
A PHYSICS SIMULATION TOOL FOR THE CONTAINER LOADING PROBLEM

António G. Ramos
(a)

, João Jacob
(b)

, Jorge Justo
(c)

 , José F. Oliveira
(d)

 , Rui Rodrigues
(e)

 , A. Miguel Gomes
(f)

(a) (b) (d) (e) (f)

 INESC-TEC and Faculty of Engineering, University of Porto
(a) (c)

 CIDEM and School of Engineering, Polytechnic of Porto

(a)

agr@isep.ipp.pt,
(b)

joajac@fe.up.pt,
(c)

jfj@isep.ipp.pt,
(d)

jfo@fe.up.pt,
(e)

 rui.rodrigues@fe.up.pt,
(f)

agomes@fe.up.pt

ABSTRACT

In the Container Loading Problem literature, the cargo

dynamic stability constraint has been evaluated by the

percentage of boxes with insufficient lateral support.

This metric has been used as a proxy for the real-world

dynamic stability constraint and has conditioned the

algorithms developed for this problem. It has the

advantage of not being expensive from a computation

perspective. However, guaranteeing that at least three

sides of a box are in contact with another box or with

the container wall does not necessarily ensure stability

during transportation. In this paper we propose a

physics simulation tool based on a physics engine that

will be used in the evaluation of the dynamic stability

constraint. We compare the results of our physics

simulation tool with the state-of-the-art simulation

engineering software Abaqus Unified FEA, and

conclude that our tool is a promising alternative.

Keywords: dynamic stability, physics engine, container

loading problem

1. INTRODUCTION

The efficient use of transportation resources is of great

relevance in the field of logistics, impacting on

operational efficiency, customer satisfaction, and

transport safety. The Container Loading Problem (CLP)

addresses the optimization of the spatial arrangement of

cargo inside containers so that the utilization of the

space is maximized. The problem belongs to the wider

combinatorial optimization class of Cutting and Packing

Problems. According to the typology for cutting and

packing problems proposed by Wäscher, Haußner, and

Schumann (2007), these can be classified according to

dimensionality, assortment of large items, assortment of

small items, assignment type and shape of small items.

In this paper we will focus on three-dimensional

rectangular placement problems. The CLP can have two

main variants: the maximization of the value of the

cargo loaded when the number of containers is not

sufficient to accommodate all the cargo, or the

minimization of the value of containers when there are

sufficient containers to accommodate all the cargo.

In order to be used in real world scenarios a

number of constraints found in practice must be

considered when addressing the problem. Cargo

stability, weight distribution, cargo positioning or cargo

orientation constraints are just some examples

(Bortfeldt and Wäscher, 2013).

Stability is considered one of the most important

CLP constrains and has received a lot of attention by a

large number of authors (Bortfeldt and Wäscher, 2013).

Existing approaches to stability can be classified in two

main groups, one that only addresses static stability and

one that addresses static and dynamic stability. Static

stability refers to the ability of each box to maintain the

loading position during loading operations, and

dynamic stability refers to the ability of each box to

maintain the loading position during transportation.

Dynamic stability is usually ensured by placing the

boxes with their sides adjacent to other boxes or the

container walls. The metric used to evaluate dynamic

stability is usually the insufficient lateral support, i.e.,

the percentage of boxes whose sides are not in contact

with other boxes or with the container walls (Bortfeldt

and Wäscher, 2013). This approach is used as a proxy

of the real-world dynamic stability constraint and has

been conditioning the algorithms developed for this

problem. However, its effectiveness as a dynamic

stability constraint can be easily dismissed. In a wall of

boxes, as illustrated in Figure 1, boxes can have 3 sides

of lateral support, but in case of acceleration along the

x-axis they would most likely fall.

The existing approaches have the benefit of being

easy to incorporate in the CLP algorithms without being

computationally expensive.

The main objective of this paper is to contribute to

narrowing the gap between the real-life dynamic

stability constraint and the CLP dynamic stability

constraint by developing a physics simulation tool to

Figure 1: Unstable patterns example

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

212

mailto:mail@uni.edu
mailto:mail@uni.edu
mailto:mail@uni.edu

emulate the interaction between boxes, and between

boxes and the container. This approach can be used to

validate new dynamic stability indicators applied to

solutions generated by CLP algorithms. The results of

the developed tool are validated against state-of-the-art

simulation engineering software and analytical results.

The remainder of the paper is organized as follows:

Section 2 is devoted to reviewing related work. In

section 3 the developed physics simulation tool is

presented. Section 4 is dedicated to present the test

conditions used to compare the two tools and to report

computational results. Finally, Section 5 draws some

conclusions from the findings and proposes future

work.

2. RELATED WORK

A physics engine is a computer software designed to

simulate various physical phenomena such as rigid body

dynamics, soft body dynamics or fluid dynamics. It

manages the forces applied to objects and the

interactions between objects by simulating Newtonian

physics (Jones, 2011; Seugling and Rolin, 2006).

According to Erleben (2002) a physics engine has two

main components, collision detection and dynamic

simulation. Each one consists of a set of four interacting

modules (see Figure 2).

Their performance is influenced by six essential

factors: the simulator paradigm, the integrator, the

object representation, the collision detection and contact

determination, the material properties and the constraint

implementation (Boeing and Bräunl, 2007). These

factors are usually developed to address a specific

application (Boeing and Bräunl, 2007).

The evaluation or validation of physics engines

was addressed by various authors. Seugling and Rolin

(2006) and Boeing and Bräunl (2007) evaluate physics

engines in a general way, without focus on a particular

application, while Hummel et al. (2012) evaluation

focused on an interactive application for on-orbit

servicing tasks. Pepper et al. (2007) focused on

determining and increasing simulation accuracy in

urban search and rescue (USAR) robot simulation. The

physics engines evaluated or validated in each paper are

presented in Table 1.

Table 1: Physics engines evaluated or validated in

literature

(S
eu

g
li

n
g
 a

n
d
 R

o
li

n
,
2

0
0

6
)

(B
o

ei
n

g
 a

n
d
 B

rä
u

n
l,

 2
0

0
7

)

(P
ep

p
er

 e
t

al
.,
 2

0
0
7

)

(H
u

m
m

el
 e

t
al

.,
 2

0
1
2

)

Open Dynamics Engine x x x

PhysX x x x

Newton Game Dynamics x x x

Tokamak x

True Axis x

Bullet Physics x x

JigLib x

Unreal Engine2.0 x

Havok Physics x

The evaluation or validation of physics engines

was carried out by performing and measuring a set of

tests. Seugling and Rolin (2006) developed nine tests

intended to evaluate three features: energy preservation,

constraint handling and collision detection. Boeing and

Bräunl (2007) tested the integrator performance, the

material properties, the constraint stability, the collision

system and the object stacking. Hummel et al. (2012)

focused on collision detection, accuracy of collision,

constraint stability and collision and friction of complex

geometric objects. Pepper et al. (2007) used a set of

tests from the National Institute of Standards and

Technology (NIST) standard test methods for USAR

robots to compare reality and virtual simulation.

From the performed benchmark tests, Seugling and

Rolin (2006) reported that Newton Game Dynamics had

the best overall results, Boeing and Bräunl (2007)

reported that Bullet Physics had a best overall

performance and Hummel et al. (2012) consider that

Newton Game Dynamics and PhysX can compete with

Bullet Physics.

3. STABLECARGO SIMULATION TOOL

With the goal of further analysing dynamic stability in

the CLP, a tool, designated StableCargo, was

developed. It consists of a simulator of the physical

behaviour of the cargo in a container when different

accelerations are applied to the container, much like

those that it sustains in real life situations. This tool is

based on the CGFLib (a library for computer graphics

based on OpenGL, http://paginas.fe.up.pt/~ruirodrig-

/pub/sw/cgflib/docs/index.html) and the Bullet physics

engine. Both these libraries were chosen as they are

cross platform and can run on most hardware. The

Bullet physics engine was chosen instead of PhysX

Figure 2: General Purpose Module design

(Erleben, 2002)

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

213

engine due to its support of OpenCL that allows

improvement in computational speed in parallel

architectures (CPU or GPU based).

The results of this tool are meant to improve the

development of spatial optimization algorithms that are

responsible for creating container layouts. This way, it

is possible to test if a given container layout is stable

under a given scenario (i.e., a given set of accelerations)

or not. Figure 3 presents the tool workflow.

The overall solution consists of three major

components, Input files, Output files and the

StableCargo Simulator itself.

3.1. The StableCargo Simulator

The StableCargo Simulator was developed in C++. It

makes use of the CGFLib, a Computer Graphics library,

for 3D rendering and GLUI, for creating a Graphics

User Interface to be accessed by the user in order to

change simulation parameters in real time.

As Figure 4 depicts, the StableCargo Simulator

tool allows for some real-time user interaction. Most

notably, it allows the user to select what pair of Layout

(“Solution”)and Acceleration (“Forces”)files are to be

used at any given time (after being ran through the

Importer Module), as well as applying forces or

accelerations in real-time. It also allows to export the

current results on demand via the “Export Results”

button (if the user is interested in only analysing the

movement of the container up to a certain moment) and

to take a screenshot of the current 3D view of the

container (“TakeScreenshots”button). The mouse can

be used to change the position and rotation of the

camera in relation to the container. This way, when the

container starts moving, the camera will keep the

container framed at the angle defined by the user. The

container is drawn using the OpenGL wireframe

drawing mode, so as to keep the interior visible at all

times. As a physical entity, the container consists of six

rigid bodies comprising a compound entity that

represents a hollow parallelogram with the dimensions

of a standard 20 feet container with a mass of 3700 Kg

and friction as specified in the configuration file. In

Bullet, friction is declared per physical entity. When

two objects are colliding, the friction force is obtained

by multiplying the friction coefficients of both objects.

This translates to a model compatible with the

Newtonian model of a friction coefficient between pairs

of objects. Parameterization of the size and mass of a

container were considered unnecessary for the scope of

this project, as the CPL problem currently under study

considers only this type of container. The Reporting

Module generates internal statistics concerning each

box and each simulation (such as the number of fallen

boxes or the maximum kinetic energy of each box), and

outputs those statistics to the respective output files and

directories.

After selecting “Start Simulation”, the application

will load the Layout and Acceleration files selected and

create each box as a single rigid body (undeformable

physical entity) with mass or density as specified by the

configuration file (config.ini), with the coordinates of

the centre of mass being at the centroid of the respective

box. As Figure 5 shows, the visual aspect of the boxes

varies, depending on the box type and orientation. Each

box type is represented by a unique box image (texture),

and the faces are numbered by dots (similar to dice) to

show the orientation of the box. This is achieved by

blending box textures and markings (dots) using an

Figure 3: StableCargo's workflow

Figure 4: The StableCargo Simulator Tool

Figure 5: Representation of a loaded Layout File

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

214

OpenGL Shading Language shader.

The final placement of the boxes is shown after

applying the chosen Acceleration File (Figure 6). Of

particular interest are the boxes highlighted by the red

circles, which have moved and fallen. This is easily

visible when directly comparing Figure 5 with 6, but

when using the tool, it is possible to see the movement

of the boxes in real time, or by checking the “black

dots”inthefaceofeachbox.

3.2. Input Files

The input files consist of the Configuration

(config.ini), Container Layout and Acceleration files.

The config.ini file details several simulation

configuration settings that must be set prior to running

the tool itself. Parameters consist in:

 [Physics Engine]

 DensityValue - represents the density of the

boxes in Kg/m
3
.

 ConstantDensity – defines whether the

DensityValue represents the density or the

mass of each box.

 SimulationStepsPerSecond – sets how often

the simulation is updated.

 [Renderer Engine]

 DrawAxis – defines if the Axes are to be drawn

by the renderer.

 TexturePack – holds the path of the texture

pack, to be used for skinning the boxes with

their respective material.

 UseRenderer – used to enable or disable the

graphical visualization. It can be disabled to

perform batch simulations, without need of

visual feedback or interaction.

 [Export Settings]

 ResultsIntervalInSeconds – Interval of time, in

seconds, for the simulator to sample the

statistics of each box.

 SavePath – where the results will be saved.

 [Simulation Settings]

 StoppingCondition – defines when the

simulation will end. Either by “timeout” (x

seconds have passed since the forces have been

applied) or by “sleeping” (no box hasmoved

or rotated significantly).

 TimeoutInSeconds – the value in seconds to be

used if timeout is the chosen stopping

condition.

 SleepingThreshold – the movement threshold

to be used in order to consider that the

simulation has ended.

 BatchSimulation – specifies if the simulation is

a batch simulation, meaning if there will be an

attempt to pair all acceleration files and layout

files in a folder. This allows for multiple

simulations to be done without human

intervention.

 BatchPath – the path of the folder containing

all acceleration and layout files.

 DropThreshold – how much (in meters) must

an object shift its position so that it can be

considered to have fallen.

 ContainerFriction – the container friction.

 GroundFriction – the ground friction.

 BoxFriction – the friction of the boxes.

The Container Layout file (Figure 7) represents a

possible loading scenario of boxes inside a container. It

consists of a text file with a one-line header, and multi-

line body. Each line of the body represents the position

of a box (through the 3D coordinates, in centimetres, of

two diagonally opposing corners) and the type of

material of that box (identifier of material).

The Acceleration file describes the accelerations

the container experiences during a period of time. Each

line specifies an initial time (in seconds), duration (in

seconds) and 3D acceleration vector in m/s
2
 (Figure 8).

3.3. Output Files

There are three output files: Solution, Abridged Solution

and Batch Summary file.

Figure 6: Final Layout after stabilization

26281964 18642852

0 0 0 80 59 106 1

80 0 0 160 59 106 1

80 0 106 160 59 212 1

Figure 7: Example of a Layout file

#Initial-Time / Duration / X / Y / Z

0 1 0 0 0

1 0.3 1 0 0

1.3 12 2 0 0

13.3 0.35 2 0 0

Figure 8: Example of an Acceleration file

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

215

Solution files, are automatically named with the

template [SOLUTION]$LayoutFile$AccelerationFile.

The Solution file consists of raw data for each box with

multiple readings per box (as specified by the

configuration file), extracted from the Bullet physics

engine. It contains the following data:

 Id – Identifier of the box. It matches the line of the

layout file in which the box was declared.

 Centre of mass position (X,Y,Z) displacement –

displays the container-relative box displacement,

e.g. , the difference between the current 3D position

and the initial position of the centre of mass, in

relation to the position of the centre of mass of the

container, in meters.

 Total Force (X,Y,Z) – details the vector of external

forces (other than collision, gravity and friction)

that might have been applied to the box, in Newton.

 Angular Velocity (X,Y,Z) – it is the 3D vector that

contains the angular velocity of the box in radians

per second.

 Linear Acceleration (X,Y,Z) – shows the current

linear acceleration the box has in relation to the

movement of the container, in m/s
2
.

 Elapsed time (s) – represents each sampling

interval time.

Resumed Solution files, are automatically named as

[SOLUTION_RESUMED]$LayoutFile$AccelerationFil

e and contain information extracted from the Solution

File data:

 Number of fallen boxes – by comparing the vertical

displacement each box suffered during the

simulation with the configuration file

DropThreshold it is possible to estimate the number

of fallen boxes.

 Centre of Mass Displacement for each box.

 Kinetic Energy of each box, in relation to the

container.

 Total Kinetic Energy – the sum of the kinetic

energies of all the boxes.

Batch Summary files, named as [BATCH-

RESUMED]$BatchDirectory are only created if the

application is set to run in batch mode. They contain:

 Layout File Name.

 Acceleration File Name.

 Number of Fallen Boxes.

 Total Kinetic Energy.

4. BENCHMARK TESTS

The purpose of our physics model is to simulate the

movement of a set of boxes inside a shipping container,

subject to a set of external forces in typical extreme

cases such as vehicle full braking, cornering or lane

changing.

As friction is a parameter we considered to be one

of the most relevant to evaluate the physics engine

performance, a set of benchmark tests involving friction

as the main parameter was performed. Numerical results

obtained using our physics simulation tool and a state-

of-the-art engineering simulation software (Abaqus

Unified FEA) were then compared with the analytical

ones, enabling an assessment of the software packages

ability in modelling the friction phenomena.

Abaqus FEA is a software suite for finite element

analysis and computer-aided engineering. This software

suite consists of five core software products:

 Abaqus/CAE, a software application used for pre-

processing and visualizing the finite element

analysis result.

 Abaqus/Standard, a general-purpose Finite-Element

analyzer that employs implicit integration scheme.

 Abaqus/Explicit, a special-purpose Finite-Element

analyzer that employs explicit integration scheme

to solve highly nonlinear systems with many

complex contacts under transient loads.

 Abaqus/CFD, a Computational Fluid Dynamics

software application.

 Abaqus/Electromagnetic, a software application

which solves advanced computational electro-

magnetic problems.

This product suite is used in academic work as

well as in industrial research projects, namely in the

aerospace and automotive industry. In the automotive

industry engineering, it can be used to analyse

sophisticated nonlinear engineering problems, such as

impact/crash events, multibody systems, full vehicle

loads and dynamic vibration.

For performing the benchmark tests with Abaqus

FEA, rigid elements were selected for the boxes as well

as for the container floor. Abaqus/Explicit was selected

to perform the analysis, with a fixed time increment

value of 0.1 ms. The possibility of contact between all

surfaces was considered. Displacement, velocity and

acceleration values for the centre of gravity of the box

were recorded during all the simulations, which made

post-processing the results quite simple.

4.1. Friction equations

Friction can be defined as the phenomenon of

resistance of a body on another which delays or

prevents relative movement between them. The force

that expresses this resistance always acts tangent to the

contact surface. Being a force between two bodies, it

naturally conforms to the principle of action/reaction.

The direction of the reaction force on a body that tends

to move in a given direction is always opposite to that

direction. In general there are two types of friction: the

fluid friction where surfaces are interleaved by a fluid

layer (e.g. an oil), and the dry friction, where the two

bodies are in direct contact.

In dry friction, if a force F acts on a block of

weight W that is at rest, it generates reaction forces

distributed along the contact surface between the two

bodies. These forces have tangential or friction

components T, and normal components N (see Figure

9).

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

216

Friction force T is independent of the surface area

of contact, but depends directly on the resultant normal

force N. The coefficient of static friction s between

two surfaces in contact is determined experimentally.

The body is considered to be in the imminence of

sliding, if condition (1) is met and in the imminence of

rolling about A, if condition (2) is met.

2

l
d

N
s

μT

 (1)

2

l
d

N
s

μT

 (2)

To test static friction, two tests are performed. The

first has the purpose of testing condition (1), i.e., the

imminence of body sliding and the latter has the

purpose of testing condition (2), i.e., the imminence of

body rolling.

4.2. Sliding Test

In order to test the sliding of a body, one box with

dimensions 25 cm × 110 cm × 55 cm was placed in a

horizontal plane. A coefficient of static friction between

the body and the plane was assigned and the force

applied to the box parallel to the plane was incremented

until the box started sliding. The acceleration in

imminence of (1) in a horizontal plane is equal to (3).

g
s

μa (3)

Figure 10 shows the values of the acceleration in

the imminence of sliding for the range of coefficients of

static friction 0.1 to 0.8. The analytically calculated

value is also represented. Both Abaqus and the

StableCargo tool provided results with a high

approximation to analytical values.

Figure 10: Measured coefficient of static friction

4.3. Body Rolling Test

To analyse the imminence of body rolling, another test

was developed. A coefficient of static friction between

the body and the plane was assigned and a force,

parallel to the plane, was applied to the centre of gravity

of the box. This force was incremented until the box

started to move. If sliding occurred, then the coefficient

of static friction was incremented and the test repeated.

When rolling of the body occurred, the coefficient of

static friction used was considered the measured

coefficient of static friction.

To guarantee that there is no sliding prior to

rolling, it can be shown that the height and length ratio

of the box must satisfy (4).

sh

l
 (4)

Figure 11 shows the values of the measured

coefficient of static friction in the imminence of rolling

for different values of the height and length ratio,

ranging from 0.2 to 0.8.

Figure 11: Measured coefficient of static friction for

rolling

Figure 9: Forces acting on a box

W

F

N T
x

y

d

h

h/2

l/2

A

CG

l

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

217

The analytical values are also represented. Results,

obtained with Abaqus and the StableCargo tool, are in

very good agreement with the analytical values.

5. CONCLUSIONS AND FUTURE WORK

Friction can be considered one of most relevant

parameters when analysing a physics engine. To

evaluate our physics simulation tool regarding its ability

to model friction, a set of benchmark tests was

performed, and the results obtained were compared with

analytical values and those obtained using the state-of-

the-art engineering simulation software Abaqus FEA.

The results obtained are in agreement with both the

analytical values and those obtained using Abaqus FEA,

offering good prospects for the use of the tool for

evaluating dynamic stability within the CLP.

Future work should concentrate on evaluating our

physics simulation tool when modelling other events,

like collision and rebound that may occur in a shipping

container subject to typical extreme situations, such as

vehicle full braking, cornering and lane changing. A set

of benchmark tests involving these phenomena should

be performed and the results compared to those

obtained experimentally and with other simulation

engineering software, like Abaqus FEA.

ACKNOWLEDGMENTS

This research was partially supported by ERDF through

the Programme COMPETE, by the Portuguese

Government through FCT (StableCargo - PTDC/SEN-

TRA/121715/2010) and by the Project BEST CASE -

SAESCTN-PIIC\&DT/1/2011 which is co-financed by

the North Portugal Regional Operational Programme

(ON.2 - O Novo Norte), under the National Strategic

Reference Framework (NSRF), through the European

Regional Development Fund (ERDF).

REFERENCES

Boeing, A., & Bräunl, T. (2007). Evaluation of real-

time physics simulation systems. In Proceedings

of the 5th international conference on Computer

graphics and interactive techniques in Australia

and Southeast Asia - GRAPHITE ’07 (Vol. 1, p.

281). New York, New York, USA: ACM Press.

doi:10.1145/1321261.1321312

Bortfeldt, A., & Wäscher, G. (2013). Constraints in

container loading – A state-of-the-art review.

European Journal of Operational Research,

229(1), 1–20. doi:10.1016/j.ejor.2012.12.006

Erleben, K. (2002). Module based design for rigid body

simulators (Vol. 1). Retrieved from

http://www.cs.umu.se/kurser/TDBD24/VT05/articl

es/ErlebenModular2002.pdf

Hummel, J., Wolff, R., & Stein, T. (2012). An

evaluation of open source physics engines for use

in virtual reality assembly simulations. Advances

in Visual …, 346–357. doi:10.1007/978-3-642-

33191-6_34

Jones, M. T. (2011). Open source physics engines

Building believable worlds with open source (pp.

1–10).

Pepper, C., Balakirsky, S., & Scrapper, C. (2007).

Robot simulation physics validation. In

Proceedings of the 2007 Workshop on

Performance Metrics for Intelligent Systems -

PerMIS ’07 (pp. 97–104). New York, New York,

USA: ACM Press. doi:10.1145/1660877.1660890

Seugling, A., & Rolin, M. (2006). Evaluation of physics

engines and implementation of a physics module in

a 3d-authoring tool. Umea University. Umea

University. Retrieved from

http://www8.cs.umu.se/education/examina/Rappor

ter/SeuglingRolin.pdf

Wäscher, G., Haußner, H., & Schumann, H. (2007). An

improved typology of cutting and packing

problems. European Journal of Operational

Research, 183(3), 1109–1130.

doi:10.1016/j.ejor.2005.12.047

AUTHORS BIOGRAPHY

António Galrão Ramos graduated in Mechanical

Engineering from the Faculty of Engineering,

University of Porto, Portugal in 1997 and the M.Sc.

degree in Logistics by the Porto Business School,

University of Porto, Portugal in 2009. He is an

Associate Professor with the Department of Mechanical

Engineering (DEM), School of Engineering,

Polytechnic of Porto (ISEP), where he has been since

2001. He worked in several multinational companies in

Project Management, Operations and Logistics

Management. He has been the Director of the

Laboratory for Manufacturing Systems (DEM/ISEP)

since 2010 and a researcher at the Institute for Systems

and Computer Engineering of Porto (INES TEC) and at

the Center for Research and Development in

Mechanical Engineering (CIDEM/ISEP). He

participated/participates in national and international

research projects.

João Jacob is an Invited Assistant Professor at the

Department of Informatics Engineering of the Faculty

of Engineering of the University of Porto and also a

PhD student focusing on Serious Games, Mobile

Computing, Augmented Reality and Location-Based

Games. Additionally he is also a researcher at INESC

TEC currently working on a project in the area of

physics simulation for the container loading problem.

Jorge Fonseca Justo is a graduate (1992) in Mechanical

Engineering, with a M.Sc. degree in Mechanical

Engineering, specialization in Structural Engineering,

and a Ph.D. degree in Mechanical Engineering from the

Faculty of Engineering, University of Porto. He is an

Associate Professor with the Department of Mechanical

Engineering, School of Engineering, Polytechnic of

Porto (ISEP), where he has developed his activity since

1994. He has worked in several industrial projects in the

Institute of Mechanical Engineering and Industrial

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

218

Management (INEGI) in the areas of structural

simulation and machine projects. He is a researcher as

well as a member of the managing board at the Centre

for Research and Development in Mechanical

Engineering (CIDEM). He has guided severalmaster’s

theses, and has been involved in several research

projects, both national and international, involving

several companies, which resulted in several

publications/communications and a patent.

José Fernando Oliveira is Full Professor at the

Department of Industrial Engineering and Management

of the Faculty of Engineering of the University of Porto

and collaborates with the Business School of the

University of Porto. His primary research interests are

decision and optimization problems, in particular

problems related to the efficient use of raw-materials

and other resources (cutting and packing problems) and

to decision support systems in industry and services. He

regularly publishes the results of his research in the

main operations research and management science

international scientific journals and keeps a constant

activity in consultancy with public and private

companies with dozens of successful projects

completed. During his more than 25 years long

academic career he has mainly taught courses on

Statistics, Operations Research and Operations

Management and Logistics. He has served as Dean of

Studies of The Faculty of Engineering, as main editor of

the Portuguese Operational Research scientific journal

and is now Vice-President of the Association of

European Operational Research Societies. He is

member of the General Council of the University of

Porto.

Rui Rodrigues graduated in Systems and Informatics

Engineering at Minho University in 1998. During his

PhD he researched in the area of 3D reconstruction

from Images divided between Philips Research,

Eindhoven, and Minho University, until he concluded in

2006. He worked in the industry in the field of

interactive systems, until he joined FEUP in 2009,

where he works currently as Assistant Professor,

teaching and researching in the areas of Computer

Graphics, Interaction and Gaming. He is also a

collaborating researcher at INESC TEC/INESC Porto.

António Miguel Gomes is an Assistant Professor at the

Department of Industrial Engineering and Management

of the Faculty of Engineering of the University of Porto

and researcher at INESC-TEC. His main research areas

are Cutting and Packing and Computational Geometry.

Currently he is one of the ESICUP (EURO Special

Interest Group on Cutting and Packing) coordinators.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

219

