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ABSTRACT 
Cyber-physical Systems introduce several new 
requirements for modelling and executing autonomous 
processes. Current workflow languages are not able to 
completely fulfil these requirements, as they mostly 
lack expressiveness and flexibility. In this paper, we 
therefore present a new workflow language for 
formalizing processes within heterogeneous and 
dynamic environments. Our approach is highly model-
based and uses aspects of component-based software 
engineering. We present an object-oriented meta-model 
for describing processes, which enables the hierarchical 
composition of process components and leverages 
reusability. In addition, a domain-specific model is used 
for typification of process elements. Due to the object-
orientation, we are able to easily extend our models and 
create variants of processes. Type-based modelling and 
polymorphism enable the dynamic selection of 
appropriate process steps at runtime, creating flexible 
processes. We present a graphical editor and a 
distributed execution engine for our meta-model. In 
addition, we discuss the use of semantic technologies 
for smart workflows. 

 
Keywords: workflow language, process modelling, 
cyber-physical systems, meta-modelling, smart factory, 
automation 

 
1. INTRODUCTION 
Business processes have gained an increasing 
importance in describing complex correlations between 
distributed systems and executing composite 
workflows. Especially in the field of online trading and 
manufacturing, modelling and execution languages for 
business processes, e. g, BPMN and BPEL, have proven 
to be well suited to formalize high-level sequences of 
tasks and activities involving web service invokes and 
human interaction. 

However, the on-going integration and 
combination of embedded systems and distributed 
cloud-based services into cyber-physical systems (CPS) 
and smart environments, lead to a number of new 
requirements for process modelling and execution. Most 
current workflow languages lack structure, 
expressiveness, and flexibility to meet these 
requirements. 

Some of the drawbacks of state of the art process 
modelling languages include: only weak means for 
typing of process components and data, mostly static 
calls to a fixed set of service types, and reduced 
flexibility considering runtime modelling and 
adaptation. Modelling tools often produce code, which 
is incompatible with execution environments, and only 
a subset of the model elements is supported.  

In addition, many long-established workflow 
modelling languages have been extended and evolved 
over time, mostly by adding new components and 
modifying the respective meta-models in order to meet 
new requirements and provide new functionality. This 
has led to complex and ambiguous process modelling 
languages containing special solutions for specific 
problems and domains. 

In this paper, we present a new meta-model for 
processes designed to meet the requirements of current 
and future ubiquitous systems. We believe that by using 
model-based approaches, we can create a modular and 
extensible workflow language. With the help of this 
language, we will then be able to model flexible and 
dynamic processes for the automation of workflows. 
Current semantic technologies will help us with 
developing a smart and context-adaptive process engine 
and modelling environment. We focus on adhering to 
simple structures for the core of the process meta-model 
and at the same time being able to easily extend this 
model by means of object-orientation. Nevertheless, we 
are able to map process models of other workflow 
languages to models compatible with our system. 

The paper is structured as follows: Section 2 
presents some basic terms and explanations. Section 3 
lists requirements that are introduced with the 
emergence of ubiquitous systems. Section 4 gives a 
brief overview of related work and evaluates state-of-
the-art workflow languages with respect to their 
suitability for cyber-physical systems. Section 5 
describes our own process model for complex and 
flexible business processes in detail. Section 6 
demonstrates practical aspects with respect to 
implementing the model, a modelling tool, and a 
process execution engine. Section 7 discusses our 
approach and shows some aspects to further extend our 
research. Section 8 concludes the paper. 
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2. BASIC CONCEPTS 
We will start with clarifying basic terms and concepts 
that are used within the context of this paper. As our 
focus lies on the scope of ubiquitous computing and 
cyber-physical systems, we will introduce these 
concepts first, as well as, our understanding of 
processes. Second, the paradigms of model-driven 
architecture and meta-modelling will be presented, as 
our own approach is based on these concepts. 

 
2.1. Ubiquitous Computing 
In his article “The Computer for the 21s Century”, 
published in 1991 (Weiser, 1991), Mark Weiser 
introduced his vision of “the age of calm technology, 
when technology recedes into the background of our 
lives” and thereby coined the term “ubiquitous 
computing”. Ubiquitous computing can be found at the 
intersection of pervasive computing, mobile computing, 
and ambient intelligence, and stands for systems that are 
unobtrusively integrated into everyday objects and 
activities.  

 
2.2. Cyber-physical Systems 
Cyber-physical systems (CPS) can be regarded as a 
major step towards Weiser’s vision. CPS comprise 
networks of embedded, heterogeneous sensors and 
actuators into complex distributed systems, that are 
often linked to cloud-based services and cross-boundary 
systems. A closed loop between local sensing, remote 
processing, and local controlling can often be found 
within cyber-physical systems. Real-world objects are 
represented digitally and taken into consideration when 
planning and executing processes in a cyber-physical 
system. In addition, CPS are highly dynamic with 
respect to their components, i.e. devices and services 
can be added and removed at any time. By constantly 
collecting context information (Abowd et al., 1999), 
cyber-physical systems are able to adapt themselves to 
the current users and environment, thus evolving into 
so-called “smart spaces”, e.g. smart homes, smart 
offices, and smart factories. CPS intend to create a 
strong link between the physical world and the cyber 
world, and to support their users with performing their 
daily tasks. 

 
2.3. Processes 
Processes (workflows) have been used to describe 
complex sequences of tasks and function calls in order 
to model the high-level behaviour of so-called systems 
of systems. Due to the large increase of distributed and 
loosely coupled systems over the last decades, the need 
for an additional layer describing workflows between 
multiple entities has been generated. With traditional 
approaches, it is not possible any more to implement all 
algorithms and cross-boundary interactions within the 
software application shipped with one product. The 
usage of processes helps with creating autonomous 
environment and the automation of repeating tasks. 

We therefore define a process for the scope of our 
work as follows: 

Processes represent a set of actions (process 
steps), which are connected with each other by a 
unidirectional order relation describing the order of 
execution of the steps (Schlegel, 2008).  

 
2.4. Model-driven Architecture & Meta-Modelling 
Using models throughout the development process of a 
software system incorporates several advantages with 
respect to modularization, reusability, extensibility, 
automatic code generation, and maintenance. The 
process layer on top of software products and systems 
should also be highly model-based and described by a 
platform independent model (PIM).  

With the Meta-Object Facility (MOF), the OMG 
(http://www.omg.org/mof/) introduced a de facto 
standard for model-driven engineering (Aßmann et al., 
2006)), describing several (meta-) levels of abstraction 
for modelling various kinds of systems. As we will also 
be dealing with models and meta-models throughout 
this paper, we want to clarify our understanding of these 
terms and their use within the context of process 
modelling at this point. 

 
• Process Meta-Meta-Model: A process meta-

meta-model (MOF-M2) defines the semantic 
and syntactic elements and structures used in 
the process meta-model. 

• Process Meta-Model: A process meta-model 
defines all elements, types, and relations that 
can be used for modelling processes as well as 
their structural combinations. The process 
meta-model (MOF-M1) is an instance of the 
process meta-meta-model.  

• Process Model: A process model is the 
abstract description of an actual process, which 
can be instantiated and executed at runtime. 
The process model (MOF-M0) is an instance 
of the process meta-model. 

• Process Instance: A process instance 
represents a concrete process at execution 
time, having a runtime state. The process 
instance is an instance of the process model. 

 
In the main part of this work, we will put our focus 

on presenting a new process meta-model, but we will 
also briefly describe the underlying process meta-meta-
model.  

 
3. REQUIREMENTS FOR MODELLING 

UBIQUITOUS PROCESSES 
In order to evaluate current workflow languages with 
respect to their suitability for being used within 
ubiquitous systems (UbiSys), we will first outline some 
special requirements that come along with developing 
ubiquitous systems. Some of the following requirements 
are already predominant within current system 
architectures. However, UbiSys combine them to a 
large degree. 
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• Dynamics: Ubiquitous systems, as well as 
cyber-physical systems (CPS), are 
characterized as being highly dynamic with 
respect to the number and availability of its 
components, devices, and services. Therefore, 
modelling service invocations within processes 
on the instance level, i.e. the invocation of a 
concrete service, may not be suitable due to its 
possible unavailability. Hence, we also need to 
be able to model process steps and service calls 
on the type level, i.e. a certain type of service 
should be invoked. This way, we do not 
necessarily need to know at modelling time, 
which concrete service or device will be 
executing the process step. 

• Heterogeneity: In a CPS there are usually 
numerous heterogeneous services and devices 
integrated into a so-called system of systems. 
However, when modelling workflows, a 
unified view on these components would be 
helpful. In addition, we would like to support a 
wide range of different services types and be 
able to easily extend this set. Complementary 
to the aforementioned requirement, there 
should also be a way of assigning an activity to 
a certain handling entity (resource) on the 
instance or the type level. 

• Complexity: Processes within CPS can be 
very complex and contain a large number of 
process steps, both, composite and atomic, as 
well as further process elements. This makes 
means for hierarchical structuring and 
aggregating process components necessary in 
order to master high levels of complexity. A 
modular meta-model can also leverage 
exchangeability and reusability of process 
components. 

• Parallelism: Numerous process instances may 
exist in parallel in a CPS and their execution 
times and cycles can also vary considerably. 
As processes often influence other processes 
indirectly, i.e. without an explicit specification 
of the interrelations within the process model, 
there should be means for supporting this way 
of process interaction and intercommunication 
available. This will leverage the integration of 
loosely-coupled systems and processes.  

• Evolution: With respect to long-lasting 
processes, there may also be a need for 
changing the underlying process model during 
instance execution, due to a change of 
conditions or within the context of the process 
environment. It is often necessary to generate 
variants of models in line with new 
requirements or needs, e.g. within custom 
industrial production processes. 

• Distribution: An important additional aspect 
concerns the execution of the process models. 
Engines for executing business processes are 
usually designed to be a central orchestration 

entity calling the services corresponding to the 
business process model. However, in a cyber-
physical environment, e.g. a smart home, there 
often is no central high-performance server 
available. Instead, several small low-powered 
devices are distributed and embedded into the 
environment. Our future aim is to also use 
these resources for executing parts of a process 
in a distributed way. 

 
4. RELATED WORK 
During the last years, a lot of special purpose and 
domain specific modelling languages for processes have 
evolved. These languages formalize which process 
elements exist and how they can be composed into a 
workflow (cf. Meta-Process modelling). 

The most well-known and de facto standard 
graphical notation in the domain of business processes 
is the Business Process Model and Notation (BPMN 
2.0) (http://www.omg.org/spec/BPMN/), which has 
been under on-going development and extension since 
2001. It includes concepts for supporting the process 
elements mentioned in section 3 and integrates a large 
variety of additional modelling entities, e.g. 
conversations and an extensive set of event types. 
BPMN descends from event-driven process chains 
(EPC) (Dumas et al., 2005) - another form of process 
modelling. EPCs are not suitable for modelling complex 
process structures, though.  

The complexity of BPMN has made this workflow 
language hard to use for non-experts. Due to the large 
variety of language elements, processes with the same 
“meaning” can be modelled in a lot of different ways 
(Wohed et al., 2006). Many of BMPN’s elements were 
introduced in order to fulfil requirements from 
modelling processes in the business domain, which 
usually resorts to web services and static calls on the 
instance level. BPMN does not support the creation of 
variants of processes or partial processes.  As it is our 
goal to model autonomous workflows for more dynamic 
and complex heterogeneous environments, we need a 
more structured and flexible language, which also 
allows the evolution and extension of models. 

The Business Process Execution Language (BPEL) 
(https://www.oasis-open.org/committees/wsbpel) is 
similar to BPMN, but it incorporates a more formal way 
to describe business processes resulting in a stronger 
execution semantic and therefore better engine support. 
However, most of the aforementioned drawbacks of 
BPMN can also be observed with BPEL (Wohed et al., 
2006), which therefore does not proof to be suitable for 
our purpose, as well. 

XPDL (http://www.wfmc.org/xpdl.html) is a 
workflow language intended for interchanging process 
definitions between different process notations, 
especially for serializing graphical BPMN models. It is 
extensible and provides strong execution semantics. 
However, it is based on BPMN and therefore has 
similar properties, which makes its application within 
UbiSys not feasible, too. 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

75

http://www.omg.org/spec/BPMN/
https://www.oasis-open.org/committees/wsbpel
http://www.wfmc.org/xpdl.html


There also exists a large variety of further 
workflow modelling languages developed within an 
academic or an industrial context. Petri net based 
languages provide formal execution semantics and 
verification. Modelling Petri net based workflows is 
very complex, though, and none of the existing 
languages provides means for the dynamic allocation of 
process invocations or the creation of process variants. 
YAWL (van der Aalst and ter Hofstede, 2005), which is 
a famous Petri net based language, only supports the 
modelling of control flow. However, within CPS, we 
also need to be able to express data flow and assign 
resources to process steps. 

In (Ranganathan and McFaddin, 2004) a workflow 
execution system based on BPEL is proposed, which is 
intended to facilitate user interaction with web services 
in a pervasive environment. This work is mostly 
concerned with automatic discovery and integration of 
pervasive web services. It is suitable for solving aspects 
of the requirements concerning the dynamic integration 
and deletion of components in a ubiquitous system, but 
does not consider further requirements in detail. 

(Montagut and Molva, 2005) present a workflow 
management system supporting the distributed 
execution and dynamic assignment of resources and 
tasks for pervasive environments. The concept based on 
BPEL covers several of our requirements, but still does 
not allow the extension of models and the creation of 
process variants due to its BPEL-based nature. 

When evaluating current workflow languages and 
management systems with respect to the 
aforementioned requirements, one finds that the 
majority of these languages fulfil the requirements 
listed in section 3 only partially. We therefore propose a 
new language for modelling workflows within 
ubiquitous environments. 

In designing our own workflow language, we will 
try to adhere to the basic principles of BPMN and Petri 
nets. Therefore, we will still be able to support BPMN 
models and map our process models to higher-level 
Petri nets. We will also integrate concepts that have 
been presented within related research to solve some 
aspects with respect to the requirements presented in 
section 3. 
 
5. MODELLING COMPLEX AND FLEXIBLE 

PROCESSES 
 

5.1.1. Process Elements and Information 
In order to develop a language for modelling processes 
within ubiquitous systems, we need to identify the most 
important elements necessary for formalizing 
workflows in these environments (Van der Aalst et al., 
2003). 

 
• Process step: A process step represents an 

activity or task to be executed. 
• Transition: A transition represents a 

unidirectional connection between process 
steps, creating an ordered workflow. 

• Data: A data element represents actual data of 
a specific type being consumed or produced by 
a process step. 

• Event: An event represents a certain 
occurrence of a special happening and can lead 
to other events or trigger new processes. 

• Logic step: A logic step is a special type of a 
process step containing logic for controlling 
the activation flow of other process steps. 

• Process: A process contains one or more 
process steps, transitions, data, events, and 
logic steps, and can be regarded as the 
description of a closed sequence of actions. 

• Handling Entities: A handling entity (resource) 
is responsible for performing one or more 
process steps. An entity can be a certain 
device, a service, and also a human being. 

 
In addition, the process elements mentioned above 

need to have a certain set of attributes. We will detail 
this information later on when we describe our concept. 

 
5.2. Meta-Meta-Model for Processes 
First of all, we will present the underlying meta-meta-
model for our process meta-model. We find that we 
only need Components and Relations as elements for 
describing the meta-model (Schlegel, 2008). 

Components are a well-established concept, e.g. in 
the field of software engineering, for describing a 
closed entity providing a defined functionality 
(Szyperski, 1998). They can be accessed via their 
interfaces, which describe requirements for using the 
components and the result of their usage (pre-
/postconditions). Components can be composed to 
larger components and also split into smaller ones up to 
the point of atomic components. As components 
provide several positive properties, we will apply this 
central concept on process steps and processes, which 
therefore represent instances of components, and use the 
term “process components” in the meta-meta-model. 

 

 
Figure 1: Process Meta-Meta-Model 

 
Relations are used for describing the formal 

structure of the process meta-model. Using the Unified 
Modelling Language (UML) as a basis for modelling 
connections between components, we transfer the 
object-oriented concepts of inheritance, association, and 
composition into our meta-model. These meta-model 
elements therefore represent instances of relations, i.e. 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

76



connections between components. Figure 1 depicts this 
meta-meta-model. 

 
5.3. Meta-Model for Processes 
Based on the meta-meta-model presented in the 
previous section, we can now define the meta-model for 
processes, which is an instance of the meta-meta-model. 

 
5.3.1. Process Components 
The central element of the meta-model is the Process 
Step, which is the basic component for modelling 
processes. In our object-oriented model, we differentiate 
between Composite Steps containing one or more 
process steps (depicted by the composition relation 
subSteps in Figure 2), and Atomic Steps. Composite and 
atomic steps are seen as specializations of a process step 
(depicted by the inheritance relations in Figure 2). A 
Process is regarded as a set of one or more process 
steps that form a self-contained workflow. This way, 
processes can themselves contain processes consisting 
of one or more process steps (cf. composite design 
pattern) and at the same time, a process can be seen as 
one step of a super ordinate process (depicted by the 
parentStep association). This modular design leverages 
extensibility and reusability when modelling complex 
processes. 

 

 
Figure 2: Process Components of the Meta-Model 

 
5.3.2. Component Ports and Flow Relations 
In order to describe processes as an ordered control 
flow and data flow graph of process steps, the meta-
model provides transitions between process 
components. As depicted in Figure 3, we introduce the 
concept of Ports as parts of a process step. A port 
represents an entry or exit point for data or control flow 
concerning a process step. 

At runtime, ports will have an activation state, 
which will be used to decide on the point of execution 
of the according process step. The process step will only 
be executed if all of its start ports are in an activated 
state. 

In general, we differentiate between Data Ports 
and Control Ports, which are both specializations of 
port objects (inheritance relation). Data ports are used 
for modelling data that are consumed by process steps 
at their start ports, or that are produced by process steps 
at their end ports. This concept can be compared to a 
simple function call within a common programming 

language specifying in-going data necessary for 
executing the function, and out-going data as a result of 
executing the function. Data ports represent data of a 
certain Data Type of a possibly external data type 
model (type association). To support the use of data 
elements of different types, multiple entry ports 
(startDataPorts) and out-going ports (endDataPorts) 
can be contained within a process step. Data ports will 
be activated after the successful execution of a process 
step.  

Control ports are used for connecting process steps 
that do not require a passing of data. Similarly to data 
ports, diverging control flow can be modelled by using 
multiple endControlPorts. A process step can also 
contain multiple start ports, which may be connected to 
multiple preceding process steps. In the end, all data 
and control ports at the start of a process step need to be 
activated in order to start the process step execution. 

 

 
Figure 3: Component Ports and Transition Relation 

  
Connections between process steps are modelled 

by using Transition objects, which can be viewed as a 
relation between exactly one port of a process step 
(sourcePort association) and exactly one port of another 
process step (targetPort association). A transition is 
defined as part of the port it originates from 
(composition relation outTransitions). This way, a port 
contains all of its out-going transitions.  As the 
modelling of loops requires additional attention, we will 
introduce a special process component concept for 
loops later on. Therefore, transitions are only allowed 
between the ports of distinct process steps. 

The connections between the set of elements of the 
meta-meta-model and the elements of the meta-model 
are presented in Figure 4. 

When a process step has been executed 
successfully, all of its end ports become active, which 
also activates the transitions connected to the respective 
end ports. In a succeeding step, the transitions’ target 
ports are activated. 

 When modelling composite process steps, there 
also needs to be a transition created between the start 
ports of parent step and its child step, as well as 
between their respective end ports. Transitions are only 
allowed between process steps on the same hierarchical 
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level and their direct parents. This cannot be enforced 
structurally by the model, but it has to be formalized by 
using additional constraints, for example by using the 
Object Constraint Language for object-oriented models 
(http://www.omg.org/spec/OCL/). Consequentially, we 
eliminate dependencies between process steps that are 
not adjacent to each other or in a direct parent-child-
relation. 

 

 
Figure 4: The Meta-Model Elements as Instances of the 
Meta-Meta-Model 

  
In describing relations between process 

components in such a manner, we are able to model a 
flow of process step executions and we can leverage the 
encapsulation of a closed sub-workflow and its reuse in 
another process. Figure 5 shows an example of a 
process model including process steps, which again 
contain other encapsulated process steps.  

 

 
Figure 5: Exemplary Process Model with Nested 
Processes 

 
5.3.3. Component Specializations 
Until now, we mostly described the basic structure of 
our process meta-model, focussing on process 
components and process steps respectively, and 
showing how to compose them. Yet, we need more 
specific forms of process steps in order to have a 
comprehensive set of modelling elements. Thanks to the 
object-oriented approach of modelling the process 
elements, we can easily extend the previously presented 
concepts of atomic and composite process steps by 
inheritance and thereby introduce specializations of 
process steps. Figure 6 depicts a small set of possible 
extensions for data and control flow often used within 
other workflow languages, e.g. BPMN and BPEL. 

An extension of the composite step may be used in 
order to represent Loops within a process. A loop could 
again be extended by specialized loop type, e.g. a do-
while-loop, containing a loop condition and a loop 
counter. 

Several logic elements for controlling the 
activation flow within a process are modelled as 
specializations of an atomic step. In general, a process 

step will be executed if all of its start ports are in an 
activated state. This can be seen as the logical AND 
connective. Other logical connectors for joining the 
control flow and formalizing a more special activation 
pattern (e.g. OR and XOR connectives) need to be 
modelled explicitly. In the same way, we can define 
conditional join operations based on data at the start 
port of the respective process step (e.g. IF). The forking 
of an activation flow is modelled by creating multiple 
transitions from the corresponding out-going port of a 
process step to the eligible target process steps (see 
Figure 5). 

We also introduced process steps for Data 
Manipulation. The Data Explosion component 
analyses a complex data type and breaks it down into 
primitive data types. The Data Implosion step 
combines primitive data types into a complex type. 

For calling external functionality, we added the 
Service Invoke component into our model. By further 
specializing this type of process step, we can support 
various kinds of service calls, e.g. to REST or SOAP 
based web services, or to OSGi services, via their 
respective services addresses or interfaces. 

 

 
Figure 6: Possible Extensions of Process Steps 
 
Thanks to the object-oriented modelling approach, 

we can easily extend and further refine the types of 
process steps via inheritance within the meta-model. In 
the same way, we can extend the (external) data type 
model used for defining types of data ports. 

 
5.4. Events and Process Slots 
Now we have an extensive set of elements for 
modelling processes. However, additional means for 
representing special model elements in ubiquitous 
processes need to be available. 

We introduce Events as a special type of process 
step to the model (see Figure 7) to allow for the 
representation of loosely coupled architectures 
predominant in cyber-physical systems (Talcott, 2008). 
Events are viewed and modelled as process steps.  The 
triggering of an event as a consequence of an action 
within a process is described by creating an event 
process step and connecting its in-going control port to 
the control port of the process step responsible for 
triggering the event. This event can have a special 
payload and be handled by an event processing engine 
(cf. complex event processing). The consumption of an 
event by another process step, as well as the triggering 
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of other events or processes by the event, can be 
modelled accordingly. Interaction of and 
communication between processes is therefore event-
based. 

 

 
Figure 7: Event and Process Slot Extensions 

 
To allow for the runtime usage of a process step 

whose implementation is not available at modelling 
time, we introduce a place holder for process steps 
called Process Slot. Using this concept, the interface of 
a process step can be defined without providing a 
specific functionality. The execution engine is then able 
to bind the process slot to a specific process step by 
matching the existing process steps to the slot’s ports 
and name at runtime. 

 
5.5. Creating Domain-specific Processes 
Thus far, we defined a domain-independent vocabulary 
of elements for modelling processes within ubiquitous 
systems. However, we also need to add semantics to the 
process components in order to describe the 
functionality of a process component, and to have more 
sophisticated means to model and select processes 
appropriately. Therefore, a type attribute for process 
components is introduced, which represents a domain-
specific semantic description of the actions a process 
actually performs. This could be, for example, a user 
interaction step or a fetching step in the smart home 
domain. Backed up by a domain-specific object-
oriented model or ontology, we can leverage the 
properties of this domain-knowledge and create flexible 
and adaptive process models. Based on the domain 
model, an execution engine could search from a 
repository of available process steps for a process step 
with a matching type attribute. 

In using a structured domain-model for the 
typification of process components, we gain several 
advantages when choosing an appropriate process step. 
On the one hand, process step types can be refined via 
inheritance, e.g. a data input process can be specialized 
to a speech input, text input, and gesture input process. 
A fetching process can be specialized to a paper 
fetching process, as depicted in Figure 8.  

 

 
Figure 8: Component Type Refinements via Inheritance 

On the other hand, we can make use of 
polymorphism of process steps, i.e. a process step can 
be of a certain type and at the same time also of its 

parent types, which can be continued transitively. At 
runtime of a process instance, the process engine could 
walk through the inheritance structures and search for a 
process step with a matching type or one of its 
specializations that is suitable and available for 
execution. For example, a process step providing data 
input may be required but not specified any further and 
therefore a speech input process step is used, as it is also 
of type data input and therefore has the same general 
properties. 

A more sophisticated method of creating and using 
a domain-specific model would be to use semantic 
technologies. This would result in more advanced 
mechanisms for process modelling and selection by 
using verification and deduction based on logic. 

Regardless of which method for modelling the 
domain-knowledge is applied, creating a comprehensive 
and structured model for describing the application 
domain is an important requirement for achieving 
flexibility in process execution. 

 
5.6. Component Attributes and Roles 
In order to meet the requirements described in Section 3 
and to complete the meta-model, we introduced a set of 
further attributes for the process components. 

Besides attributes for naming and identifying 
components on the model and instance level, an 
optional role-based handling entity for a process step 
can be defined (Montagut and Molva, 2005), (List and 
Korherr, 2006). This corresponds to the swim lane and 
pool concepts of BPMN. We can define an entity 
(resource), again on the instance or type level, that is 
responsible for executing the respective process step. 
By using roles of an underlying model for this 
allocation of process step handler, we are able to 
orchestrate multiple devices and classes of devices, and 
also achieve a basic form of access control (Sandhu, 
1998). This concept also supports our future goal of 
distributing process execution across multiple devices 
in ubiquitous systems. 

In addition to the aforementioned attributes 
considering properties at modelling time, we also need 
to have component attributes with respect to runtime 
properties. These include, amongst others, activation 
states for ports and transitions, as well as an execution 
state for process steps. 

 
6. MODELLING ENVIRONMENT AND 

AUTHORING TOOLS 
 
6.1. Technical Realization 
The implementation of the introduced process meta-
model is based on the Eclipse Modeling Framework 
(EMF) (http://www.eclipse.org/modeling/emf/), which 
provides an extensive set of applications and tools for 
modelling and creating domain-specific languages. This 
open source framework is based on Java and supports 
mechanisms for automated source code generation, 
model verification, and persisting model information 
with the help of the XMI (XML Metadata Interchange) 
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format. Thanks to its object-oriented design, we can 
map our models and concepts directly to objects that 
can be used for process execution by a corresponding 
process engine. 
 
6.2. Process Authoring 
Apart from implementing the meta-model, we have 
started developing a toolchain for supporting the 
computer-based authoring of processes. 

 
6.2.1. Process Editor 
Using built-in tools of EMF, table-based editors for 
Ecore models can be generated automatically. 
Unfortunately, the complexity and low lucidity of these 
editors requires the user to have in-depth knowledge of 
the underlying model. To improve usability in terms of 
consistency, conciseness, and comprehensibility, we 
have developed a graphical process editor based on the 
Graphiti tooling infrastructure for EMF 
(http://www.eclipse.org/graphiti/). 

Figure 9 displays a screenshot of the process 
editor, which can be divided into three areas. (1) shows 
the main drawing area for the process model, (2) shows 
the set of modelling elements available, and (3) shows 
the components’ attributes. 

 

 
Figure 9: Eclipse-based Process Model Editor 
 
At some points, however, enforcing additional 

rules for dealing with exceptional combinations of 
components and relations is necessary during 
modelling. Formalizing these restrictions inside the 
meta-model would usually lead to a large increase of its 
complexity. Constraints that cannot be applied 
structurally by the model are defined separately using 
the EMF Validation Framework. After creating a 
process model using drag and drop from the element list 
to the main drawing area, a check of the model’s 
validity according to the meta-model and to the separate 
external constraints is performed. 

The result of creating a model is an XML-based 
representation of the process model including graphical 
information for visualization of the process model 
inside the editor and additional process monitoring 
tools. 
6.2.2. Process Repository 
In order to model and execute domain-specific 
processes, we are currently planning on developing a 

repository for processes and process steps that can be 
accessed by the editor and the execution engine. 

Thanks to the model-based design and modularity, 
we will be able to use the graphical process editor for 
the initial creation of processes and process steps which 
can be submitted to the repository, and to further extend 
and adapt the processes inside the repository.  

At this point, we will also be using a semantic 
description for processes, their ports, and their domain-
specific types to have additional means for checking 
compatibility of process steps, recommending suitable 
process steps, and verifying a modelled process. To do 
so, we are able to draw upon an extensive set of 
methods from the field of semantic web technologies. 

 
6.3. Process Execution 
We have also started implementing a process engine for 
executing instances of process models based on the 
meta-model presented before. 

The XML-based description of a process generated 
by the process editor is loaded and validated by the 
process engine. Afterwards, the engine creates a process 
instance and walks through the objects defined in the 
respective process model, calling the methods 
implemented for handling the specific type of process 
element. 

In order to represent and persist the runtime state 
of a process, we extended our meta-model with runtime 
information. Consequently, we also have an extended 
version of our meta-model for representing the state of 
process instances (Lehmann et al., 2010). 

Process instances are currently executed on a 
central orchestration server supporting the invocation of 
web services and OSGi services via remote procedure 
calls. However, as part of our future work, we will be 
able to distribute the execution of process steps and 
complex processes across several servers based on a 
peer-super-peer network infrastructure (Schlegel, 2009). 

 
7. DISCUSSION 
Our aim in designing a process modelling language was 
to be able to cope with new requirements that come 
along with the emerging new form of complex systems 
of systems, called cyber-physical systems. 

Despite the complexity of CPS, we tried to adhere 
to simple structures with respect to the meta-models. 
Using components as basis for describing process steps, 
we are able to have modular entities representing one 
process step, which can be combined into larger, 
complex process building blocks and reused for 
modelling. These hierarchical structures help with 
modelling and visualizing complex processes. 

Principles of object-orientation help us with 
defining connections and relations between process 
steps on the syntactical level, but also on the semantic 
level. Based on this structured domain-specific model, 
the meaning process components, as well as their 
relations with each other, can be described and used for 
further semantic processing. However, we have to 
investigate the feasibility of using semantic 
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technologies, as processes can contain time-critical 
components and performance may be an issue with their 
execution. 

Due to the object-oriented approach, we are able to 
extend our process meta-model very easily without 
changing the model’s core structures. The creation of 
specializations and variants of processes is also possible 
via object-orientation (Schlegel, 2009). However, the 
domain model for describing process components needs 
to be developed and available before modelling 
processes. 

By using the concept of process slots and defining 
handling entities, as well as, process steps on the type 
level at modelling time, we achieve a high level of 
flexibility when executing process instances. Thanks to 
the model-based description and to polymorphism, the 
execution engine can search for suitable process steps 
and handlers at runtime, walking through the 
inheritance tree. In case a process handler of a certain 
type is unavailable or a certain process step cannot be 
executed, the engine could find a matching replacement 
within one of its specializations or generalizations. In 
order to make use of these ad hoc replacement 
mechanisms, we also need a model for describing 
process handling entities and to define their capabilities, 
as well as, the matching requirements for the execution 
of the respective process steps. A basic form of this 
validation can already be achieved by checking the 
process steps interface, i.e. its type, its ports, and its 
name, with respect to compatibility. 

The introduction of events for intercommunication 
and interaction of processes leverages the integration of 
loosely-coupled systems and supports flexibility in 
process execution, as process components can trigger 
other processes without an explicit representation of this 
relation in the process model. However, we need 
additional rules for describing correlations among 
events and between events and process steps, which 
have to be handled by an auxiliary event processing 
engine.  

Due to the process component composition, we are 
able to regard every process component as a self-
contained process, which can be executed on a set of 
distributed process engines. Though, in order to achieve 
this distribution of process execution, there need to be 
communication and synchronization mechanisms 
among the process engines. 

We based our design on the core concepts and 
elements of common workflow languages, e.g. BPMN, 
and therefore are able to map processes created with 
similar workflow languages to our model and execution 
engine. Furthermore, our workflow language facilitates 
the modelling and execution of more complex and 
dynamic processes within heterogeneous environments, 
achieving a high level of autonomy of processes. 

However, there are several additional models and 
rules necessary in order to describe all aspects regarding 
process types, process execution, and process handlers. 

Evaluating our concepts with respect to the 
requirements presented in section 3, we find that we can 

meet all the requirements that were introduced as being 
novel with respect to ubiquitous systems. Related 
research within an academic and industrial context is 
currently able to satisfy only a subset of the 
requirements, as the workflow languages are often too 
static and lack expressiveness, as well as, flexibility. 

In order to evaluate our approach and to show its 
feasibility, we implemented the process meta-model, as 
well as, started to implement an execution engine and a 
graphical editor for process models as first elements of 
a our toolchain for ubiquitous processes. We will extend 
and improve our tools and models in the near future. 

 
8. CONCLUSION & FUTURE WORK 
In this paper, we presented a new meta-model for 
formalizing workflows within cyber-physical 
environments developed from a software engineering 
perspective. State-of-the-art workflow languages often 
only support parts of the new requirements introduced 
by cyber-phyiscal systems. Therefore, we developed a 
new meta-model for processes, which is mainly based 
on concepts of object-orientation and of component-
based systems. We adhered to the paradigm of model-
driven architectures, which yielded several benefits with 
respect to modularity, reusability, and extensibility of 
process components. By adding domain-specific 
descriptions to process components and using semantic 
models, we achieve a high flexibility when executing 
processes via a dynamic allocation of process handlers. 
Thus, workflows become more intelligent and 
autonomous. 

However, there are still several open issues that 
need to be resolved in order to develop an extensive 
process toolchain for current and future cyber-physical 
environments. We believe that with our process meta-
model, we laid the foundation for smart autonomous 
workflows within complex heterogeneous 
environments. 

Our future work will include the development of a 
process component repository and a semantic domain-
model for the classification of process components in 
the area of smart homes. We will also model 
capabilities of process execution entities and 
requirements necessary for executing process steps. In 
doing so, the process engine will be able to select 
appropriate process steps at runtime. One step further, 
we will investigate the usage of agent-based technology 
in order to find appropriate process steps more 
intelligently during execution. 

We will also investigate the mapping of our 
process meta-model to concepts used within Petri nets. 
The advantages of formal verification may prove 
helpful when constructing and analysing safety critical 
workflows as they may be required within cyber-
physical systems. Hierarchical Petri nets may be 
suitable for our meta-model to be mapped to. 

In order to better adapt workflows to the current 
situation and environment, we are going to use context 
information collected by the sensors within the 
ubiquitous systems and thereby make the processes 
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context-aware and more intelligent, (Wieland et al., 
2008). These adaptations can be directly incorporated 
into the process models (Yongyun et al., 2007). 

The decentralized execution of workflows will also 
be one of our main focuses with respect to further 
research activities (Hens et al., 2010). Distributing 
workflows across several orchestration peers may 
increase the availability of the workflow system and 
make the workflows more resilient against failures and 
outages (Friese et al., 2005). 
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