max

ˆ
kF . The corresponding 

input variable value is 
,maxkA

. Through the v  kinds of 

clusters, we can get v  local optimal values  denoted by 

1,max 2,max ,max
ˆ ˆ ˆ, ,..., vF F F  and the corresponding input 

variable values denoted by 
1,max 2,max ,max, ,..., vA A A  

. 

(vi) Verification.  

Take local optimal points 1,max 2,max ,max, ,..., vA A A  
 to 

the simulation model for achieving the actual output 

values 
1,max 2,max ,max, ,..., vF F F . 

 

4. NUMERICAL EXPERIMENTS AND 

RESULTS 
 

To analysis the performance of proposed method 

quantificationally, six well known continuous 

deterministic multimodal optimization problems are 

tested. They indicate the input-output relationship. The 

expressions are as follows: 

Example 1 (Lu Liang and Zhang 2008) 

 
6

1( ) sin (5.1π 0.5), [0 1]f x x x    

 

Example 2 (Lu Liang and Zhang 2008) 

 
24ln 2 ( 0.0667) /0.64 6

2 ( ) e sin (5.1π 0.5), [0 1]xf x x x      

 

Example 3 (Liu Wang and Wang 2004) 

 
2

3( ) ( 1)sin[(2 0.5) π 1], [ 1.5,1]f x x x x x       

 

Example 4 (Zhang and Shao 2008) 

 
2 2 2
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Example 5 (Bi and Wang 2011) 
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Example 6
 
(Zhang and Shao 2008) 

 
2

2 2 2

6 2 2
( , ) ( ) , 5.12 , 5.12

( )

a
f x y x y x y

b x y

 
      

  

 

Support Vector Machine (SVM) is chosen to be the 

metamodel of the six examples. The index values are 

shown in Table 1. The SVM index R
2
 is greater than 0.9. 

Table 1: index values of metamodels 

NO. R
2
 RAAE RMAE 

1 0.9991751 0.0283195 0.0719181 

2 0.9969014 0.0576008 0.2498982 

3 0.9996853 0.0270918 0.0481523 

4 0.9918178 0.0220666 1.0733524 

5 0.9999872 0.0033617 0.0274754 

6 0.9238889 0.1059319 2.8144157 

PSO algorithm is applied on the SVM metamodel 

where population size is 50, iteration number is 100, 

w=1, constant C1=10，C2=0.1. So the information of 

last generation individuals can be got. Cluster analysis 

is applied according to the distance of inputs. The 
Hierachical diagrams are shown as in Fig. 1. The 

threshold constant Csc=0.1, so the numbers of clusters 

are respectively 5, 5, 8, 4, 3, 5. The local optimal points 

can be obtained as in Fig. 2. 
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Fig. 1. Hierachical diagrams (a) function 1 (b) function 
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Fig. 2. Muntimodal optimization results (a) example 
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The ability index values of searching local optimal 

points are shown in Table 2. The EPN of each example 

is the same as the true number of examples, the MPR 

greater than 0.94, and the RMAE is lower than 0.08. 

 
Table 2: Evaluation index values of searching local 

optimums 

NO. 

Number 

of 

Peaks 

NEP MPR DP RMAE 

1 5 5 0.994 0.000272 0.013320 

2 5 5 0.998 0.000009 0.005434 

3 8 8 0.996 0.000038 0.084723 

4 4 4 0.988 45.509 0.031813 

5 3 3 0.995 0.00691 0.008312 

6 5 5 0.949 113112.47 0.066122 

 

We evaluate the efficiency by s , the time ratio of 

proposed method and the direct optimization, which is 

good as small as possible. As the SVM modeling time 

and the optimization time of PSO can be ignored 

compared with that of simulation system run, the 

evaluation index s  can be seen in Eq. (11). 
* *

100%
( 1)

sample

pop gen times

NN T N
s

N T N N N N


   

   

（11） 

where 
*N  is the run times of simulation system by the 

proposed method. N  is the run times of simulation 

system by the direct optimization. T  is the time of 

every simulation run. 
sampleN  is the times of sampling. 

popN  is the size of population. 
genN  is the iteration 

number. 
timesN  is the Monte Carlo times of PSO. In this 

paper, 
popN =50, 

genN =100 and 5timesN  . From the 

Table 3, the results show that the proposed method can 

largely shorten the time and increase the efficiency of 

optimization. 

Table 3: Evaluation index values for efficiency 
increased 

NO. sampleN  s  

1 101 0.40% 

2 101 0.40% 

3 251 0.99% 

4 169 0.67% 

5 441 1.76% 

6 529 2.12% 

 

5. CONCLUSION 
PSO optimization method based on SVM and CA 

is proposed for multimodal optimization problem of 

simulation systems, which consider the multimodal 

optimization problem and the potentially run times. The 

number and values of local optimal points can be 

obtained automatically by computer without too much 

human labor. Through six typical problems, it can be 

shown that for the circumstances of equal and unequal 

peaks this method can find all the effective peaks with a 

high precision and largely shorten the optimization time. 

Future work will include the applications of the method 

to simulation systems and multimodal optimization 

method to provide robust solutions for discrete-event 
simulations. 
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