
MODELLING COMPLEX AND FLEXIBLE PROCESSES FOR SMART CYBER-
PHYSICAL ENVIRONMENTS

Ronny Seiger(a), Christine Keller(a), Florian Niebling(a), Thomas Schlegel(a)

(a) Junior Professorship in Software Engineering of Ubiquitous Systems, Technische Universität Dresden, Germany

(a) {ronny.seiger, christine.keller, florian.niebling, thomas.schlegel}@tu-dresden.de

ABSTRACT
Cyber-physical Systems introduce several new
requirements for modelling and executing autonomous
processes. Current workflow languages are not able to
completely fulfil these requirements, as they mostly
lack expressiveness and flexibility. In this paper, we
therefore present a new workflow language for
formalizing processes within heterogeneous and
dynamic environments. Our approach is highly model-
based and uses aspects of component-based software
engineering. We present an object-oriented meta-model
for describing processes, which enables the hierarchical
composition of process components and leverages
reusability. In addition, a domain-specific model is used
for typification of process elements. Due to the object-
orientation, we are able to easily extend our models and
create variants of processes. Type-based modelling and
polymorphism enable the dynamic selection of
appropriate process steps at runtime, creating flexible
processes. We present a graphical editor and a
distributed execution engine for our meta-model. In
addition, we discuss the use of semantic technologies
for smart workflows.

Keywords: workflow language, process modelling,
cyber-physical systems, meta-modelling, smart factory,
automation

1. INTRODUCTION
Business processes have gained an increasing
importance in describing complex correlations between
distributed systems and executing composite
workflows. Especially in the field of online trading and
manufacturing, modelling and execution languages for
business processes, e. g, BPMN and BPEL, have proven
to be well suited to formalize high-level sequences of
tasks and activities involving web service invokes and
human interaction.

However, the on-going integration and
combination of embedded systems and distributed
cloud-based services into cyber-physical systems (CPS)
and smart environments, lead to a number of new
requirements for process modelling and execution. Most
current workflow languages lack structure,
expressiveness, and flexibility to meet these
requirements.

Some of the drawbacks of state of the art process
modelling languages include: only weak means for
typing of process components and data, mostly static
calls to a fixed set of service types, and reduced
flexibility considering runtime modelling and
adaptation. Modelling tools often produce code, which
is incompatible with execution environments, and only
a subset of the model elements is supported.

In addition, many long-established workflow
modelling languages have been extended and evolved
over time, mostly by adding new components and
modifying the respective meta-models in order to meet
new requirements and provide new functionality. This
has led to complex and ambiguous process modelling
languages containing special solutions for specific
problems and domains.

In this paper, we present a new meta-model for
processes designed to meet the requirements of current
and future ubiquitous systems. We believe that by using
model-based approaches, we can create a modular and
extensible workflow language. With the help of this
language, we will then be able to model flexible and
dynamic processes for the automation of workflows.
Current semantic technologies will help us with
developing a smart and context-adaptive process engine
and modelling environment. We focus on adhering to
simple structures for the core of the process meta-model
and at the same time being able to easily extend this
model by means of object-orientation. Nevertheless, we
are able to map process models of other workflow
languages to models compatible with our system.

The paper is structured as follows: Section 2
presents some basic terms and explanations. Section 3
lists requirements that are introduced with the
emergence of ubiquitous systems. Section 4 gives a
brief overview of related work and evaluates state-of-
the-art workflow languages with respect to their
suitability for cyber-physical systems. Section 5
describes our own process model for complex and
flexible business processes in detail. Section 6
demonstrates practical aspects with respect to
implementing the model, a modelling tool, and a
process execution engine. Section 7 discusses our
approach and shows some aspects to further extend our
research. Section 8 concludes the paper.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

73

mailto:ronny.seiger@tu-dresden.de
mailto:christine.keller@tu-dresden.de
mailto:florian.niebling@tu-dresden.de
mailto:thomas.schlegel@tu-dresden.de

2. BASIC CONCEPTS
We will start with clarifying basic terms and concepts
that are used within the context of this paper. As our
focus lies on the scope of ubiquitous computing and
cyber-physical systems, we will introduce these
concepts first, as well as, our understanding of
processes. Second, the paradigms of model-driven
architecture and meta-modelling will be presented, as
our own approach is based on these concepts.

2.1. Ubiquitous Computing
In his article “The Computer for the 21s Century”,
published in 1991 (Weiser, 1991), Mark Weiser
introduced his vision of “the age of calm technology,
when technology recedes into the background of our
lives” and thereby coined the term “ubiquitous
computing”. Ubiquitous computing can be found at the
intersection of pervasive computing, mobile computing,
and ambient intelligence, and stands for systems that are
unobtrusively integrated into everyday objects and
activities.

2.2. Cyber-physical Systems
Cyber-physical systems (CPS) can be regarded as a
major step towards Weiser’s vision. CPS comprise
networks of embedded, heterogeneous sensors and
actuators into complex distributed systems, that are
often linked to cloud-based services and cross-boundary
systems. A closed loop between local sensing, remote
processing, and local controlling can often be found
within cyber-physical systems. Real-world objects are
represented digitally and taken into consideration when
planning and executing processes in a cyber-physical
system. In addition, CPS are highly dynamic with
respect to their components, i.e. devices and services
can be added and removed at any time. By constantly
collecting context information (Abowd et al., 1999),
cyber-physical systems are able to adapt themselves to
the current users and environment, thus evolving into
so-called “smart spaces”, e.g. smart homes, smart
offices, and smart factories. CPS intend to create a
strong link between the physical world and the cyber
world, and to support their users with performing their
daily tasks.

2.3. Processes
Processes (workflows) have been used to describe
complex sequences of tasks and function calls in order
to model the high-level behaviour of so-called systems
of systems. Due to the large increase of distributed and
loosely coupled systems over the last decades, the need
for an additional layer describing workflows between
multiple entities has been generated. With traditional
approaches, it is not possible any more to implement all
algorithms and cross-boundary interactions within the
software application shipped with one product. The
usage of processes helps with creating autonomous
environment and the automation of repeating tasks.

We therefore define a process for the scope of our
work as follows:

Processes represent a set of actions (process
steps), which are connected with each other by a
unidirectional order relation describing the order of
execution of the steps (Schlegel, 2008).

2.4. Model-driven Architecture & Meta-Modelling
Using models throughout the development process of a
software system incorporates several advantages with
respect to modularization, reusability, extensibility,
automatic code generation, and maintenance. The
process layer on top of software products and systems
should also be highly model-based and described by a
platform independent model (PIM).

With the Meta-Object Facility (MOF), the OMG
(http://www.omg.org/mof/) introduced a de facto
standard for model-driven engineering (Aßmann et al.,
2006)), describing several (meta-) levels of abstraction
for modelling various kinds of systems. As we will also
be dealing with models and meta-models throughout
this paper, we want to clarify our understanding of these
terms and their use within the context of process
modelling at this point.

• Process Meta-Meta-Model: A process meta-

meta-model (MOF-M2) defines the semantic
and syntactic elements and structures used in
the process meta-model.

• Process Meta-Model: A process meta-model
defines all elements, types, and relations that
can be used for modelling processes as well as
their structural combinations. The process
meta-model (MOF-M1) is an instance of the
process meta-meta-model.

• Process Model: A process model is the
abstract description of an actual process, which
can be instantiated and executed at runtime.
The process model (MOF-M0) is an instance
of the process meta-model.

• Process Instance: A process instance
represents a concrete process at execution
time, having a runtime state. The process
instance is an instance of the process model.

In the main part of this work, we will put our focus

on presenting a new process meta-model, but we will
also briefly describe the underlying process meta-meta-
model.

3. REQUIREMENTS FOR MODELLING

UBIQUITOUS PROCESSES
In order to evaluate current workflow languages with
respect to their suitability for being used within
ubiquitous systems (UbiSys), we will first outline some
special requirements that come along with developing
ubiquitous systems. Some of the following requirements
are already predominant within current system
architectures. However, UbiSys combine them to a
large degree.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

74

http://www.omg.org/mof/

• Dynamics: Ubiquitous systems, as well as
cyber-physical systems (CPS), are
characterized as being highly dynamic with
respect to the number and availability of its
components, devices, and services. Therefore,
modelling service invocations within processes
on the instance level, i.e. the invocation of a
concrete service, may not be suitable due to its
possible unavailability. Hence, we also need to
be able to model process steps and service calls
on the type level, i.e. a certain type of service
should be invoked. This way, we do not
necessarily need to know at modelling time,
which concrete service or device will be
executing the process step.

• Heterogeneity: In a CPS there are usually
numerous heterogeneous services and devices
integrated into a so-called system of systems.
However, when modelling workflows, a
unified view on these components would be
helpful. In addition, we would like to support a
wide range of different services types and be
able to easily extend this set. Complementary
to the aforementioned requirement, there
should also be a way of assigning an activity to
a certain handling entity (resource) on the
instance or the type level.

• Complexity: Processes within CPS can be
very complex and contain a large number of
process steps, both, composite and atomic, as
well as further process elements. This makes
means for hierarchical structuring and
aggregating process components necessary in
order to master high levels of complexity. A
modular meta-model can also leverage
exchangeability and reusability of process
components.

• Parallelism: Numerous process instances may
exist in parallel in a CPS and their execution
times and cycles can also vary considerably.
As processes often influence other processes
indirectly, i.e. without an explicit specification
of the interrelations within the process model,
there should be means for supporting this way
of process interaction and intercommunication
available. This will leverage the integration of
loosely-coupled systems and processes.

• Evolution: With respect to long-lasting
processes, there may also be a need for
changing the underlying process model during
instance execution, due to a change of
conditions or within the context of the process
environment. It is often necessary to generate
variants of models in line with new
requirements or needs, e.g. within custom
industrial production processes.

• Distribution: An important additional aspect
concerns the execution of the process models.
Engines for executing business processes are
usually designed to be a central orchestration

entity calling the services corresponding to the
business process model. However, in a cyber-
physical environment, e.g. a smart home, there
often is no central high-performance server
available. Instead, several small low-powered
devices are distributed and embedded into the
environment. Our future aim is to also use
these resources for executing parts of a process
in a distributed way.

4. RELATED WORK
During the last years, a lot of special purpose and
domain specific modelling languages for processes have
evolved. These languages formalize which process
elements exist and how they can be composed into a
workflow (cf. Meta-Process modelling).

The most well-known and de facto standard
graphical notation in the domain of business processes
is the Business Process Model and Notation (BPMN
2.0) (http://www.omg.org/spec/BPMN/), which has
been under on-going development and extension since
2001. It includes concepts for supporting the process
elements mentioned in section 3 and integrates a large
variety of additional modelling entities, e.g.
conversations and an extensive set of event types.
BPMN descends from event-driven process chains
(EPC) (Dumas et al., 2005) - another form of process
modelling. EPCs are not suitable for modelling complex
process structures, though.

The complexity of BPMN has made this workflow
language hard to use for non-experts. Due to the large
variety of language elements, processes with the same
“meaning” can be modelled in a lot of different ways
(Wohed et al., 2006). Many of BMPN’s elements were
introduced in order to fulfil requirements from
modelling processes in the business domain, which
usually resorts to web services and static calls on the
instance level. BPMN does not support the creation of
variants of processes or partial processes. As it is our
goal to model autonomous workflows for more dynamic
and complex heterogeneous environments, we need a
more structured and flexible language, which also
allows the evolution and extension of models.

The Business Process Execution Language (BPEL)
(https://www.oasis-open.org/committees/wsbpel) is
similar to BPMN, but it incorporates a more formal way
to describe business processes resulting in a stronger
execution semantic and therefore better engine support.
However, most of the aforementioned drawbacks of
BPMN can also be observed with BPEL (Wohed et al.,
2006), which therefore does not proof to be suitable for
our purpose, as well.

XPDL (http://www.wfmc.org/xpdl.html) is a
workflow language intended for interchanging process
definitions between different process notations,
especially for serializing graphical BPMN models. It is
extensible and provides strong execution semantics.
However, it is based on BPMN and therefore has
similar properties, which makes its application within
UbiSys not feasible, too.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

75

http://www.omg.org/spec/BPMN/
https://www.oasis-open.org/committees/wsbpel
http://www.wfmc.org/xpdl.html

There also exists a large variety of further
workflow modelling languages developed within an
academic or an industrial context. Petri net based
languages provide formal execution semantics and
verification. Modelling Petri net based workflows is
very complex, though, and none of the existing
languages provides means for the dynamic allocation of
process invocations or the creation of process variants.
YAWL (van der Aalst and ter Hofstede, 2005), which is
a famous Petri net based language, only supports the
modelling of control flow. However, within CPS, we
also need to be able to express data flow and assign
resources to process steps.

In (Ranganathan and McFaddin, 2004) a workflow
execution system based on BPEL is proposed, which is
intended to facilitate user interaction with web services
in a pervasive environment. This work is mostly
concerned with automatic discovery and integration of
pervasive web services. It is suitable for solving aspects
of the requirements concerning the dynamic integration
and deletion of components in a ubiquitous system, but
does not consider further requirements in detail.

(Montagut and Molva, 2005) present a workflow
management system supporting the distributed
execution and dynamic assignment of resources and
tasks for pervasive environments. The concept based on
BPEL covers several of our requirements, but still does
not allow the extension of models and the creation of
process variants due to its BPEL-based nature.

When evaluating current workflow languages and
management systems with respect to the
aforementioned requirements, one finds that the
majority of these languages fulfil the requirements
listed in section 3 only partially. We therefore propose a
new language for modelling workflows within
ubiquitous environments.

In designing our own workflow language, we will
try to adhere to the basic principles of BPMN and Petri
nets. Therefore, we will still be able to support BPMN
models and map our process models to higher-level
Petri nets. We will also integrate concepts that have
been presented within related research to solve some
aspects with respect to the requirements presented in
section 3.

5. MODELLING COMPLEX AND FLEXIBLE

PROCESSES

5.1.1. Process Elements and Information
In order to develop a language for modelling processes
within ubiquitous systems, we need to identify the most
important elements necessary for formalizing
workflows in these environments (Van der Aalst et al.,
2003).

• Process step: A process step represents an

activity or task to be executed.
• Transition: A transition represents a

unidirectional connection between process
steps, creating an ordered workflow.

• Data: A data element represents actual data of
a specific type being consumed or produced by
a process step.

• Event: An event represents a certain
occurrence of a special happening and can lead
to other events or trigger new processes.

• Logic step: A logic step is a special type of a
process step containing logic for controlling
the activation flow of other process steps.

• Process: A process contains one or more
process steps, transitions, data, events, and
logic steps, and can be regarded as the
description of a closed sequence of actions.

• Handling Entities: A handling entity (resource)
is responsible for performing one or more
process steps. An entity can be a certain
device, a service, and also a human being.

In addition, the process elements mentioned above

need to have a certain set of attributes. We will detail
this information later on when we describe our concept.

5.2. Meta-Meta-Model for Processes
First of all, we will present the underlying meta-meta-
model for our process meta-model. We find that we
only need Components and Relations as elements for
describing the meta-model (Schlegel, 2008).

Components are a well-established concept, e.g. in
the field of software engineering, for describing a
closed entity providing a defined functionality
(Szyperski, 1998). They can be accessed via their
interfaces, which describe requirements for using the
components and the result of their usage (pre-
/postconditions). Components can be composed to
larger components and also split into smaller ones up to
the point of atomic components. As components
provide several positive properties, we will apply this
central concept on process steps and processes, which
therefore represent instances of components, and use the
term “process components” in the meta-meta-model.

Figure 1: Process Meta-Meta-Model

Relations are used for describing the formal

structure of the process meta-model. Using the Unified
Modelling Language (UML) as a basis for modelling
connections between components, we transfer the
object-oriented concepts of inheritance, association, and
composition into our meta-model. These meta-model
elements therefore represent instances of relations, i.e.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

76

connections between components. Figure 1 depicts this
meta-meta-model.

5.3. Meta-Model for Processes
Based on the meta-meta-model presented in the
previous section, we can now define the meta-model for
processes, which is an instance of the meta-meta-model.

5.3.1. Process Components
The central element of the meta-model is the Process
Step, which is the basic component for modelling
processes. In our object-oriented model, we differentiate
between Composite Steps containing one or more
process steps (depicted by the composition relation
subSteps in Figure 2), and Atomic Steps. Composite and
atomic steps are seen as specializations of a process step
(depicted by the inheritance relations in Figure 2). A
Process is regarded as a set of one or more process
steps that form a self-contained workflow. This way,
processes can themselves contain processes consisting
of one or more process steps (cf. composite design
pattern) and at the same time, a process can be seen as
one step of a super ordinate process (depicted by the
parentStep association). This modular design leverages
extensibility and reusability when modelling complex
processes.

Figure 2: Process Components of the Meta-Model

5.3.2. Component Ports and Flow Relations
In order to describe processes as an ordered control
flow and data flow graph of process steps, the meta-
model provides transitions between process
components. As depicted in Figure 3, we introduce the
concept of Ports as parts of a process step. A port
represents an entry or exit point for data or control flow
concerning a process step.

At runtime, ports will have an activation state,
which will be used to decide on the point of execution
of the according process step. The process step will only
be executed if all of its start ports are in an activated
state.

In general, we differentiate between Data Ports
and Control Ports, which are both specializations of
port objects (inheritance relation). Data ports are used
for modelling data that are consumed by process steps
at their start ports, or that are produced by process steps
at their end ports. This concept can be compared to a
simple function call within a common programming

language specifying in-going data necessary for
executing the function, and out-going data as a result of
executing the function. Data ports represent data of a
certain Data Type of a possibly external data type
model (type association). To support the use of data
elements of different types, multiple entry ports
(startDataPorts) and out-going ports (endDataPorts)
can be contained within a process step. Data ports will
be activated after the successful execution of a process
step.

Control ports are used for connecting process steps
that do not require a passing of data. Similarly to data
ports, diverging control flow can be modelled by using
multiple endControlPorts. A process step can also
contain multiple start ports, which may be connected to
multiple preceding process steps. In the end, all data
and control ports at the start of a process step need to be
activated in order to start the process step execution.

Figure 3: Component Ports and Transition Relation

Connections between process steps are modelled

by using Transition objects, which can be viewed as a
relation between exactly one port of a process step
(sourcePort association) and exactly one port of another
process step (targetPort association). A transition is
defined as part of the port it originates from
(composition relation outTransitions). This way, a port
contains all of its out-going transitions. As the
modelling of loops requires additional attention, we will
introduce a special process component concept for
loops later on. Therefore, transitions are only allowed
between the ports of distinct process steps.

The connections between the set of elements of the
meta-meta-model and the elements of the meta-model
are presented in Figure 4.

When a process step has been executed
successfully, all of its end ports become active, which
also activates the transitions connected to the respective
end ports. In a succeeding step, the transitions’ target
ports are activated.

 When modelling composite process steps, there
also needs to be a transition created between the start
ports of parent step and its child step, as well as
between their respective end ports. Transitions are only
allowed between process steps on the same hierarchical

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

77

level and their direct parents. This cannot be enforced
structurally by the model, but it has to be formalized by
using additional constraints, for example by using the
Object Constraint Language for object-oriented models
(http://www.omg.org/spec/OCL/). Consequentially, we
eliminate dependencies between process steps that are
not adjacent to each other or in a direct parent-child-
relation.

Figure 4: The Meta-Model Elements as Instances of the
Meta-Meta-Model

In describing relations between process

components in such a manner, we are able to model a
flow of process step executions and we can leverage the
encapsulation of a closed sub-workflow and its reuse in
another process. Figure 5 shows an example of a
process model including process steps, which again
contain other encapsulated process steps.

Figure 5: Exemplary Process Model with Nested
Processes

5.3.3. Component Specializations
Until now, we mostly described the basic structure of
our process meta-model, focussing on process
components and process steps respectively, and
showing how to compose them. Yet, we need more
specific forms of process steps in order to have a
comprehensive set of modelling elements. Thanks to the
object-oriented approach of modelling the process
elements, we can easily extend the previously presented
concepts of atomic and composite process steps by
inheritance and thereby introduce specializations of
process steps. Figure 6 depicts a small set of possible
extensions for data and control flow often used within
other workflow languages, e.g. BPMN and BPEL.

An extension of the composite step may be used in
order to represent Loops within a process. A loop could
again be extended by specialized loop type, e.g. a do-
while-loop, containing a loop condition and a loop
counter.

Several logic elements for controlling the
activation flow within a process are modelled as
specializations of an atomic step. In general, a process

step will be executed if all of its start ports are in an
activated state. This can be seen as the logical AND
connective. Other logical connectors for joining the
control flow and formalizing a more special activation
pattern (e.g. OR and XOR connectives) need to be
modelled explicitly. In the same way, we can define
conditional join operations based on data at the start
port of the respective process step (e.g. IF). The forking
of an activation flow is modelled by creating multiple
transitions from the corresponding out-going port of a
process step to the eligible target process steps (see
Figure 5).

We also introduced process steps for Data
Manipulation. The Data Explosion component
analyses a complex data type and breaks it down into
primitive data types. The Data Implosion step
combines primitive data types into a complex type.

For calling external functionality, we added the
Service Invoke component into our model. By further
specializing this type of process step, we can support
various kinds of service calls, e.g. to REST or SOAP
based web services, or to OSGi services, via their
respective services addresses or interfaces.

Figure 6: Possible Extensions of Process Steps

Thanks to the object-oriented modelling approach,

we can easily extend and further refine the types of
process steps via inheritance within the meta-model. In
the same way, we can extend the (external) data type
model used for defining types of data ports.

5.4. Events and Process Slots
Now we have an extensive set of elements for
modelling processes. However, additional means for
representing special model elements in ubiquitous
processes need to be available.

We introduce Events as a special type of process
step to the model (see Figure 7) to allow for the
representation of loosely coupled architectures
predominant in cyber-physical systems (Talcott, 2008).
Events are viewed and modelled as process steps. The
triggering of an event as a consequence of an action
within a process is described by creating an event
process step and connecting its in-going control port to
the control port of the process step responsible for
triggering the event. This event can have a special
payload and be handled by an event processing engine
(cf. complex event processing). The consumption of an
event by another process step, as well as the triggering

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

78

http://www.omg.org/spec/OCL/

of other events or processes by the event, can be
modelled accordingly. Interaction of and
communication between processes is therefore event-
based.

Figure 7: Event and Process Slot Extensions

To allow for the runtime usage of a process step

whose implementation is not available at modelling
time, we introduce a place holder for process steps
called Process Slot. Using this concept, the interface of
a process step can be defined without providing a
specific functionality. The execution engine is then able
to bind the process slot to a specific process step by
matching the existing process steps to the slot’s ports
and name at runtime.

5.5. Creating Domain-specific Processes
Thus far, we defined a domain-independent vocabulary
of elements for modelling processes within ubiquitous
systems. However, we also need to add semantics to the
process components in order to describe the
functionality of a process component, and to have more
sophisticated means to model and select processes
appropriately. Therefore, a type attribute for process
components is introduced, which represents a domain-
specific semantic description of the actions a process
actually performs. This could be, for example, a user
interaction step or a fetching step in the smart home
domain. Backed up by a domain-specific object-
oriented model or ontology, we can leverage the
properties of this domain-knowledge and create flexible
and adaptive process models. Based on the domain
model, an execution engine could search from a
repository of available process steps for a process step
with a matching type attribute.

In using a structured domain-model for the
typification of process components, we gain several
advantages when choosing an appropriate process step.
On the one hand, process step types can be refined via
inheritance, e.g. a data input process can be specialized
to a speech input, text input, and gesture input process.
A fetching process can be specialized to a paper
fetching process, as depicted in Figure 8.

Figure 8: Component Type Refinements via Inheritance

On the other hand, we can make use of
polymorphism of process steps, i.e. a process step can
be of a certain type and at the same time also of its

parent types, which can be continued transitively. At
runtime of a process instance, the process engine could
walk through the inheritance structures and search for a
process step with a matching type or one of its
specializations that is suitable and available for
execution. For example, a process step providing data
input may be required but not specified any further and
therefore a speech input process step is used, as it is also
of type data input and therefore has the same general
properties.

A more sophisticated method of creating and using
a domain-specific model would be to use semantic
technologies. This would result in more advanced
mechanisms for process modelling and selection by
using verification and deduction based on logic.

Regardless of which method for modelling the
domain-knowledge is applied, creating a comprehensive
and structured model for describing the application
domain is an important requirement for achieving
flexibility in process execution.

5.6. Component Attributes and Roles
In order to meet the requirements described in Section 3
and to complete the meta-model, we introduced a set of
further attributes for the process components.

Besides attributes for naming and identifying
components on the model and instance level, an
optional role-based handling entity for a process step
can be defined (Montagut and Molva, 2005), (List and
Korherr, 2006). This corresponds to the swim lane and
pool concepts of BPMN. We can define an entity
(resource), again on the instance or type level, that is
responsible for executing the respective process step.
By using roles of an underlying model for this
allocation of process step handler, we are able to
orchestrate multiple devices and classes of devices, and
also achieve a basic form of access control (Sandhu,
1998). This concept also supports our future goal of
distributing process execution across multiple devices
in ubiquitous systems.

In addition to the aforementioned attributes
considering properties at modelling time, we also need
to have component attributes with respect to runtime
properties. These include, amongst others, activation
states for ports and transitions, as well as an execution
state for process steps.

6. MODELLING ENVIRONMENT AND

AUTHORING TOOLS

6.1. Technical Realization
The implementation of the introduced process meta-
model is based on the Eclipse Modeling Framework
(EMF) (http://www.eclipse.org/modeling/emf/), which
provides an extensive set of applications and tools for
modelling and creating domain-specific languages. This
open source framework is based on Java and supports
mechanisms for automated source code generation,
model verification, and persisting model information
with the help of the XMI (XML Metadata Interchange)

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

79

http://www.eclipse.org/modeling/emf/

format. Thanks to its object-oriented design, we can
map our models and concepts directly to objects that
can be used for process execution by a corresponding
process engine.

6.2. Process Authoring
Apart from implementing the meta-model, we have
started developing a toolchain for supporting the
computer-based authoring of processes.

6.2.1. Process Editor
Using built-in tools of EMF, table-based editors for
Ecore models can be generated automatically.
Unfortunately, the complexity and low lucidity of these
editors requires the user to have in-depth knowledge of
the underlying model. To improve usability in terms of
consistency, conciseness, and comprehensibility, we
have developed a graphical process editor based on the
Graphiti tooling infrastructure for EMF
(http://www.eclipse.org/graphiti/).

Figure 9 displays a screenshot of the process
editor, which can be divided into three areas. (1) shows
the main drawing area for the process model, (2) shows
the set of modelling elements available, and (3) shows
the components’ attributes.

Figure 9: Eclipse-based Process Model Editor

At some points, however, enforcing additional

rules for dealing with exceptional combinations of
components and relations is necessary during
modelling. Formalizing these restrictions inside the
meta-model would usually lead to a large increase of its
complexity. Constraints that cannot be applied
structurally by the model are defined separately using
the EMF Validation Framework. After creating a
process model using drag and drop from the element list
to the main drawing area, a check of the model’s
validity according to the meta-model and to the separate
external constraints is performed.

The result of creating a model is an XML-based
representation of the process model including graphical
information for visualization of the process model
inside the editor and additional process monitoring
tools.
6.2.2. Process Repository
In order to model and execute domain-specific
processes, we are currently planning on developing a

repository for processes and process steps that can be
accessed by the editor and the execution engine.

Thanks to the model-based design and modularity,
we will be able to use the graphical process editor for
the initial creation of processes and process steps which
can be submitted to the repository, and to further extend
and adapt the processes inside the repository.

At this point, we will also be using a semantic
description for processes, their ports, and their domain-
specific types to have additional means for checking
compatibility of process steps, recommending suitable
process steps, and verifying a modelled process. To do
so, we are able to draw upon an extensive set of
methods from the field of semantic web technologies.

6.3. Process Execution
We have also started implementing a process engine for
executing instances of process models based on the
meta-model presented before.

The XML-based description of a process generated
by the process editor is loaded and validated by the
process engine. Afterwards, the engine creates a process
instance and walks through the objects defined in the
respective process model, calling the methods
implemented for handling the specific type of process
element.

In order to represent and persist the runtime state
of a process, we extended our meta-model with runtime
information. Consequently, we also have an extended
version of our meta-model for representing the state of
process instances (Lehmann et al., 2010).

Process instances are currently executed on a
central orchestration server supporting the invocation of
web services and OSGi services via remote procedure
calls. However, as part of our future work, we will be
able to distribute the execution of process steps and
complex processes across several servers based on a
peer-super-peer network infrastructure (Schlegel, 2009).

7. DISCUSSION
Our aim in designing a process modelling language was
to be able to cope with new requirements that come
along with the emerging new form of complex systems
of systems, called cyber-physical systems.

Despite the complexity of CPS, we tried to adhere
to simple structures with respect to the meta-models.
Using components as basis for describing process steps,
we are able to have modular entities representing one
process step, which can be combined into larger,
complex process building blocks and reused for
modelling. These hierarchical structures help with
modelling and visualizing complex processes.

Principles of object-orientation help us with
defining connections and relations between process
steps on the syntactical level, but also on the semantic
level. Based on this structured domain-specific model,
the meaning process components, as well as their
relations with each other, can be described and used for
further semantic processing. However, we have to
investigate the feasibility of using semantic

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

80

http://www.eclipse.org/graphiti/

technologies, as processes can contain time-critical
components and performance may be an issue with their
execution.

Due to the object-oriented approach, we are able to
extend our process meta-model very easily without
changing the model’s core structures. The creation of
specializations and variants of processes is also possible
via object-orientation (Schlegel, 2009). However, the
domain model for describing process components needs
to be developed and available before modelling
processes.

By using the concept of process slots and defining
handling entities, as well as, process steps on the type
level at modelling time, we achieve a high level of
flexibility when executing process instances. Thanks to
the model-based description and to polymorphism, the
execution engine can search for suitable process steps
and handlers at runtime, walking through the
inheritance tree. In case a process handler of a certain
type is unavailable or a certain process step cannot be
executed, the engine could find a matching replacement
within one of its specializations or generalizations. In
order to make use of these ad hoc replacement
mechanisms, we also need a model for describing
process handling entities and to define their capabilities,
as well as, the matching requirements for the execution
of the respective process steps. A basic form of this
validation can already be achieved by checking the
process steps interface, i.e. its type, its ports, and its
name, with respect to compatibility.

The introduction of events for intercommunication
and interaction of processes leverages the integration of
loosely-coupled systems and supports flexibility in
process execution, as process components can trigger
other processes without an explicit representation of this
relation in the process model. However, we need
additional rules for describing correlations among
events and between events and process steps, which
have to be handled by an auxiliary event processing
engine.

Due to the process component composition, we are
able to regard every process component as a self-
contained process, which can be executed on a set of
distributed process engines. Though, in order to achieve
this distribution of process execution, there need to be
communication and synchronization mechanisms
among the process engines.

We based our design on the core concepts and
elements of common workflow languages, e.g. BPMN,
and therefore are able to map processes created with
similar workflow languages to our model and execution
engine. Furthermore, our workflow language facilitates
the modelling and execution of more complex and
dynamic processes within heterogeneous environments,
achieving a high level of autonomy of processes.

However, there are several additional models and
rules necessary in order to describe all aspects regarding
process types, process execution, and process handlers.

Evaluating our concepts with respect to the
requirements presented in section 3, we find that we can

meet all the requirements that were introduced as being
novel with respect to ubiquitous systems. Related
research within an academic and industrial context is
currently able to satisfy only a subset of the
requirements, as the workflow languages are often too
static and lack expressiveness, as well as, flexibility.

In order to evaluate our approach and to show its
feasibility, we implemented the process meta-model, as
well as, started to implement an execution engine and a
graphical editor for process models as first elements of
a our toolchain for ubiquitous processes. We will extend
and improve our tools and models in the near future.

8. CONCLUSION & FUTURE WORK
In this paper, we presented a new meta-model for
formalizing workflows within cyber-physical
environments developed from a software engineering
perspective. State-of-the-art workflow languages often
only support parts of the new requirements introduced
by cyber-phyiscal systems. Therefore, we developed a
new meta-model for processes, which is mainly based
on concepts of object-orientation and of component-
based systems. We adhered to the paradigm of model-
driven architectures, which yielded several benefits with
respect to modularity, reusability, and extensibility of
process components. By adding domain-specific
descriptions to process components and using semantic
models, we achieve a high flexibility when executing
processes via a dynamic allocation of process handlers.
Thus, workflows become more intelligent and
autonomous.

However, there are still several open issues that
need to be resolved in order to develop an extensive
process toolchain for current and future cyber-physical
environments. We believe that with our process meta-
model, we laid the foundation for smart autonomous
workflows within complex heterogeneous
environments.

Our future work will include the development of a
process component repository and a semantic domain-
model for the classification of process components in
the area of smart homes. We will also model
capabilities of process execution entities and
requirements necessary for executing process steps. In
doing so, the process engine will be able to select
appropriate process steps at runtime. One step further,
we will investigate the usage of agent-based technology
in order to find appropriate process steps more
intelligently during execution.

We will also investigate the mapping of our
process meta-model to concepts used within Petri nets.
The advantages of formal verification may prove
helpful when constructing and analysing safety critical
workflows as they may be required within cyber-
physical systems. Hierarchical Petri nets may be
suitable for our meta-model to be mapped to.

In order to better adapt workflows to the current
situation and environment, we are going to use context
information collected by the sensors within the
ubiquitous systems and thereby make the processes

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

81

context-aware and more intelligent, (Wieland et al.,
2008). These adaptations can be directly incorporated
into the process models (Yongyun et al., 2007).

The decentralized execution of workflows will also
be one of our main focuses with respect to further
research activities (Hens et al., 2010). Distributing
workflows across several orchestration peers may
increase the availability of the workflow system and
make the workflows more resilient against failures and
outages (Friese et al., 2005).

ACKNOWLEDGMENTS
This research has been partially funded within the
VICCI project under the grant number 100098171 by
the European Social Fund (ESF) and the German
Federal State of Saxony.

REFERENCES
Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N.,

Smith, M., Steggles, P., 1999. Towards a Better
Understanding of Context and Context-Awareness.
HUC '99 Proceedings of the 1st international
symposium on Handheld and Ubiquitous
Computing, pp. 304-307. London: Springer-Verlag
UK.

Aßmann, U., Zschaler, S., Wagner, G., 2006.
Ontologies, Meta-models, and the Model-Driven
Paradigm. Ontologies for Software Engineering
and Software Technology, pp. 249-273.
Heidelberg: Springer-Verlag Berlin.

Scheer, A.-W., Thomas, O., Adam, O., 2005. Process
Modeling using Event-Driven Process Chains. In:
Dumas, M., van der Aalst, W. M. P., ter Hofstede,
A. H. M., eds. Process-Aware Information
Systems: Bridging People and Software through
Process Technology. Hoboken, NJ: John Wiley &
Sons.

Friese T., Müller, J. P., Freisleben, B., 2005. Self-
healing Execution of Business Processes Based on
a Peer-to-Peer Service Architecture. In: Beigel,
M., Lukowicz, P., eds. Systems Aspects in Organic
and Pervasive Computing, Lecture Notes in
Computer Science. Heidelberg: Springer Berlin
Heidelberg, pp. 108-123.

Hens, P., Snoeck, M., De Backer, M., Poels, G., 2010.
Transforming standard process models to
decentralized autonomous entities. 5th
SIKS/BENAIS Conference on Enterprise
Information Systems (EIS 2010), pp. 97–106.
November 16, Eindhoven, The Netherlands.

Lehmann, G., Blumendorf, M., Trollmann, F.,
Albayrak, S., 2010. Meta-modeling runtime
models. MODELS'10 Proceedings of the 2010
international conference on Models in software
engineering, pp. 209–223. October 2-8, Oslo,
Norway.

List, B., Korherr, B., 2006. An evaluation of conceptual
business process modelling languages. SAC '06
Proceedings of the 2006 ACM symposium on

Applied computing, pp. 1532-1539. April 23-27,
Dijon, France.

Montagut, F., Molva, R., 2005. Enabling pervasive
execution of workflows. International Conference
on Collaborative Computing: Networking,
Applications and Worksharing. December 19-21,
San Jose, USA.

Ranganathan, A., McFaddin, S., 2004. Using workflows
to coordinate Web services in pervasive
computing environments. Proceedings IEEE
International Conference on Web Services, 2004,
pp. 288-295. July 6-9, San Diego, USA.

Sandhu, R. S., 1998. Role-based Access Control. In:
Zelkowitz M. V., eds. Advances in Computers.
Elsevier, 237-286.

Schlegel, T., 2008. Laufzeit-Modellierung
objektorientierter interaktiver Prozesse in der
Produktion. PhD Thesis (in German). Universität
Stuttgart.

Schlegel, T., 2009. Object-Oriented Interactive
Processes in Decentralized Production Systems.
Human Interface and the Management of
Information. Designing Information Environments,
Lecture Notes in Computer Science . Vol. 5617:
pp. 296–305.

Szyperski, C., 1998. Component Software - Beyond
Object-Oriented Programming. Addison-Wesley /
ACM Press.

Talcott, C., 2008. Cyber-Physical Systems and Events.
Software-Intensive Systems and New Computing
Paradigms, pp. 101-115. Heidelberg: Springer-
Verlag Berlin.

Van der Aalst, W. M. P., Ter Hofstede, A. H. M.,
Kiepuszewski, B., Barros, A. P., 2003. Workflow
Patterns. Distributed and Parallel Databases Vol.
14: pp. 5-51.

Van der Aalst, W. M. P., Ter Hofstede, A. H. M., 2005.
YAWL: yet another workflow language.
Information Systems Vol. 30: pp. 245-275.

Weiser, M., 1991. The computer for the 21st century.
Scientific American, Vol. 265: pp. 94-104.

Wieland, M., Kaczmarczyk, P., Nicklas, D., 2008.
Context Integration for Smart Workflows. Percom
2008 Sixth Annual IEEE International Conference
on Pervasive Computing and Communications, pp.
239-242. March 17-21, Hong Kong.

Wohed, P., van der Aalst, W. M. P., Dumas, M., ter
Hofstede, A. H. M., Russel, N. 2006. On the
Suitability of BPMN for Business Process
Modelling. Lecture Notes in Computer Science
Vol. 4102/2006: pp. 161-176.

Yongyun, C., Kyoungho, S., Jongsun, C., Jaeyoung, C.,
2007. A Context-Adaptive Workflow Language
for Ubiquitous Computing Environments.
Computational Science and Its Applications –
ICCSA 2007, Lecture Notes in Computer Science
Vol. 4706: pp. 829-838.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

82

