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ABSTRACT 
We here propose an empirical approach based on the 
analysis of next-generation sequencing (NGS) data for 
describing the number of distinct clones of B and T-cell 
receptors in the human immune system. The status of a 
human immune system is (amongst other features) 
defined by the diversity of these receptor cells. It is a 
well-known issue that NGS data have a higher error 
rate, and therefore the number of distinct sequences 
found in sequencing data rises with the number of 
sequences measured by second generation sequencers. 
We here present a modeling approach that formulates 
the number of distinct clones depending on the number 
of read sequences considering two effects. On the one 
hand there is a true number of distinct sequences which 
is asymptotically reached by increasing the number of 
reads, on the other hand the number of randomly found 
sequences rises linearly due to read errors. The 
parameters for this combined model are identified using 
parameter optimization methods using evolution 
strategies. This modeling approach is evaluated on the 
basis of immune status data of several human patients. 
Additionally, the results are compared to those 
produced by machine learning methods. 
 
Keywords: B and T cell diversity analysis, model 
identification, parameter identification, immune system, 
data mining 

 
1. INTRODUCTION: THE HUMAN IMMUNE 

SYSTEM 
 

The analysis and understanding of the behavior of 
the human immune system and its key players is one of 
the most interesting and growing research fields in 
immunogenetics and medicine. The major cellular 
components of the adaptive immune response are the B 
and T cells. These cell types are a subgroup of the white 
blood cells and are responsible for recognizing foreign 

antigens and for the immune response to destruct 
specific pathogens. B cells have the ability to build 
antibodies which abrogate foreign cells. Surface 
membrane–bounded antibodies act as B cell receptors 
on B cells. Similar to the B cells, the T cells play a 
central role in cell-mediated immunity and can be 
separated by the T cell receptor, a protein complex 
which is essential for the recognition of foreign antigens 
(Elgert, 2009). The function of T cells is to assist other 
white blood cells in immunologic processes and manage 
immunological tolerance and memory function. 
However, T cells are also able to destroy directly virally 
infected cells and tumor cell.  

Modern DNA sequencing systems are referred to 
as next-generation sequencing (NGS) (Benichou et al., 
2012 and Liu et al., 2012). NGS is a method to 
determine the nucleotide sequence by high-throughput 
and parallel processing of material, which leads to 
decreased run times as well as to massively increased 
amounts of data produced (Tucker et al., 2009). The B 
and T cell receptor sequence data are measured using 
next-generation sequencing technologies. Generated 
sequences are further pre-processed and provide the 
basis for modeling the diversity of B and T cells in the 
human immune system to gain more insights into the 
cell input and into the error rate using these 
technologies. 

 
2. MATHEMATICAL MODELING OF THE 

CLONOTYPE DIVERSITY 
 
The research goal of the project presented here is the 
mathematical modeling of the diversity of B and T cell 
receptor data. The diversity of B and T cell receptors 
data provides information about the state of health in 
humans and supplies detailed insight into the specific 
existing immune response. This additional know-how 
helps, e.g., in the diagnostic of autoimmune diseases as 
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well as in transplantation monitoring, and in the 
treatment of various infections (Boyd et al., 2009).  
We perform a modeling approach using data mining and 
machine learning to identify the relationship to describe 
the shape and progress of the diversity. So created 
models shall help to estimate the error rate of the NGS 
machine and solve additionally biological questions 
regarding sample preparation and behavior of the NGS 
technology.  
 
2.1 Biological Data 
 

As first step samples are pre-processed and 
sequenced using high-throughput NGS technology. B 
and T cell receptor sequences are further processed 
using the ImMunoGeneTics (IMGT) system (Alamyar, 
2013). The output data derived from the IMGT system 
are used as input for our diversity analyses (see Figure 
1). We are interested in the total number of sequences 
that are sequenced and the distinct number of 
clonotypes, where a clonotype represents a unique 
amino acid sequence.  
 

 
Figure 1: Data sample pre-processing using NGS technology 
and the IMGT database.  
 
2.2 Diversity Analysis 
 

The diversity analysis plays an important role in the 
analysis of the human immune system. A mathematical 
analysis of the diversity of immune cells is of high 
importance due to two reasons: (1) there is a true 
number of distinct sequences which can be reached by 
increasing the number of reads (strings of bases), and 
(2) the number of randomly found sequences rises 
linearly due to read errors of the sequencers. 

Modelling of the diversity for a biological sample 
can be constructed by randomly choosing n amino acid 
sequences from the sample and determining the number 
of distinct sequences, also known as distinct clonotypes 
of B and/or T cells found in these n sequences. This is 
repeated five times and the number of distinct clones is 
averaged. The following two examples represent the 
diversity of B and T cell receptors: Figure 2 represents 
the diversity of the T cell receptor. The T cell receptor 
data are gained from blood (4B-TCRB) and kidney (4N-
TCRB) samples. Figure 3 represents B cell receptor 
data.  
 

 
Figure 2: Diversity plot of T cell receptor data (blood and 
kidney cells).  
 

 
Figure 3: Diversity plot of B cell receptor data (IGH). 
 
3. MODEL IDENTIFICATION 
 

A modeling approach has to be defined that 
explains the number of distinct sequences found in n 
sequences; this enables us to distinguish between read 
errors and “real” distinct sequences. 

We are especially interested in white box models. 
In the following sections we present two modeling 
approaches for which the correct parameters have to be 
identified empirically for each sample (Section 3.1). 
Additionally, we also plan to apply symbolic regression 
using genetic programming for identifying model 
structures that estimate the number of distinct 
clonotypes in a biological sample (Section 3.2). 

For validating these modeling approaches and for 
comparing the models’ quality to the modeling quality 
achievable using alternative approaches, black box 
models (Section 3.3) shall also be used. 
 

3.1. White Box Modeling Using a Fixed Model 
Structure and Parameter Optimization 

 
The primary model identification approach used in this 
work uses different formula structures. The parameters 
of these models have to be optimized (in this case, using 
evolution strategies) in order to optimize the fit of the 
models to the given diversity curves of B and T cell 
receptor data. 

Our modelling possibilities are that the curve 
initially corresponds to an exponential or logarithmic 
increase or a multiplicative inverse, while for greater n 
the curve rather resembles a linear function. Therefore 
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we have developed the following model approaches 
(see Equations 1, 2, 3 and 4) for which the parameters 
have to be optimized:  

 
���(�) = � ∗ � + �    (1) 

 
���(�) = � ∗ (1 −	���∗�)   (2) 

 
���(�) = � ∗ log(� ∗ �)   (3) 

 
���(�) = � ∗ (1 −	���∗�) + � ∗ � + � (4) 

 
For each biological sample, the parameters are 
optimized using an evolution strategy.  

Evolution strategies (ES) have been developed 
since the 1960s. An ES is an evolutionary algorithm in 
which genetic operators (mutation, crossover, and 
selection) are applied on solution candidates until a 
specific termination criterion is met (Winkler, 2009) 
and (Borgmann, 2012). 

Typically, an ES starts with a population of 
randomly created individuals; in each generation these 
individuals are evaluated and new individuals are 
created using mutation and crossover operators. The 
next generation’s population is formed using successful 
children. This procedure is repeated over several 
generations until a termination criterion is met, for 
example as soon as the quality cannot be improved any 
more or the maximum number of generations is reached 
(see Figure 4). 
 

 
Figure 4: Standard evolution strategy (Winkler, 2009). 
 
One of the goals of this research is to find out, which 
modeling approach is better in terms of modeling 
quality, i.e. which approach is more suitable for 
describing the diversity of B and T cell receptors. 
 

3.2 Black Box Modeling 
 
For estimating the quality of the white box models 
created using the methods summarized in Sections 3.1, 
the following black box modeling methods are also 
applied: 

 
• Random Forests (RF): RFs are very popular in 

the field of machine learning as they are very 
fast and accurate. They create ensembles of 
decision trees using information gain and 
variance reduction. Pruning is done using 
reduced-error pruning methods (Witten, 2005). 

 
• Genetic Programming: As an alternative to the 

approach described in the previous section we 
also apply a modeling algorithm based on 
genetic programming (Koza, 1992) using a 
structure identification framework described in 
(Winkler, 2008 and Affenzeller et al., 2009) 
implemented in HeuristicLab (Wagner, 2014). 

     Figure 5: Genetic programming approach. 
 
 
4. RESULTS 
 
4.1 White Box Modeling Experimental Results 
 
For testing the approaches described in Section 2.2 and 
3, we used three samples containing a different number 
of sequences and clonotypes (see Table 1).  
 
 BB17 SS12 6AB 
# sequences 307440 284307 76273 
# clonotypes 35906 25899 15580 
 

Table 1: Sequence and clonotype information. 
 
Figures 6, 7, and 8 show the diversity analysis of the 
following samples BB17, SS12, and 6AB as described 
in Section 2.2. The thick red line represents the original 
calculated diversity using iteratively 2500 sequences 
and determines the number of distinct clonotypes. The 
red thick lines in Figures 6, 7, and 8 show that there 
first is a strong increase of the number of distinct 
clonotypes and then the red line starts to  continue at a 
specific number of sequences to increase more or less 
linearly. Afterwards where the increase seems to be a 
more linear slope, which represents the number of 
randomly found sequences rise linearly due to read 
errors of the sequencers. All the other thin lines show 
the estimated diversity curve using four different 
formulas. The parameters such as a, b, k and d are 
optimized using evolution strategy. 
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Figure 6: Diversity analysis of sample BB17 using 300 
generations, µ=20, λ=100 and σ=0.5. 

 

  
 
Figure 7: Diversity analysis of sample SS12 using 300 
generations, µ=20, λ=100 and σ=0.5. 

 

 
 
Figure 8: Diversity analysis of sample SS12 using 300 
generations, µ=20, λ=100 and σ=0.5. 
 
 
 
 

 
 
Figure 9: Black box modelling using genetic programming 
and random forests for sample BB17. 
 

 
 
 
Figure 10: Black box modelling using genetic programming 
and random forests for sample SS12. 
 

 
 
Figure 11: Black box modelling using genetic programming 
and random forests for sample 6AB.  
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Here we have used 300 evolution strategy generations 
and for σ=0.5, µ=20 and λ=100. For the parameter 
optimization with evolution strategy the so-called 1/5 
success rule was used.  
The diversity analyses of the samples show that the 
formulae containing an exponential and a linear 
function fits the original calculated diversity curve best 
(light blue line in Figures 6, 7, and 8). Figure 8 
demonstrates that in a sample containing a lower total 
number of sequences also the formulae only using an 
exponential function (light green line in Figures 6, 7 
and 8) perform as well as the combination using a linear 
function.  
 
To estimate the quality of the white box modelling and 
to validate the modelling approach we have used the 
following machine learning methods: genetic 
programming and random forests.  
For black box modelling the framework HeuristicLab 
(http://dev.heuristiclab.com/) where all those 
classification and regression algorithms are integrated 
and implemented. Implementation details of these 
methods can be found in (Wagner et al., 2014). 
 
For all machine learning algorithms, a different set of 
parameters have been tested. Best results can be 
achieved using for genetic programming the following 
parameter settings: The mutation rate was set to 15% 
and an OSGA (offspring selection genetic algorithm) 
(Affenzeller et al., 2009) with success ratio as well as 
comparison factor set to 1.0 was used. Crossover and 
mutation were done using the subtree swapping 
crossover and the multi symbolic expression tree 
manipulator, respectively. The function set described in 
(Winkler, 2009) was used for building composite 
function expressions (including arithmetic, exponential 
and logarithm functions). 
 
For random forests the following parameter settings 
have been set: the number of trees has been set to 30 
and randomly seed has been used. Generally, data were 
split into training and test data and five-fold cross-
validation was executed. As is shown in Figure 9, 10 
and 11 the thick red line represents the original 
calculated diversity curve, while green and yellow 
represent the black box modelling machine learning 
methods. Genetic programming is able to predict the 
original calculated diversity curve pretty accurate, while 
using random forest the estimation of the distinct 
clonotypes seems to be difficult.  

 
Table 2 and 3 represent statistical analysis of the results 
using the Pearson’s R2 (Bollen et al., 1981) value for 
training and testing of the white and black box 
modelling methods. As it is shown that in training and 
testing very high Pearson’s R2 value can be achieved, 
where the value 1 means that the originally calculated 
diversity curve correlates exactly to the predicted 
diversity curves using machine learning methods such 

as genetic programming and random forests. In Table 2 
it is shown that the highest correlation values can be 
found using a combination of the exponential and linear 
function. This high correlation can be observed in all 
three samples.  
 
 

 
 

 
Table 2: Person’s R2 values for training and testing of all 
models using parameter optimization with evolution strategy. 
 
 

 
Table 3: Pearson’s R2 values for training and testing of genetic 
programming and random forests. 
 
5. CONCLUSION 
 
In this paper an approach has been described to model 
the number of distinct clonotypes in dependence of the 
total number of sequences (diversity) of B and T 
receptor cells in the human immune system. It has been 
shown that there is a true number of distinct clonotypes 
which can be reached by increasing the number of reads 
using a mathematical model containing an exponential 
and linear part. Additionally, we have shown that the 
diversity analysis curve rises linearly due to read errors 
of NGS machines. The parameters of the mathematical 
model are optimized using evolution strategy and for 
evaluation purposes black box modelling methods such 
as genetic programming and random forests have been 
used. The statistical analysis of the results shows that 
there is a high correlation between the machine learning 
methods and the parameter optimization approach using 
evolution strategy. 

Currently this analysis is integrated in the framework 
ImmunExplorer. In future work, additional methods for 
analyzing B and T cells shall be included in 

Sample/ 
ES  

div(n)=k*n+d div(n) = a *( 1 – e(-b*n) ) 

  training test training test 

BB17 0,993425 0,992920 0,949096 0,970529 

SS12 0,998450 0,998406 0,991846 0,990502 

6AB 0,992546 0,953213 0,999550 0,999569 

Sample/ 
ES  

div(n)= a * log(b*n) div(n) = a *( 1 – e(-b*n) ) + 
k*n+d 

  training test training test 

BB17 0,992889 0,985620 0,998797 0,998740 

SS12 0,980015 0,982939 0,999275 0,999172 

6AB 0,990095 0,992591 0,999550 0,999569 

 Sample/ 
ML 

GP RF 

  training test training test 

BB17 0,999867 0,999857 0,998261 0,981551 

SS12 0,999983 0,999956 0,997973 0,998479 

6AB 0,999988 0,999963 0,989975 0,892114 
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ImmunExplorer to gain more insight in the behaviour of 
the human immune system.  
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