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ABSTRACT 

The paper describes an application of a new tool for 

programmed discrete event simulation in Matlab that 

became one of the most frequently taught languages for 

computations in mathematics, statistics, and operations 

research. To teach simulation related topics we need a 

simple to use and a fast to learn tool for creation of 

simple and medium-scale simulation models. We also 

need a tool where the code is visible and accessible and 

where all functions like generation of random numbers 

are directly under user’s control. All this is caused by 

the need to incorporate simulation models into various 

algorithms based on repetitive experiments, variance 

reduction techniques, and simulation-based 

optimization. After a short introduction of the tool we 

present variance reduction examples. 

 

Keywords: discrete event simulation, queuing systems, 

variance reduction, matlab. 

 

1. INTRODUCTION 

It is a well-known fact that for classical simulation 

applications like manufacturing, transportation, or 

similar described typically as queuing systems, 

programming is used less and less. For these systems 

the classical GPSS view of the world as represented by 

interactive tools like Arena, Simul8, Witness, and 

similar is satisfactory and programming simulation 

models of such systems is often considered as a waste 

of time and money. Fortunately there are still areas 

where simulation techniques are becoming more and 

more important and where the classical view of entities 

passing through a block diagram does not work. This is 

true in stochastic programming, finance, stochastic 

integration, reinforcement learning to mention just a 

few. In our situation there are two more arguments in 

favor of programmed simulation models where the user 

has full control over the model. In Statistics and OR 

courses we have recently introduced a study-unit called 

“Computational Methods in Statistics and OR” for 

students who know only basics of programming in 

Matlab. For the simulation part of this unit the obvious 

choice was an interactive simulation tool, in our case 

Arena (Kelton et al. 2006). Problems started with 

teaching Variance Reduction Techniques (L’Ecuyer 

2007). Though some of these techniques are included in 

Arena and similar packages, we need to show their 

implementation. Another area where full control over 

the model is required is simulation-based optimization. 

There are optimization tools included in interactive 

simulation tools like OptQuest of Arena (Bradley 

2007), but there is no feasible possibility to apply other 

than the built-in optimization algorithm and control 

over its working is very limited, leaving alone 

techniques like for example infeasibility detected by 

simulation.  

So to summarize, we need a simple to use and a 

simple to learn tool for creating discrete event 

simulation models in Matlab. Simulation models should 

take a form of a function that given model specification 

and run control arguments provides the required results 

as outputs. Such function can then be incorporated into 

other algorithms, in our case algorithms used in 

variance reduction and simulation-based optimization. 

 

2. SIMULATION IN MATLAB 

Support is needed for simulation models with 

continuous time and discrete behavior. Simulation of 

discrete time or timeless models typical in finance and 

stochastic programming (often called Monte Carlo 

simulation) is from the time control point of view 

relatively easy and no special support in Matlab is 

needed. We are aware of two Matlab based discrete 

event simulation tools. SimEvents (Gray 2007) is a 

commercial interactive tool based on Simulink of 

Matlab. It belongs to the category of interactive tools 

with limited control over the model. MatlabDEVS2 

(Deatcu 2003) is a tool created primarily as a support 

for research and education of abstract DEVS theory, so 

its use is not practical in our case either. That’s why it 

has been decided to create a new tool with simplicity 

and transparency being the main objectives. The tool is 

definitely not supposed to be used for large-scale 

computationally demanding simulation studies. 

 

3. TOOL DESCRIPTION 

The paper (Sklenar 2013) describes the ideas and the 

implementation details of the tool. Here we just 

summarize its functions by categories. 
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3.1. Time Control Functions 

The tool uses the classical event-oriented paradigm 

based on the sequencing set made of event notices. In 

our case the event notices are made of the event time, 

unique event notice identification, user event number, 

and user event notice data. The sequencing set is made 

of four arrays whose i-th items represent the event 

notice i. The set is not ordered, scheduling places the 

new items at the end, next event to be activated is found 

by the function min of Matlab in the array of event 

times. Removing notices is done in usual Matlab way 

by storing empty values [ ] in the four items. This 

approach is certainly not very fast, but it is simple and it 

works satisfactorily. As the system code is not 

protected, we start all system identifiers by “s_”. 

s_time is the system variable  that contains the current 

model  time.  

function id = s_chedule(t,e,d) schedules the 

event e at time t with user data d. It returns the event 

notice identification id assigned by the engine. 

function s_cancel(id) removes the event notice 

id from the sequencing set. 

function s_imulation starts the simulation run. It 

is assumed that at least one event has been scheduled. 

function s_terminate ends the simulation run by 

clearing the sequencing set. 

In addition to the above functions, the user has to write 

the common user event function: 

function event(e,d,id) that starts the event e 

with data d and identification id. It typically tests the 

event number e and activates the particular event 

function. In addition to user events, there may be 

system events with negative numbers used by 

application-oriented additions to the basic tool - see 

later.  

The simulation engine is the function 

s_imulation that repeatedly removes the next event 

notice from the sequencing set and activates either the 

user function event or a hidden system event function. 

The run ends when the empty sequencing set is 

detected. 

 

3.2. Statistics 

With respect to time there are two types of statistics. 

Time dependent statistics (using Arena’s terminology 

time-persistent statistics) is based on time integrals. We 

call such statistical objects accumulators, typical 

example is the statistics on a queue length. The other 

type is statistics based only on a collection of assigned 

values (using Arena’s terminology counter statistics). 

We call such statistical objects tallies, typical example 

is the statistics on waiting time in a queue. The 

following functions are available: 

function s_tupdate(t,x) updates the tally t by 

the value x. The function keeps the minimum and the 

maximum values, the sum of assigned values, the sum 

of squared assigned values and the number of updates. 

function [mean,min,max,variance,updates] 

= s_tallystat(t) returns the descriptive statistics 

on the tally t. 

function s_aupdateto(a,x) updates accumulator 

a to the value x. Call to this function replaces the 

assignment a = x. 

function s_aupdateby(a,x) updates accumulator 

a by the value x. Call to this function replaces the 

assignment a = a+x. Both functions keep the minimum 

and the maximum values, the time integral and the time 

integral of squared assigned values. 
function[mean,min,max,variance,lastvalue]

= s_accumstat(a) returns the descriptive statistics 

on the accumulator a. 

All statistical activities except assignment of 

accumulator values start after a user-defined warming 

up delay, for accumulators the user has to specify the 

initial values, mostly zeros. 

 

3.3. Queues 

Three usual types of queues (FIFO, LIFO, priority) with 

possibly limited capacity are implemented. Queues are 

represented by data structures with various fields used 

for statistics. Stored items are represented by the arrays 

of items structures, entry times, and priorities for 

priority queues. The following functions are available: 

function r = s_enqueue(q,i) inserts the item i 

into the queue q. The output r specifies whether the 

insertion was successful (1) or not (0). Treatment of 

rejected arrivals is application dependent. Item data 

structure is specified by the user, the only compulsory 

field is service - the service duration when entering a 

queue. For all types of queues the item is placed at the 

end of an array. 

function [i,wt] = s_remove(q) removes the 

next item from the queue q. The outputs are the item i 

and its waiting time wt. For priority queue the item is 

found by the Matlab function min in the array that 

contains the priorities. For all queues the item is 

physically removed by storing the empty values in the 

arrays. 

function s_nowait(q) is used for statistics to 

record not waiting items in the queue q. 

function [...] = s_questat(q) returns the 

statistics on queue q. The outputs are: mean queue 

length, mean waiting time, mean waiting of those who 

waited and left, maximum queue length, maximum 

waiting time, attempted arrival rate, effective arrival 

rate, rate of rejections, probability that the queue is full, 

number of attempted arrivals, number of rejected 

arrivals, number of not waiting arrivals and duration of 

statistics collection. 

 

3.4. Model Function Structure 

Simulation models are written as functions with a fixed 

structure. The input and output arguments are defined 

by the user. These are the parts of the model that have 

to be included in the following order: 
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 System functions 

 User model initialization 

 System model initialization 

 User model functionality 

 

The two system parts are the same for all models 

and they should not be modified. The two user parts can 

be any mixture of commands and local functions and of 

course any external functions can be called, typically 

functions for generation of random numbers. Anyway a 

very simple structure is suggested. 

 

3.5. User Model Initialization 

This part first tests the validity of model input 

arguments and initializes user model variables, if any. 

This optional code is application dependent. It is 

supposed to test the arguments of random number 

generators, array sizes, integrality, etc. Next some 

system variables have to be initialized by the user. This 

is in fact a part of the model specification. The 

following 8 system variables must be defined, the 

default initialization assumes a G/G/1 queuing model: 

 

 Types of queues array. The items are 0/1/2 for 

FIFO, LIFO, and priority queues respectively.  

 Maximum lengths of queues array. The items 

are non-negative integers or Inf for unlimited 

queues. Zeros for pure overflow models are 

accepted. 

 Numbers of parallel channels array. It is 

assumed that each queue is served by several 

identical parallel channels. These three arrays 

must have the same length, but they can be 

empty. 

 Data structure that represents entities 

(customers) stored in queues. In addition to 

already mentioned compulsory field service, 

there must be also the field priority if priority 

queues are part of the model. Other fields are 

user-defined, like for example attributes 

representing the history of the entity, types of 

entities, etc. 

 Data structure that represents the user part of 

event notices. If stations are used (see later), 

the compulsory fields are station and channel 

used by the system event end of service. 

 Warming-up delay for statistics collection. 

 Number of tallies used in the model. 

 Initial values of accumulators used in the 

model. 

 

User code of the model is split into two parts 

because the values of the above system variables are 

needed for the system model initialization that prepares 

the sequencing set, the queues, and all statistics for the 

simulation run. 

 

3.6. User Model Functionality 

This part of user code follows the classical event-

oriented paradigm. After scheduling at least one event, 

typically first arrival(s), breakdowns, etc., the 

simulation run is started by calling the function 

s_imulation followed by the simulation run 

evaluation, preferably implemented by another function. 

This function collects the statistics and assigns values to 

the model outputs. 

 

3.7. Support for Queuing Systems 

The tool is general; the only requirement is the 

possibility to express the model behavior in terms of 

events. Though the definition of the above 8 system 

variables has to be present, the values can be all empty, 

so there can be no queues in the models, no standard 

statistics, etc. Nevertheless typical application of 

discrete simulation is analysis and optimization of 

queuing systems, which is also our case. That’s why we 

included a simple support that makes simulation of 

queuing networks simple and straightforward. We 

associate queues with a number of parallel channels 

serving the entities from the queue. This makes the so 

called stations supported by the following functions: 

function r = s_arrival(q,c) is an arrival of the 

customer c to the station (queue) q. The result r 

specifies the outcome (0 = lost (rejected), 1 = enqueued, 

2 = served without waiting). The user has to decide 

what to do in case of rejection due the limited capacity. 

function s_eos(ed) is a system function activated 

by the engine s_imulation that is transparent to the 

user. It is an end of service specified by the data part ed 

of the corresponding event notice. For this purpose, if 

stations are used in the model, there are the two 

compulsory fields station and channel in the event 

notice data. After all necessary updates and statistics 

collection the following function is activated. 

function customer_leaving(s,c) is the user’s 

activity associated with the end of service to customer c 

in station s. Typically there is some decision about the 

next service, a call to s_arrival, or leaving the 

network. 

function r = s_stop(s,c) stops the channel c in 

station s. The result r specifies the channel status (0 = 

idle, 1 = busy (the operation is completed), 2 = was 

already suspended). 

function r = s_resume(s,c) re-activates the 

channel c in station s. The result r specifies the channel 

status (0 = idle, 1 = busy, 2 = suspended). Warning is 

given for the first two cases. 

Additional statistics provided for stations by the 

function s_questat is the mean number of working 

channels and their utilization. Due to possible 

suspensions (failures) there is no simple relationship 

between these two figures. 

The above mentioned functionality of stations is 

enabled by using the system events, so far only end of 

service was implemented. System events have negative 

numbers, are activated by the engine and for the user 

they are transparent. Also note that the functions 
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s_arrival and customer_leaving offer a sort of 

process-oriented view of the system dynamics. Call to 

s_arrival starts an internal process made of possible 

waiting in the queue and the service that ends when the 

customer appears as the argument in 

customer_leaving.  

 

4. SIMULATION MODEL FOR EXAMPLES  

The paper (Sklenar 2013) describes in detail how a 

model of a workshop made of two breaking down 

machines is built. For variance reduction examples we 

use a relatively simple model of a G/G/1 system given 

by the function: 

function [LQ,WQ,LQmax,WQmax,duration,L,W, 

rho,lambda,mu] = GG1(intervals,services) 

The inputs are vectors of intervals between arrivals and 

service durations of the arriving customers. The outputs 

are self-explaining; duration is the total time of 

collecting statistics. For this model the default 

initialization of the system variables is satisfactory, so 

the first part of user code just tests validity of the input 

arguments (skipped here), initializes the counter of 

arrivals and computes some outputs because the traffic 

rate must be tested to be less than 1: 

na = length(intervals); 

           % number of attempted arrivals 

arr = 1;                 % arrival number 

lambda=1/mean(intervals);  % arrival rate 

mu = 1/mean(services);     % service rate 

rho = lambda/mu;           % traffic rate 

The model is in fact made of just one station, so the 

second part of user code is the following: 

s_chedule(intervals(1),1,s_edata); 

           % scheduling the first arrival 

s_imulation;        % starting the engine 

evaluation;       % experiment evaluation 

 

function event(enumber,data,id) 

  if enumber == 1               % arrival 

     nextarrival;   

  else 

     error(['Unknown event']); 

  end     

end 

 

function nextarrival   % customer arrival 

  itm = s_item; % creating item structure 

  itm.service = services(arr); 

  arr = arr + 1; 

  if arr<=na  % are there more arrivals ? 

    s_chedule(s_time + intervals(arr),1, 

       s_edata);  % schedule next arrival 

  end 

  s_arrival(1,itm);% arrival to station 1 

end 

 

function customer_leaving(qn,itm) 

         % here this function is not used 

end 

 

function evaluation    % experiment eval. 

  [LQ,WQ,...] = s_questat(1); 

  W = WQ + mean(services); 

  L = LQ + rho; 

end 

The function evaluation calls s_questat to get 

the first 5 output arguments and computes the 

remaining two outputs in obvious way. Note that the 

common event function event takes a trivial form; the 

function customer_leaving is not used by the model, 

but has to be present. The function nextarrival 

creates the entity structure, stores its service duration 

and schedules the next arrival (if any). The actual 

arrival is taken care of by the system function 

s_arrival. 

 

5. VARIANCE REDUCTION EXAMPLES  

The model described in the previous chapter can be 

used as a simulation “engine” in other demonstration 

models. So for example the following function runs 

repeatedly a given number of arrivals with intervals 

uniform in [a, b] and services uniform in [c, d]: 

function [meanLQ,...] = ... 

          sim_gg1(a,b,c,d,arrivals,runs) 

da = b-a; 

ds = d-c; 

for i=1:runs 

  display(['Run number: ' num2str(i)]); 

  rands = rand(1,arrivals); 

  ints = a + rands*da;       % intervals 

  rands = rand(1,arrivals); 

  servs = c + rands*ds;      % services 

  [LQ(i)] = GG1(ints,servs); 

end 

meanLQ = mean(LQ); 

... 

From each run only the mean queue length is 

taken, at the end some descriptive statistics of the 

sample is computed and a histogram is shown. The 

variance reduction techniques dealt with in this paper 

are well known, see for example (Gentle 1998) or (Pidd 

2004). 

 

5.1. Antithetic Variables 

This example shows how the use of antithetic variables 

decreases the sample variance. Here we want to find the 

mean queue length of the G/G/1 system with intervals 

uniform in [2,6] and services uniform in [1,5]. After 

taking a sample made of 500 independent runs, 100,000 

arrivals each, we obtained the following results. The 

mean queue length meanLQ = 0.1538, the standard 

deviation stdLQ = 0.0023, so the coefficient of variation 

is cvLQ = 0.0148. As the measure of sample quality we 

are going to use the coefficient of variation (/) that 

gives the extent of variability independent of the actual 

value of the sample mean. We are dealing only with 

nonnegative values. It is well known that antithetic 

series can be created by replacing the underlying 

random numbers u by 1-u that are both uniformly 

distributed in (0,1). So we performed 250 pairs of runs, 

100,000 arrivals each (same computation price), from 

each pair an average queue length was computed. The 

sample of 250 values thus obtained gave the same mean 
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queue length (at 4 decimal places) with cvLQ = 0.0083 

which is a decrease by 44%. In our case we have a 

single queue system, so there is another way how to 

obtain two antithetic series by swapping random 

numbers used to generate intervals and service 

durations respectively. So after performing another 250 

antithetic pairs of runs of the same length (again the 

same computation price) we again obtained the same 

mean queue length (at 4 places) with cvLQ = 0.0090 

which is a decrease by 39%.  

 
Figure 1: Sample histogram from 500 independent runs 

 

Figures 1 and 2 show the histograms of the 

samples obtained by crude Monte Carlo and by using 

antithetic series (first case, the other one is very 

similar), both for the same 20 bins (0.144 : 0.001 : 

0.164). 

 
Figure 2: Sample histogram from 250 antithetic pairs of 

runs 

 

Note that our very positive result is caused by the 

simplicity of the model. For more complicated models 

we would face the synchronization problem. 

 

5.2. Common Random Numbers 

This example shows how the use of common random 

numbers decreases the variance in situations where the 

purpose of the simulation is comparison of two systems. 

So let’s compare the performance of the following two 

systems. The first is a G/G/1 system with intervals 

uniform in [5,15] and services uniform in [1,17] with 

traffic rate  = / = 0.9. The other one is a G/M/1 

system with same intervals uniform in [5,15] and 

exponentially distributed service with mean 8. Its traffic 

rate is  = / = 0.8. As the comparison criterion we 

use the difference of the mean queue lengths LQ2 – LQ1. 

After taking a sample made from 500 independent pairs 

of runs of the two systems (500 values of the difference) 

made of 100,000 arrivals each, we obtained the 

following results. The mean difference of the two queue 

lengths difLQ = 0.3047, the standard deviation stddifLQ 

= 0.0576, so the coefficient of variation is cvdifLQ = 

0.1890. Note the very negative effect of the service 

variability. Though the traffic rate of the G/M/1 system 

is smaller, its mean queue length was always bigger, so 

the use of the coefficient of variation is still justified. In 

order to decrease the sample variance we performed 

another 500 pairs of runs of the same length, but in each 

pair the same underlying sequences of random numbers 

uniform in (0,1) were used. The mean difference of the 

two queue lengths was difLQ = 0.3068, the standard 

deviation stddifLQ = 0.0361, so the coefficient of 

variation is cvdifLQ = 0.1176 which is a decrease by 

38%. Figures 3 and 4 show the histograms of the 

samples obtained by crude Monte Carlo and by using 

common random numbers, both for the same 24 bins (0 

: 0.025 : 0.6).  

 
Figure 3: Sample histogram from 500 independent pairs 

of runs 

 
Figure 4: Sample histogram from 500 pairs of runs 

using common random numbers 

 

The very positive result is again caused by the 

system simplicity, as synchronization in complex 

models is a complicated problem that may not be solved 

at all.  
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5.3. Control Variables 

This example shows how the use of control 

variables decreases the sample variance. We want to 

find the mean queue length of the G/G/1 system with 

intervals uniform in [1,3] and services uniform in [1,2]. 

After taking a sample made of 500 independent runs, 

50,000 arrivals each we obtained the following results. 

The mean queue length meanLQ = 0.0746, the standard 

deviation stdLQ = 0.0014, so the coefficient of variation 

is cvLQ = 0.0193. The technique of control variables is 

based on some knowledge about the internal working of 

the model. We first have to identify a variable such that 

its exact value is known and can be compared with the 

value obtained by simulation. Then we must know (at 

least approximately) the way how this value affects the 

simulation result, so we can perform a correction. In our 

example we select the control variable to be the mean 

service time TS whose exact value is 1.5. The mean 

service time obtained by simulation is then TS + dTS. 

For simplicity we assume a linear relationship between 

the service time and the mean queue length, at least 

close to the actual values. So the change of the mean 

queue length caused by imperfect generation of service 

times is cdTS. After simulation we perform the 

correction by subtracting this value from the mean 

queue length obtained by simulation. To find the value 

of the positive constant c, we may use a (simplified) 

analytical model or very long simulation runs. We 

performed 5 long simulation runs made of 10
6
 arrivals 

each for the exact mean service 1.5 and another such 5 

runs for the perturbed value 1.51 with services uniform 

in [1,2.02]. The difference of queue lengths (the two 

sample means) was then divided by 0.01 giving the 

value c =  0.455643. Using this constant we performed 

500 corrected runs (50,000 arrivals each) with these 

results. The mean queue length meanLQ = 0.0744, the 

standard deviation stdLQ = 0.0012, so the coefficient of 

variation is cvLQ = 0.0171 which is a decrease by 11%. 

Here the improvement is modest. Changing the 

perturbed value and increasing the numbers of long runs 

did not bring any considerable improvement. So we 

tried to use two control variables, the mean service time 

and the mean interval with the second one having 

obviously a negative effect on the queue length. So the 

correction subtracted from the simulated mean queue 

length was in this case c1dTS – c2dIS where dIS is the 

deviation between the exact mean interval 2 and the 

same value obtained by simulation. The value of c1 is 

the same as the one used in the single control variable 

case, c2 was obtained from two samples of long runs in 

similar way. Its value was c2 = 0.248055. In this case 

the decrease of the coefficient of variation was 30%.  

 

6. CONCLUSION 

After using the Matlab based simulation tool to create 

various educational examples, see also two examples in 

(Sklenar 2013), we believe that the objective has been 

met. The user parts of the simulation models are very 

short, lucid, and all very similar. The differences are of 

cause given by the specific behavior of particular 

models. Due to the choice of the simple event-oriented 

paradigm, the code resembles very much programs in 

simulation languages of this type, for example 

Simscript II. Similar to these languages the user is 

relieved from “background” functionality like time 

control, queues management, statistics, etc. and can 

concentrate on the model behavior as such. All this is 

achieved without a need to learn a special-purpose 

simulation language. Intermediate Matlab programming 

skills are enough to create simulation models of 

medium size and complexity. As already mentioned, the 

whole model code is a single function with local 

functions, so though not recommended, it is possible to 

modify the system functions in any way. Having all the 

functionality under control and directly visible was in 

fact the main objective. Single function simulation 

models can thus be incorporated in programs for various 

repetitive experiments, optimization algorithms, etc. Of 

course there is a lot of room for further improvements. 

Both sequencing set and queues are implemented in a 

very simple inefficient way. Also security might 

become an issue; so far there are no restrictions at all. 

Though we believe that these drawbacks are not serious 

because the tool is not supposed to be applied in large 

simulation studies, its further development will address 

these issues.  
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