
EVENT-ORIENTED CONTROL FUNCTIONS

FOR ENHANCING DEVELVOPMENT PROCESS OF WAR-GAME SIMULATORS

Se Jung Kwon(a), Changbeom Choi(b), Tag Gon Kim(c)

Dept. of Electrical Engineering, KAIST

Daejeon, KOREA

(a)sjkwon@smslab.kaist.ac.kr, (b)cbchoi@kaist.ac.kr, (c)tkim@ee.kaist.ac.kr

ABSTRACT

The development processes of discrete event simulation

software may not be straightforward. The processes can

be interrupted repeatedly by modified requirements.

This paper proposes an approach for making the

iterative processes efficient. In order to keep the

development cost low, we seeks to avoid modifying the

simulation model inside as much as possible. Instead,

our proposed work enables the same simulators to

generate the other execution results adding additional

information. This approach can be enabled with the

Event-based Simulation concept and the Event-oriented

Control Functions that are mapped to concerned events.

The simulation engine can handle the input/output level

data by accessing events. In this way, users can control

their simulation simply by describing the functions

mapped to events, instead of modifying simulation

models. This paper also includes case studies to support

contributions, assuming that a war-game model has

been developing.

Keywords: discrete event systems modeling and

simulation, event-based simulation control, DEVS

formalism, war-game simulator development

1. INTRODUCTION

A software development process (or life cycle) means a

structure that is imposed on the development of a

software product. Many studies and applications in the

Software Engineering community have been published

for efficient development and maintenance. Similarly,

the development processes can be applied for discrete

event simulation software, as well.

Among the discrete event simulators, the S/W

development processes of the war-game simulators have

unusual features in contrast to other simulators.

Generally, it is hard for developers to understand the

model behavior of military domains. Hence, the

stakeholders should suggest the objectives of their

ordered simulator and behaviors of real military systems.

Stakeholders may be fully able to suggest what to do.

However, not only do they propose ambiguous

suggestions based on the real systems’ behaviors but

they also realize the need to change the requirements

based on the results of simulators or other

miscellaneous reasons

According to an exploration or alteration of

requirements, simulation models must be redeveloped

during the development process. The repetitions of

model modification and redevelopment cause an

increase in the development time and cost. Assuming

that the iterative developments and changing

requirements are inevitable, this paper attempts to

enhance the iterative processes by reducing the cost of

developments.

Figure 1: Compositions of Simulation Software

Assuming that the simulation model consists of an

Experimental Frame (EF) and a target model, as

depicted in Figure 1, an experimental frame generates

scenarios for testing or analysis. As the requirements

change, developers will try to modify the experimental

frame at first and try to make it generate modified

scenarios for proper results. However, in most cases, a

specific experimental frame cannot deal with new

scenarios, even though it would be a better modification

approach due to the simplicity. To apply the new

requirements right, the inside of target model should be

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

184

mailto:sjkwon@smslab.kaist.ac.kr
mailto:cbchoi@kaist.ac.kr
mailto:tkim@ee.kaist.ac.kr

modified. The modification of the whole models has

perfect modifiability, but it causes higher development

costs as depicted in Figure 2.

Hence, a key point of this paper is a model

development method that has higher modifiability than

modification of EF and lower development cost than

modification of whole models, like the grey area of the

Figure 2. By applying the approach to the existing

iterative processes, the cost reduction of the

development process can be achieved.

Figure 2: Existing Modification Approaches

Figure 3: Distinction between Existing Approach and

Our Approach as the Requirements Change

Figure 3 describes an approach of this paper,

which does not modify the model inside as much as

possible. Instead, our approach enables the same

simulators to generate the other execution results,

according to new requirements. In other words, our

approach does not modify syntaxes of models, but it

modifies semantics of simulation. This can be possible

with described additional information, instead of

modification.

For the application of the additional information to

the simulation model, this paper adopts an event-based

simulation concept, which is a basic execution method

for discrete event simulations (Cota and Sargent 1992,

Zeigler et al. 2000). An event, as a simulation unit of

event-based simulation, is listed on an event list and

executed in order to affect state transitions of a model.

Although the objective models of the simple event-

based simulation are event-oriented functions and

global states, other object-oriented discrete event

models can also be executed with additional interpreter

algorithms. Each executed model generates time events

and data events for the progression of their simulation.

Time events schedule their next execution when the

model should be executed, and data events are

transmitted to other models with data (messages). The

simulation engine cannot access the inside of object-

oriented models (e.g. state variables). By accessing the

generated events from models, the simulation engine

can handle the input/output (I/O) level data. Although

object-oriented reusable models can also reduce the

development cost (Kim 1996), our approach concerns

the I/O level data, not the model inside.

To handle the I/O level data, we define an Event

Control Model (ECM), which consists of global states

and Event-oriented Control Functions that are mapped

to events. When some models should present different

behaviors at the run-time, the same models with

additional functions are executed through the event-

based simulation engine. When the events are scheduled

on the event list at the run-time, the mapped events are

passed through the related control functions. For

example, the variables of data events can be modulated

by the mapped functions, and the behaviors of the

models become different without modifying the model

inside.

It is true that the model inside has to be modified at

one time or another as the requirement is changed

repeatedly. Nevertheless, there exist enough empirical

evidences that a simulator shows the other behavior

with the additional ECM without any modification of

the model itself. They can be shown in Chapter 3.2 and

Chapter 4.

The contents on which this paper focuses are

mainly related to the modulation of variables in data

events. By utilizing the events modulation and reducing

development costs, these control approaches can make

rapid prototyping (Martin 1990) more valuable against

the sudden (or planned) changes of scenarios. In

particular, the ECM amplifies some development

strategies including successive prototyping like the

Sawtooth model (Rowen 1990).

The target of this paper is a Discrete EVent systems

Specification (DEVS) model (Zeigler et al. 2000),

which is one of the most frequently utilized system

specifications to model discrete event systems in the

real world. Since the event-based simulation algorithm

is not limited to DEVS and can be applied to other

discrete event simulations by designing proper

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

185

interpreter algorithms, this paper can also be extended

to other discrete event simulations.

This paper is organized as follows: Section 2

presents the event-based simulation concept. Section 3

explains our proposed work, which contains the

specifications for the event-oriented control function

and its applications, and Section 4 illustrates case

studies for the development process of war-game

simulators. Finally, Section 5 concludes the paper.

2. EVENT-BASED SIMULATION

Event-based simulation is one of the most efficient and

basic discrete event simulation strategies because of its

simplicity. Event-based simulation works by

prescheduling all events in an event list (Zeigler et al.

2000). In this view, Discrete Event Systems (DES) can

be specified to the event-oriented functions mapped to

events (or state transitions), which are as units in

contrast with the object-oriented concepts. The event-

oriented models consist of functions mapped to events

and global variables modified by functions. The

simulation engine executes a function mapped to an

event by extracting it from the event list, and the

executed functions insert newly generated events to the

event list for scheduling. Since the event-oriented

models, which are not passive models, have scheduling

parts for events in contrast to object-oriented models,

the event-oriented models are not separated from the

execution algorithm. On the contrary, object-oriented

models, e.g., DEVS models, are passive models and

should be separated from the simulation engine. The

following algorithm describes the event-based

simulation concept.

Tglobal // current simulation time

EventList

// List of sorted event(time, target-function)

Simulation_Run()

while (Event-List is not empty)

 first = top of EventList

 delete the top of EventList

 Tglobal = first.time

 execute first.mapped-function

 End while

Schedule_New_Event(time, target-function)

// called by functions mapped to events

 create an event with the pair(time, target-function)

 insert the event to Event-List

Algorithm 1: Simple Algorithm of Event Scheduling

Due to characteristics of object-oriented modeling

theory, the models need interpreter algorithms in order

to be executed by event-based simulation algorithm as

depicted in Figure 4. For example, the execution of

DEVS models with event-based simulation can be

performed with a pre-process algorithm for flattening

the hierarchical structure and a mediation algorithm

between different interfaces (Kwon and Kim 2012)

because the DEVS models are structured hierarchically

and systematically. Although the interpretation causes a

little degradation of simulation performance, executing

the object-oriented models by the event-based

simulation engine may cause improved speed-up.

Figure 4: Event-based Simulation

3. EVENT-ORIENTED CONTROL FUNCTION

AND ITS APPLICATION

This chapter describes the specifications of Event

Control Model (ECM), including the Event-oriented

Control Function. Its simulation and its applications are

also covered.

3.1. Event Control Model with Event-oriented

Control Functions

Figure 5: Accessible Points of ECM

The events, occurring state transitions, are listed on the

event list of event-based simulation engine as

mentioned above. The variables of events inside are

public and accessible by the simulation engine as

depicted in Figure 5. There are two types of state

transitions, time events (Etime) and data events (Edata).

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

186

When the event occurs, the concerned event-oriented

functions try to interfere with the occurred events inside.

We define Event Control Model (ECM) for the

event-oriented control. The specifications of ECM are

the following:

- Ev = {Etime, Edata} is a set of events.

- Etime = <T, tN>

 T is a target function (model).

 tN is a next scheduled time.

- Edata = <T, tN, {Vi}>

T is a target function (model).

 tN is a next scheduled time (Usually zero).

 {Vi} are variables.

- ECM = <{fi}, S, SELECT>

 fi is an event-oriented control function.

: Ev × S → {Ev U Ø } × S

S is set of global states.

SELECT is a tie-breaking selection function.

: 2{𝑓𝑖}- Ø → fi

The definitions of two events are a little different.

A time event consists of a target model (a source model

itself) and a next scheduled time. A data event consists

of a target model (a destination model), a next

scheduled time and variables. Though the next

scheduled time of data events is usually zero, the user

can handle the value to affect a time delay to the

execution of events for the advance control.

The key point of ECM is the Event-oriented

Control Function, fi. A control function generates a

modified event from a generated event of a model, or it

can eliminate the event with a certain condition. For the

cases that control functions need to store information,

the global states are included in the specifications of

ECM. The select function exists for resolving the

priority problem because two or more functions,

mapped to a same event, can be in conflict. The idea of

the specifications is borrowed from the event-oriented

models and DEVS formalism.

Schedule_New_Event(time, target-function(T))

// called by functions mapped to events

 create an event(Ev) with the pair(time, T)

 for each mapped control functions fk

 Ev = ECM.fk(Ev)

 insert Ev to Event-List

Algorithm 2: Modified Algorithm for ECM

The algorithm 2 for executing the ECM is quite

simple and has just two lines of added codes compared

with the original Schedule_New_Event function in

Algorithm 1. Before the generated events are inserted

into the event list, the simulation engine calls the proper

functions of the ECM.

Figure 6 shows the simulation environment of

proposed work. The target model can be decomposed to

events manually or automatically. Users can select

proper events according to the control objectives, and

designs the control functions and states. The

implemented ECM from the design is executed with the

original target model, and it interferes in the event

scheduling. The algorithm 2 is embedded in the

interpreter algorithm in the event-based simulation

engine.

Figure 6: Design Process of the ECM and Proposed

Simulation Environment

3.2. Applications

A primary usage is modifying variables of messages.

Even if the model inside or state variables are unknown

or fixed, the variables of I/O messages should be

opened to the simulation engine. By describing event-

oriented control functions, users can modulate the

variables inside events. In the military domain, to

simulate the real operations of equipment in detail, the

model behavior usually includes the random variables

due to the existence of errors of real operations. Though

a certain model parameter was classified as non-prime

value and became fixed value in the early stage of

development, the value can be changed to the

randomized value with a simple control function, which

generates a modulated event with a random variable

from an original event.

The simplest example is found in a Single Server

Queuing Server model (known as a GBP model). A

control function with a probability function can

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

187

modulate the processing time of a job from the

Generator (G). This type of usages can be applied to

various situations, e.g., fault injections to messages,

adding probability functions, and so on. One of the

detailed examples is described in Chapter 4.1.

If a simulation model consists of many

homogenous events that have to be modulated, the

ECM can be applied to not only an event, but also

events in a lump. The representative applications of

such cases involve the environment variables. The

entities, including combat entities of the battlefield, are

influenced by environment variables, e.g. natural

environment (ex. temperature, humid, wind, etc.) or a

certain global effect to the simulation area (ex.

communication noises). Instead of an environment

model and I/O coupling for environment variables, just

a few event functions can simulate the environmental

effects. It is simpler than ECM to model environmental

characteristics by using global variables. However, if

the initial model does not cover the environment

variables the first time, the ECM can be much better

solutions for adding the variables to the whole or most

of the models.

Extending the usages mentioned above, users

could reduce the developing costs of new. As the

requirements are changing, an unplanned model may

need to be newly developed. Perhaps users have no

confidence that the model needs to be developed or not.

In this case, it can be efficient that they check the results

in advance by describing an ECM. It may be no matter

that the target model has to save some information into

state variables because the proposed ECM has global

variables for states. The detailed example is described

in Chapter 4.2.

Applying to the development processes, there are

mainly two cases using the ECM. One is rapid

prototyping for the refinement of ambiguous

requirements in the beginning of development. While

the prototyping for the software mainly handles

requirements for GUI or representation, the prototyping

for simulators mainly handles the behaviors of target

models. After developers have made the initial model at

the early stage, they make several temporal prototypes

using ECM quickly and provide them to the

stakeholders for acquiring their opinion iteratively. The

iterative process can reduce ambiguity of requirement,

and the proposed ECM may reduce the cost of iteration.

The other is the unexpected modification of

requirements during the development. Similar to the

above case, developers can explore whether the

modified requirement is feasible or not as preceding

researches. The difference is that the ECM in this case

may not be discarded and can be succeeded as

continuing the development process.

4. CASE STUDY

This chapter will show the applied examples of ECM

during development of a war game, which had been

developed for the Korean military actually (Seo et al.

2011). The brief scenario is illustrated in Figure 7. This

war-game simulation model is developed for analysis

and acquisition of underwater warfare. There are four

types of combat entities: a submarine, a surface ship,

decoys, and a torpedo. The attacking platform is a

submarine, and the target platform is a surface ship. The

surface ship launches the decoys as counter measures

according to stored strategies against the torpedo’s

possible paths. While the torpedo traces decoys, the

surface ship can evade the opponents.

Figure 7: Brief Scenario

(Kwon et al. 2011, Seo et al. 2011)

The objective of this simulation model is to

evaluate the counter-measure tactics against the torpedo

system. From the results, we can determine how various

factors, such as tactics and the performance of

underwater weapons, influence the effectiveness of the

system. Experimental results can support assessment of

anti-torpedo countermeasure effectiveness.

We assume two cases of requirement changing

during development process of the simulation model.

One is a simple changing of a model parameter. The

other is that stakeholders demand development of a new

model for an added entity.

Since the original model was based on DEVS

formalism, a little knowledge is needed to understand

the example, e.g., the hierarchical structure of DEVS

models (Coupled models and Atomic models). The

simulation engine for the war-game model is E-

DEVSim++ (Kwon and Kim 2012), which was

implemented for executing DEVSim++ (Kim et al.

2011) models with event-based simulation. The E-

DEVSim++ has been extended for this proposed work.

The extended E-DEVSim++ provides mapping API

between events and event functions. Users can add

event-oriented control functions to mapped events with

the original models. The functions should take an object

point of an event as function parameters and return

whether the event is eliminated or not. Otherwise, there

is no limitation of implementation for states of ECM.

4.1. Example 1: Modulating Model Parameters

The target parameter cited in this chapter is the angle of

fire in an attack command, which is generated by the C2

(Command and Control) model of submarines and

transmitted to the torpedo model as a message. We

assume that the angle of fire was a fixed value in the

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

188

initial model structure, as depicted in Figure 8.(a), and

should become randomized with a certain probability

function for representing the real error of equipment.

Figure 8: Modulating the angle of fire

Without modifying the submarine model, adding a

control model can handle the angle variable such as the

below function. The data event, Fire, has a variable for

the angle of fire, named as ‘Angle’. The control

function reads out the value from the Fire event and

stores the randomized value with the exponential

distribution function to the inputted event. The control

function is embedded in a C++ class for ECM without

any states. It is only the user’s job that they register the

class to the simulation engine (E-DEVSim++) without

any modification of simulation model.

bool angleControlFunction(CEvent *ev){

double v

 = genExponential(ev->GetValue(“Angle”));

 ev->SetValue(“Angle”, v);

}

4.2. Example 2: Substitution of a new model

development

This example is about the extension of the anti-torpedo

simulation model by adding a jammer model, which

generates air bubbles or noise to prevent the sonar of

torpedoes from detecting our forces. Since the original

simulation model included only decoy systems as

counter measures against a torpedo, there was actually a

demand for additional counter measures of the surface-

ship model (Kwon et al. 2011).

Many instances represent the behavior of the

jammer from the initial structure of the simulation

model, as depicted in Figure 9.(a) and (b). One of them

is that the jammer model is placed for interfering with

the position messages between the torpedo model and

the radar model of the ship. The other is that radar

model gathers the position of the torpedo and the

jammer for deciding whether the position information is

eliminated or not. The structure of the actual model was

developed like the latter. A launched jammer generates

its position and sends the message to the radar model.

By calculating the distance between two positions, the

simulation model decides the success of jamming noise.

Figure 9: Interfering the position messages

Applying the ECM to this case, the model structure

becomes like Figure 9.(c). The event function is

attached to the position message, and it decides the

elimination of position information instead of the

jammer model. Accordingly, users do not have to add a

new model or modify the model inside for the extension

of simulation model. From the model’s pre-

development stage, users and stakeholders can know

whether their changed requirements are feasible or not.

If the model with ECM is enough to be passed for the

next step (deployment or analysis), the ECM will be

kept. If not, developers may hold the ECM models and

redevelop them from the original models. In this time,

the model with ECM can be used for testing of the

developed model.

Location *POS; // x, y, z;

double operatedTime = 0.0;

double lifeTime = 100.0; // Life time of jammer;

int State; // O: OFF, 1: ON, 2: END

double jamRange; // Operating range

// attached to the fire-order messages of decoys

bool jammerON(CEvent *ev){

State = 1;

operatedTime = ev->GetTime();

POS = (*Location)ev->GetValue("POS");

}

// Attached to the POS messages from the ship

bool jammerControlFunction(CEvent *ev){

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

189

if(State == 1){

if(ev->GetTime() - operatedTime > lifeTime){

State = 2; // The life time is over.

return true;

}

 }

if(GetDist(ev->GetValue("POS"),POS) < jamRange)

return false; // The event should be eliminated.

return true;

}

The actual implemented C++ codes for substituting

the jammer model are shown above. To substitute the

jammer model, two control functions are needed. The

first function substitutes for launching the jammer by

attached to the fire-order messages of decoys, which

will be operated at the same time with the jammer.

When the ship launches the jammer model, the jammer

function reads out the operation time and location

information by interfering with the data events. At this

time, the ‘State’ is changed from zero to one. The

second function is attached to the POS messages from

the ship model to the torpedo model. The function will

be operating against all the position messages from the

ship model, but it does not operate until the ‘State’ is

changed. When the ‘State’ is changed and is not two,

the jammer control function decides whether the

location information is eliminated or not by calculating

the distance between the jammer and the ship. When the

control functions return ‘false’, the simulation engine

knows that the events should be eliminated and throws

out the events.

5. CONCLUSION

This paper proposes an event-oriented specification for

simulation control, Event Control Model, enabled by the

event-based simulation. Specifically, it can help the

development of war-game simulators. The two case

studies in Chapter 4 show how that can be possible. The

characteristics of war-game simulators have been

mentioned as the motivation of this paper. Nonetheless,

this paper is not limited to the military domain and it

can be extended to the similar domains that have much

exclusive knowledge.

Against the ambiguous requirements or the

changed requirements of the similar domains, the ECM

can interfere with the events that are listed in the

simulation engine. The ECM can be applied to various

cases, e.g. applying environment variables to a mass of

events or a substitution of new models. The applications,

which can have event-oriented functions without

modifying the model inside, can make various iterative

development processes efficient.

It is true that many further studies are needed. We

have not proposed a methodology or a full development

process using ECM yet. An extended paper about those

advanced contents will be published in the near future.

The extended methodology should include the criteria

for deciding whether the ECM is applicable or not for

various cases. The usages of ECM are also extended to

various cases, e.g., events generations, events deletions,

logging/proving, and so on. It can be shown with more

various case studies that are not limited to the war-game

simulators.

ACKNOWLEDGMENTS

This work was supported by Defense Acquisition

Program Administration and Agency for Defense

Development under the contract UD140022PD, Korea.

REFERENCES

Cota, B.A., Sargent, R.G., 1992. A Modification of the

Process Interaction World View. ACM

Transactions on Modeling and Computer

Simulation, 2(2), 109-129.

Kim, T.G., Ahn, M.S., 1996. Reusable Simulation

Models in an Object-Oriented Framework. In:

Zobrist, G.W., Leonard, J.V., eds. Object-Oriented

Simulation: Reusability, Adaptability and

Maintainability, USA: IEEE Press.

Kim, T.G., et al., 2011. DEVSim++ Toolset for Defense

Modeling and Simulation and Interoperation. The

Journal of Defense Modeling and Simulation, 8(3),

129-142.

Kwon, S.J., et al., 2011. Effectiveness Analysis of Anti-

torpedo Warfare Simulation for Evaluating Mix

Strategies of Decoys and Jammers. Proceedings of

AsiaSim '2011. Seoul (Korea).

Kwon, S.J., Kim, T.G., 2012. Design and

Implementation of Event-based DEVS Execution

Environment for Faster Execution of Iterative

Simulation. Proceedings of Spring Simulation

Multiconference, Symposium on Theory of

Modeling and Simulation (TMS'12). March 26-29,

Orlando (Florida, USA).

Martin, J., 1990. RAD, Rapid Application Development.

USA: MacMillan Publishing Company.

Rowen, R.B., 1990. Software Project Management

under Incomplete and Ambiguous Specifications.

IEEE Transactions on Engineering Management,

37(1), 10-21.

Seo, K.M., et al., 2011. Measurement of Effectiveness

for an Anti-torpedo Combat System Using a

Discrete Event Systems Specification-based

Underwater Warfare Simulator. The Journal of

Defense Modeling and Simulation: Applications,

Methodology, Technology, 8 (3), 157-171.

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of

Modeling and Simulation. 2nd ed. USA: Academic

Press.

AUTHORS BIOGRAPHY

Se Jung Kwon received his B.S. in Dept. of Computer

Science of KAIST in 2009 and M.S. in Department of

Electrical Engineering of KAIST in 2011. He is

currently a Ph.D. student in the Department of Electrical

Engineering at the KAIST. His research interests

include simulation algorithms for DES, DEVS

execution environments, and hybrid systems M&S.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

190

http://smslab.kaist.ac.kr/paper/CF/CF-109.pdf
http://smslab.kaist.ac.kr/paper/CF/CF-109.pdf
http://smslab.kaist.ac.kr/paper/CF/CF-109.pdf

