
TEACHING VARIANCE REDUCTION IN MATLAB

Jaroslav Sklenar

Department of Statistics and Operations Research

University of Malta

Msida MSD 2080, Malta

jaroslav.sklenar@um.edu.mt

ABSTRACT

The paper describes an application of a new tool for

programmed discrete event simulation in Matlab that

became one of the most frequently taught languages for

computations in mathematics, statistics, and operations

research. To teach simulation related topics we need a

simple to use and a fast to learn tool for creation of

simple and medium-scale simulation models. We also

need a tool where the code is visible and accessible and

where all functions like generation of random numbers

are directly under user’s control. All this is caused by

the need to incorporate simulation models into various

algorithms based on repetitive experiments, variance

reduction techniques, and simulation-based

optimization. After a short introduction of the tool we

present variance reduction examples.

Keywords: discrete event simulation, queuing systems,

variance reduction, matlab.

1. INTRODUCTION

It is a well-known fact that for classical simulation

applications like manufacturing, transportation, or

similar described typically as queuing systems,

programming is used less and less. For these systems

the classical GPSS view of the world as represented by

interactive tools like Arena, Simul8, Witness, and

similar is satisfactory and programming simulation

models of such systems is often considered as a waste

of time and money. Fortunately there are still areas

where simulation techniques are becoming more and

more important and where the classical view of entities

passing through a block diagram does not work. This is

true in stochastic programming, finance, stochastic

integration, reinforcement learning to mention just a

few. In our situation there are two more arguments in

favor of programmed simulation models where the user

has full control over the model. In Statistics and OR

courses we have recently introduced a study-unit called

“Computational Methods in Statistics and OR” for

students who know only basics of programming in

Matlab. For the simulation part of this unit the obvious

choice was an interactive simulation tool, in our case

Arena (Kelton et al. 2006). Problems started with

teaching Variance Reduction Techniques (L’Ecuyer

2007). Though some of these techniques are included in

Arena and similar packages, we need to show their

implementation. Another area where full control over

the model is required is simulation-based optimization.

There are optimization tools included in interactive

simulation tools like OptQuest of Arena (Bradley

2007), but there is no feasible possibility to apply other

than the built-in optimization algorithm and control

over its working is very limited, leaving alone

techniques like for example infeasibility detected by

simulation.

So to summarize, we need a simple to use and a

simple to learn tool for creating discrete event

simulation models in Matlab. Simulation models should

take a form of a function that given model specification

and run control arguments provides the required results

as outputs. Such function can then be incorporated into

other algorithms, in our case algorithms used in

variance reduction and simulation-based optimization.

2. SIMULATION IN MATLAB

Support is needed for simulation models with

continuous time and discrete behavior. Simulation of

discrete time or timeless models typical in finance and

stochastic programming (often called Monte Carlo

simulation) is from the time control point of view

relatively easy and no special support in Matlab is

needed. We are aware of two Matlab based discrete

event simulation tools. SimEvents (Gray 2007) is a

commercial interactive tool based on Simulink of

Matlab. It belongs to the category of interactive tools

with limited control over the model. MatlabDEVS2

(Deatcu 2003) is a tool created primarily as a support

for research and education of abstract DEVS theory, so

its use is not practical in our case either. That’s why it

has been decided to create a new tool with simplicity

and transparency being the main objectives. The tool is

definitely not supposed to be used for large-scale

computationally demanding simulation studies.

3. TOOL DESCRIPTION

The paper (Sklenar 2013) describes the ideas and the

implementation details of the tool. Here we just

summarize its functions by categories.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

11

3.1. Time Control Functions

The tool uses the classical event-oriented paradigm

based on the sequencing set made of event notices. In

our case the event notices are made of the event time,

unique event notice identification, user event number,

and user event notice data. The sequencing set is made

of four arrays whose i-th items represent the event

notice i. The set is not ordered, scheduling places the

new items at the end, next event to be activated is found

by the function min of Matlab in the array of event

times. Removing notices is done in usual Matlab way

by storing empty values [] in the four items. This

approach is certainly not very fast, but it is simple and it

works satisfactorily. As the system code is not

protected, we start all system identifiers by “s_”.

s_time is the system variable that contains the current

model time.

function id = s_chedule(t,e,d) schedules the

event e at time t with user data d. It returns the event

notice identification id assigned by the engine.

function s_cancel(id) removes the event notice

id from the sequencing set.

function s_imulation starts the simulation run. It

is assumed that at least one event has been scheduled.

function s_terminate ends the simulation run by

clearing the sequencing set.

In addition to the above functions, the user has to write

the common user event function:

function event(e,d,id) that starts the event e

with data d and identification id. It typically tests the

event number e and activates the particular event

function. In addition to user events, there may be

system events with negative numbers used by

application-oriented additions to the basic tool - see

later.

The simulation engine is the function

s_imulation that repeatedly removes the next event

notice from the sequencing set and activates either the

user function event or a hidden system event function.

The run ends when the empty sequencing set is

detected.

3.2. Statistics

With respect to time there are two types of statistics.

Time dependent statistics (using Arena’s terminology

time-persistent statistics) is based on time integrals. We

call such statistical objects accumulators, typical

example is the statistics on a queue length. The other

type is statistics based only on a collection of assigned

values (using Arena’s terminology counter statistics).

We call such statistical objects tallies, typical example

is the statistics on waiting time in a queue. The

following functions are available:

function s_tupdate(t,x) updates the tally t by

the value x. The function keeps the minimum and the

maximum values, the sum of assigned values, the sum

of squared assigned values and the number of updates.

function [mean,min,max,variance,updates]

= s_tallystat(t) returns the descriptive statistics

on the tally t.

function s_aupdateto(a,x) updates accumulator

a to the value x. Call to this function replaces the

assignment a = x.

function s_aupdateby(a,x) updates accumulator

a by the value x. Call to this function replaces the

assignment a = a+x. Both functions keep the minimum

and the maximum values, the time integral and the time

integral of squared assigned values.
function[mean,min,max,variance,lastvalue]

= s_accumstat(a) returns the descriptive statistics

on the accumulator a.

All statistical activities except assignment of

accumulator values start after a user-defined warming

up delay, for accumulators the user has to specify the

initial values, mostly zeros.

3.3. Queues

Three usual types of queues (FIFO, LIFO, priority) with

possibly limited capacity are implemented. Queues are

represented by data structures with various fields used

for statistics. Stored items are represented by the arrays

of items structures, entry times, and priorities for

priority queues. The following functions are available:

function r = s_enqueue(q,i) inserts the item i

into the queue q. The output r specifies whether the

insertion was successful (1) or not (0). Treatment of

rejected arrivals is application dependent. Item data

structure is specified by the user, the only compulsory

field is service - the service duration when entering a

queue. For all types of queues the item is placed at the

end of an array.

function [i,wt] = s_remove(q) removes the

next item from the queue q. The outputs are the item i

and its waiting time wt. For priority queue the item is

found by the Matlab function min in the array that

contains the priorities. For all queues the item is

physically removed by storing the empty values in the

arrays.

function s_nowait(q) is used for statistics to

record not waiting items in the queue q.

function [...] = s_questat(q) returns the

statistics on queue q. The outputs are: mean queue

length, mean waiting time, mean waiting of those who

waited and left, maximum queue length, maximum

waiting time, attempted arrival rate, effective arrival

rate, rate of rejections, probability that the queue is full,

number of attempted arrivals, number of rejected

arrivals, number of not waiting arrivals and duration of

statistics collection.

3.4. Model Function Structure

Simulation models are written as functions with a fixed

structure. The input and output arguments are defined

by the user. These are the parts of the model that have

to be included in the following order:

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

12

 System functions

 User model initialization

 System model initialization

 User model functionality

The two system parts are the same for all models

and they should not be modified. The two user parts can

be any mixture of commands and local functions and of

course any external functions can be called, typically

functions for generation of random numbers. Anyway a

very simple structure is suggested.

3.5. User Model Initialization

This part first tests the validity of model input

arguments and initializes user model variables, if any.

This optional code is application dependent. It is

supposed to test the arguments of random number

generators, array sizes, integrality, etc. Next some

system variables have to be initialized by the user. This

is in fact a part of the model specification. The

following 8 system variables must be defined, the

default initialization assumes a G/G/1 queuing model:

 Types of queues array. The items are 0/1/2 for

FIFO, LIFO, and priority queues respectively.

 Maximum lengths of queues array. The items

are non-negative integers or Inf for unlimited

queues. Zeros for pure overflow models are

accepted.

 Numbers of parallel channels array. It is

assumed that each queue is served by several

identical parallel channels. These three arrays

must have the same length, but they can be

empty.

 Data structure that represents entities

(customers) stored in queues. In addition to

already mentioned compulsory field service,

there must be also the field priority if priority

queues are part of the model. Other fields are

user-defined, like for example attributes

representing the history of the entity, types of

entities, etc.

 Data structure that represents the user part of

event notices. If stations are used (see later),

the compulsory fields are station and channel

used by the system event end of service.

 Warming-up delay for statistics collection.

 Number of tallies used in the model.

 Initial values of accumulators used in the

model.

User code of the model is split into two parts

because the values of the above system variables are

needed for the system model initialization that prepares

the sequencing set, the queues, and all statistics for the

simulation run.

3.6. User Model Functionality

This part of user code follows the classical event-

oriented paradigm. After scheduling at least one event,

typically first arrival(s), breakdowns, etc., the

simulation run is started by calling the function

s_imulation followed by the simulation run

evaluation, preferably implemented by another function.

This function collects the statistics and assigns values to

the model outputs.

3.7. Support for Queuing Systems

The tool is general; the only requirement is the

possibility to express the model behavior in terms of

events. Though the definition of the above 8 system

variables has to be present, the values can be all empty,

so there can be no queues in the models, no standard

statistics, etc. Nevertheless typical application of

discrete simulation is analysis and optimization of

queuing systems, which is also our case. That’s why we

included a simple support that makes simulation of

queuing networks simple and straightforward. We

associate queues with a number of parallel channels

serving the entities from the queue. This makes the so

called stations supported by the following functions:

function r = s_arrival(q,c) is an arrival of the

customer c to the station (queue) q. The result r

specifies the outcome (0 = lost (rejected), 1 = enqueued,

2 = served without waiting). The user has to decide

what to do in case of rejection due the limited capacity.

function s_eos(ed) is a system function activated

by the engine s_imulation that is transparent to the

user. It is an end of service specified by the data part ed

of the corresponding event notice. For this purpose, if

stations are used in the model, there are the two

compulsory fields station and channel in the event

notice data. After all necessary updates and statistics

collection the following function is activated.

function customer_leaving(s,c) is the user’s

activity associated with the end of service to customer c

in station s. Typically there is some decision about the

next service, a call to s_arrival, or leaving the

network.

function r = s_stop(s,c) stops the channel c in

station s. The result r specifies the channel status (0 =

idle, 1 = busy (the operation is completed), 2 = was

already suspended).

function r = s_resume(s,c) re-activates the

channel c in station s. The result r specifies the channel

status (0 = idle, 1 = busy, 2 = suspended). Warning is

given for the first two cases.

Additional statistics provided for stations by the

function s_questat is the mean number of working

channels and their utilization. Due to possible

suspensions (failures) there is no simple relationship

between these two figures.

The above mentioned functionality of stations is

enabled by using the system events, so far only end of

service was implemented. System events have negative

numbers, are activated by the engine and for the user

they are transparent. Also note that the functions

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

13

s_arrival and customer_leaving offer a sort of

process-oriented view of the system dynamics. Call to

s_arrival starts an internal process made of possible

waiting in the queue and the service that ends when the

customer appears as the argument in

customer_leaving.

4. SIMULATION MODEL FOR EXAMPLES

The paper (Sklenar 2013) describes in detail how a

model of a workshop made of two breaking down

machines is built. For variance reduction examples we

use a relatively simple model of a G/G/1 system given

by the function:

function [LQ,WQ,LQmax,WQmax,duration,L,W,

rho,lambda,mu] = GG1(intervals,services)

The inputs are vectors of intervals between arrivals and

service durations of the arriving customers. The outputs

are self-explaining; duration is the total time of

collecting statistics. For this model the default

initialization of the system variables is satisfactory, so

the first part of user code just tests validity of the input

arguments (skipped here), initializes the counter of

arrivals and computes some outputs because the traffic

rate must be tested to be less than 1:

na = length(intervals);

 % number of attempted arrivals

arr = 1; % arrival number

lambda=1/mean(intervals); % arrival rate

mu = 1/mean(services); % service rate

rho = lambda/mu; % traffic rate

The model is in fact made of just one station, so the

second part of user code is the following:

s_chedule(intervals(1),1,s_edata);

 % scheduling the first arrival

s_imulation; % starting the engine

evaluation; % experiment evaluation

function event(enumber,data,id)

 if enumber == 1 % arrival

 nextarrival;

 else

 error(['Unknown event']);

 end

end

function nextarrival % customer arrival

 itm = s_item; % creating item structure

 itm.service = services(arr);

 arr = arr + 1;

 if arr<=na % are there more arrivals ?

 s_chedule(s_time + intervals(arr),1,

 s_edata); % schedule next arrival

 end

 s_arrival(1,itm);% arrival to station 1

end

function customer_leaving(qn,itm)

 % here this function is not used

end

function evaluation % experiment eval.

 [LQ,WQ,...] = s_questat(1);

 W = WQ + mean(services);

 L = LQ + rho;

end

The function evaluation calls s_questat to get

the first 5 output arguments and computes the

remaining two outputs in obvious way. Note that the

common event function event takes a trivial form; the

function customer_leaving is not used by the model,

but has to be present. The function nextarrival

creates the entity structure, stores its service duration

and schedules the next arrival (if any). The actual

arrival is taken care of by the system function

s_arrival.

5. VARIANCE REDUCTION EXAMPLES

The model described in the previous chapter can be

used as a simulation “engine” in other demonstration

models. So for example the following function runs

repeatedly a given number of arrivals with intervals

uniform in [a, b] and services uniform in [c, d]:

function [meanLQ,...] = ...

 sim_gg1(a,b,c,d,arrivals,runs)

da = b-a;

ds = d-c;

for i=1:runs

 display(['Run number: ' num2str(i)]);

 rands = rand(1,arrivals);

 ints = a + rands*da; % intervals

 rands = rand(1,arrivals);

 servs = c + rands*ds; % services

 [LQ(i)] = GG1(ints,servs);

end

meanLQ = mean(LQ);

...

From each run only the mean queue length is

taken, at the end some descriptive statistics of the

sample is computed and a histogram is shown. The

variance reduction techniques dealt with in this paper

are well known, see for example (Gentle 1998) or (Pidd

2004).

5.1. Antithetic Variables

This example shows how the use of antithetic variables

decreases the sample variance. Here we want to find the

mean queue length of the G/G/1 system with intervals

uniform in [2,6] and services uniform in [1,5]. After

taking a sample made of 500 independent runs, 100,000

arrivals each, we obtained the following results. The

mean queue length meanLQ = 0.1538, the standard

deviation stdLQ = 0.0023, so the coefficient of variation

is cvLQ = 0.0148. As the measure of sample quality we

are going to use the coefficient of variation (/) that

gives the extent of variability independent of the actual

value of the sample mean. We are dealing only with

nonnegative values. It is well known that antithetic

series can be created by replacing the underlying

random numbers u by 1-u that are both uniformly

distributed in (0,1). So we performed 250 pairs of runs,

100,000 arrivals each (same computation price), from

each pair an average queue length was computed. The

sample of 250 values thus obtained gave the same mean

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

14

queue length (at 4 decimal places) with cvLQ = 0.0083

which is a decrease by 44%. In our case we have a

single queue system, so there is another way how to

obtain two antithetic series by swapping random

numbers used to generate intervals and service

durations respectively. So after performing another 250

antithetic pairs of runs of the same length (again the

same computation price) we again obtained the same

mean queue length (at 4 places) with cvLQ = 0.0090

which is a decrease by 39%.

Figure 1: Sample histogram from 500 independent runs

Figures 1 and 2 show the histograms of the

samples obtained by crude Monte Carlo and by using

antithetic series (first case, the other one is very

similar), both for the same 20 bins (0.144 : 0.001 :

0.164).

Figure 2: Sample histogram from 250 antithetic pairs of

runs

Note that our very positive result is caused by the

simplicity of the model. For more complicated models

we would face the synchronization problem.

5.2. Common Random Numbers

This example shows how the use of common random

numbers decreases the variance in situations where the

purpose of the simulation is comparison of two systems.

So let’s compare the performance of the following two

systems. The first is a G/G/1 system with intervals

uniform in [5,15] and services uniform in [1,17] with

traffic rate  = / = 0.9. The other one is a G/M/1

system with same intervals uniform in [5,15] and

exponentially distributed service with mean 8. Its traffic

rate is  = / = 0.8. As the comparison criterion we

use the difference of the mean queue lengths LQ2 – LQ1.

After taking a sample made from 500 independent pairs

of runs of the two systems (500 values of the difference)

made of 100,000 arrivals each, we obtained the

following results. The mean difference of the two queue

lengths difLQ = 0.3047, the standard deviation stddifLQ

= 0.0576, so the coefficient of variation is cvdifLQ =

0.1890. Note the very negative effect of the service

variability. Though the traffic rate of the G/M/1 system

is smaller, its mean queue length was always bigger, so

the use of the coefficient of variation is still justified. In

order to decrease the sample variance we performed

another 500 pairs of runs of the same length, but in each

pair the same underlying sequences of random numbers

uniform in (0,1) were used. The mean difference of the

two queue lengths was difLQ = 0.3068, the standard

deviation stddifLQ = 0.0361, so the coefficient of

variation is cvdifLQ = 0.1176 which is a decrease by

38%. Figures 3 and 4 show the histograms of the

samples obtained by crude Monte Carlo and by using

common random numbers, both for the same 24 bins (0

: 0.025 : 0.6).

Figure 3: Sample histogram from 500 independent pairs

of runs

Figure 4: Sample histogram from 500 pairs of runs

using common random numbers

The very positive result is again caused by the

system simplicity, as synchronization in complex

models is a complicated problem that may not be solved

at all.

0.145 0.15 0.155 0.16 0.165
0

10

20

30

40

50

60

70

80

90

0.145 0.15 0.155 0.16 0.165
0

10

20

30

40

50

60

70

80

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

90

100

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

15

5.3. Control Variables

This example shows how the use of control

variables decreases the sample variance. We want to

find the mean queue length of the G/G/1 system with

intervals uniform in [1,3] and services uniform in [1,2].

After taking a sample made of 500 independent runs,

50,000 arrivals each we obtained the following results.

The mean queue length meanLQ = 0.0746, the standard

deviation stdLQ = 0.0014, so the coefficient of variation

is cvLQ = 0.0193. The technique of control variables is

based on some knowledge about the internal working of

the model. We first have to identify a variable such that

its exact value is known and can be compared with the

value obtained by simulation. Then we must know (at

least approximately) the way how this value affects the

simulation result, so we can perform a correction. In our

example we select the control variable to be the mean

service time TS whose exact value is 1.5. The mean

service time obtained by simulation is then TS + dTS.

For simplicity we assume a linear relationship between

the service time and the mean queue length, at least

close to the actual values. So the change of the mean

queue length caused by imperfect generation of service

times is cdTS. After simulation we perform the

correction by subtracting this value from the mean

queue length obtained by simulation. To find the value

of the positive constant c, we may use a (simplified)

analytical model or very long simulation runs. We

performed 5 long simulation runs made of 10
6
 arrivals

each for the exact mean service 1.5 and another such 5

runs for the perturbed value 1.51 with services uniform

in [1,2.02]. The difference of queue lengths (the two

sample means) was then divided by 0.01 giving the

value c = 0.455643. Using this constant we performed

500 corrected runs (50,000 arrivals each) with these

results. The mean queue length meanLQ = 0.0744, the

standard deviation stdLQ = 0.0012, so the coefficient of

variation is cvLQ = 0.0171 which is a decrease by 11%.

Here the improvement is modest. Changing the

perturbed value and increasing the numbers of long runs

did not bring any considerable improvement. So we

tried to use two control variables, the mean service time

and the mean interval with the second one having

obviously a negative effect on the queue length. So the

correction subtracted from the simulated mean queue

length was in this case c1dTS – c2dIS where dIS is the

deviation between the exact mean interval 2 and the

same value obtained by simulation. The value of c1 is

the same as the one used in the single control variable

case, c2 was obtained from two samples of long runs in

similar way. Its value was c2 = 0.248055. In this case

the decrease of the coefficient of variation was 30%.

6. CONCLUSION

After using the Matlab based simulation tool to create

various educational examples, see also two examples in

(Sklenar 2013), we believe that the objective has been

met. The user parts of the simulation models are very

short, lucid, and all very similar. The differences are of

cause given by the specific behavior of particular

models. Due to the choice of the simple event-oriented

paradigm, the code resembles very much programs in

simulation languages of this type, for example

Simscript II. Similar to these languages the user is

relieved from “background” functionality like time

control, queues management, statistics, etc. and can

concentrate on the model behavior as such. All this is

achieved without a need to learn a special-purpose

simulation language. Intermediate Matlab programming

skills are enough to create simulation models of

medium size and complexity. As already mentioned, the

whole model code is a single function with local

functions, so though not recommended, it is possible to

modify the system functions in any way. Having all the

functionality under control and directly visible was in

fact the main objective. Single function simulation

models can thus be incorporated in programs for various

repetitive experiments, optimization algorithms, etc. Of

course there is a lot of room for further improvements.

Both sequencing set and queues are implemented in a

very simple inefficient way. Also security might

become an issue; so far there are no restrictions at all.

Though we believe that these drawbacks are not serious

because the tool is not supposed to be applied in large

simulation studies, its further development will address

these issues.

REFERENCES

Bradley, A., 2007. OptQuest for Arena - user’s guide.

Rockwell Automation Technologies, Inc.

Deatcu, C., 2003. An object-oriented solution to

ARGESIM comparison C6 - Emergency

Department with MATLAB-DEVS2, Simulation

News Europe, 38/39, 56.

Gentle, J.E., 1998. Random Number Generation and

Monte Carlo Methods. Springer-Verlag.

Gray, M.A., 2007. Discrete event simulation: a review

of SimEvents. Computing in Science and

Engineering, 9(6), 62-66.

Kelton, W.D., Sadowski, R.P., Sadowski, D.A., 2006.

Simulation with Arena. McGraw-Hill.

L’Ecuyer, P., 2007. Variance reduction greatest hits.

Proceedings of European Simulation and

Modelling Conference ESM’2007, 5-12. October

22-24, Malta.

Pidd, M., 2004. Computer Simulation in Management

Science. 5th ed. John Wiley & Sons.

Sklenar, J., 2013. Tool for Discrete Event Simulation in

MATLAB. Proceedings of the 27th European

Conference on Modelling and Simulation ECMS-

2013, 110-116, May 27-30, Alesund.

The MathWorks, Inc. 2005. SimEvents user's guide.

The MathWorks, Inc. 2005. Simulink: a program for

simulating dynamic systems, user guide.

Proceedings of the European Modeling and Simulation Symposium, 2014
978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.

16

