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ABSTRACT 

This paper proposes a new learning algorithm for Higher 

Order Neural Networks for the purpose of modelling and 

applies it in three benchmark problems. Higher Order 

Neural Networks (HONNs) are Artificial Neural 

Networks (ANNs) in which the net input to a 

computational neuron is a weighted sum of its inputs and 

products of its inputs (rather than just a weighted sum of 

its inputs as in traditional ANNs). It was well known that 

HONNs can implement invariant pattern recognition. The 

new learning algorithm proposed is an Extreme Learning 

Machine (ELM) algorithm. ELM randomly chooses 

hidden neurons and analytically determines the output 

weights. With ELM algorithm only the connection 

weights between hidden layer and output layer are 

adjusted. This paper proposes an ELM algorithm for 

HONN models and applies it in an image processing 

problem, a medical problem, and an energy efficiency 

problem. The experimental results demonstrate the 

advantages of HONN models with the ELM algorithm in 

such aspects as significantly faster learning and improved 

generalization abilities (in comparison with standard 

HONN and traditional ANN models). 

 

KEYWORDS: Artificial Neural Network, Extreme 

Learning Machine, Feedforward Neural Network, Higher 

Order Neural Network, Machine Learning. 

 

1. INTRODUCTION 

An actively researched machine learning algorithm, 

Artificial Neural Networks (ANNs) have been widely 

used as powerful information processing tools for 

modeling a diverse range of applications. HONNs (Higher 

Order Neural Networks) (Lee et al, 1986) are networks in 

which the net input to a computational neuron is a 

weighted sum of its inputs and products of its inputs (see 

Figure 1.1 for an example of a second order HONN). 

Such neuron is called a Higher-order Processing Unit 

(HPU) (Lippman, 1989). It was known that HONN’s can 

implement invariant pattern recognition (Psaltis et al, 

1988 ; Reid et al, 1989 ; Wood et al, 1996). In (Giles et al, 

1987) it was shown that HONN's have impressive 

computational, storage and learning capabilities. In 

(Redding et al, 1993), HONN’s were proved to be at least 

as powerful as any other FNN (Feedforward Neural 

Network) architecture when the orders of the networks are 

the same. Kosmatopoulos et al (1995) studied the 

approximation and learning properties of one class of 

recurrent HONNs and applied these architectures to the 

identification of dynamical systems. Thimm et al (1997) 

proposed a suitable initialization method for HONN’s and 

compared this method to weight initialization techniques 

for FNNs. More recently, In Alanis et al (2007) an 

application of HONN was proposed to successfully solve 

the tracking problem for a class of nonlinear systems in 

discrete time using backstepping technique. HONNs were 

employed in Xu (2010a, 2010b) for several data mining 

tasks and achieved significant results which outperformed 

conventional ANNs. A HONN was investigated in Dunis 

(2011) for forecasting and trading EUR/USA exchange 

rates, with outstanding results when compared against 

other ANN architectures as well as traditional statistical 

approaches. In Fallahnezhad et al (2011) a hybrid HONN 

model was developed for handling several benchmark 

classification problems, resulted in significant 

improvements of accuracy (in comparison with the best 

accuracy obtained from other methods).  

Unlike traditional ANN learning algorithms 

(such as back-propagation), Extreme Learning Machine 

(ELM) algorithm randomly chooses hidden neurons and 

analytically determines the output weights (Huang et al 

2005, 2006, 2008). With ELM algorithm, only the 

connection weights between hidden layer and output layer 

are adjusted. Many types of hidden nodes including 

additive nodes, RBF (radial basis function) nodes, 

multiplicative nodes, and other non-neural alike nodes can 

be used as long as they are piecewise nonlinear. ELM 

algorithm tends to generalize better at very fast learning 
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speed: it can learn thousands of times faster than 

conventional popular learning algorithms (Huang et al 

2006). 

 

 
Figure 1.1, Left, FNN with three inputs and two hidden nodes; 

Right, second order HONN with three inputs 

 

This paper develops an ELM algorithm for 

HONN models and applies it in an image processing 

problem, a medical problem, and an energy efficiency 

problem. Following the introduction, Section 2 introduces 

the ELM algorithm for HONN. Section 3 describes three 

HONN modelling experiments to demonstrate the 

advantages of ELM HONN (against standard HONN and 

traditional ANNs such as MLP and RBF networks). 

Results are given and discussed. Section 4 summarises 

this report.  

 

2. HONN MODELS WITH ELM ALGORITHM 

Based on a modified version of a two-dimensional 

(second order) HONN defined in Zhang et al (2002), this 

paper proposes the following ELM algorithm for HONN. 

The main idea of ELM lies in the random selection of 

hidden neuron activation functions (must be infinitely 

differentiable) with random initialization of the SFNN 

(single-hidden-layer feedforward neural network) weights 

and biases. Then, the input weights and biases do not need 

to be adjusted during training, only the output weights are 

learned. In this work, an adaptive neuron activation 

function (infinitely differentiable) has been used. The free 

parameters in the adaptive activation function are adjusted 

in a way similar to how the output weights are tuned. 

Consider a set of s distinct training samples (xi, 

yi) with n

i Rx   and m

i Ry  , where i = 1, 2, …, s, n and 

m are positive integers, where n represents the dimension 

of an input space, and m the dimension of an output space. 

Then an SFNN with N hidden neurons can be 

mathematically represented by 
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with f being the randomly selected neuron activation 

function, Wi the input to hidden layer weight vector,  bi 

the biases, oi the output weights, and X the input vector: 
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In this work, the following adaptive neuron 

activation function is used: 

 

 
xB

xB

e

A
eAxf








2

1

1

2
1

2

 (2.2) 

 

where A1, A2, B1, and B2 are real variables which will be 

adjusted during training (in the same way as connection 

weights, see the end of the current section)). A 

justification of the use of free parameters in a neuron 

activation function can be found in Zhang et al (2002). 

In case of two-dimensional (second order) 

HONN with a single hidden layer, equation (2.1) becomes 
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Equations (2.3) and (2.4) show that for a two-dimensional 

HONN, the number of input neurons is defined by 
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Assume that the single layer HONN 

approximates the training samples perfectly, then the 

errors between the estimated outputs and the actual 

outputs are zero, which means 
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where Y is the output vector:   [            ]
 . 

Equation (2.6) can be rewritten as      , 

with 
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and   as the hidden layer to output layer weight vector: 

  [            ]
 . 

Then the idea of ELM algorithm, when applies to 

a HONN, states that with randomly initialized input 

weights and biases, and with the condition that the 

randomly selected neuron activation function is infinitely 
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differentiable, the output weights can be determined so 

that the single layer HONN provides an approximation of 

the sample values to any degree of accuracy. The way to 

calculate the output weights from the hidden layer output 

matrix and the target values is proposed with the use of a 

Moore-Penrose generalized inverse (Rao et al 1972) of the 

matrix (2.7), denoted as    . 

Overall, the improved ELM algorithm for 

HONNs is proposed as follows.  

Given a set of s distinct training samples (xi, yi) 

with n

i Rx   and m

i Ry  , an neuron activation function 

      which is infinitely differentiable, and the 

number of hidden layer neurons N: 

   Step 1. Randomly assign hidden layer parameters (input 

weights and biases); 

   Step 2. Calculate the hidden layer to output layer weight 

matrix H; 

   Step 3. Calculate the output weights matrix       . 

 

3. HONN MODELLING EXAMPLES 

In this section, the ELM HONN modelling has been used 

for an image processing problem, a medical problem, and 

an energy efficiency problem. The algorithm has been 

implemented based on a HONN implementation in 

Matlab version R2011a, run on a standard Windows 7 

operating system with a 4-core CPU speed of 2.70GHz 

and a RAM of 8GB. 

To discover the advantages and disadvantages of 

the HONN model (with the Sigmoid activation function 

and one hidden layer), the following ANNs have also 

been applied onto the datasets of the problems for 

comparison studies: a conventional standard HONN 

model (with the Sigmoid activation function and one 

hidden layer); a Multi-Layer Perceptron (MLP) (with the 

Sigmoid activation function and one hidden layer); An 

RBF Neural Network (with the Gaussian activation 

function and one hidden layer). The standard MLP and 

RBF algorithms offered within the Neural Network 

Toolbox of Matlab version R2011b are used to train these 

traditional ANNs. The learning algorithm for the 

conventional HONN model is from Zhang et al (2002). 

For all of these ANNs the number of hidden layer neurons 

has been determined using an approach from Xu et al 

(2008). 

 

3.1 Skin Segmentation 

One of the significant topics in human face image 

recognition is to automatically determine skin and non-

skin areas of a face image. A skin and non-skin dataset 

has been generated using skin textures which come from 

face images of people of different ages, genders, and races 

(Bache et al 2013). The dataset has been collected by 

sampling RGB (Red, Green, Blue) values of the face 

images. There are 4 attributes in the dataset with three of 

them representing the input attributes (the RGB values) 

and the last one representing the class attribute (skin or 

non-skin). There is a total of 245057 instances, however, 

for the purpose of this modelling only half of them have 

been used for faster learning and testing. 

For this experiment, the dataset is divided into a 

training/learning set made of 80% of the original set and a 

test set made of 10% of the original set. The final 10% is 

used for evaluating the model’s generalisation abilities. 

For ELM HONN and Standard HONN (second 

order), the number of input neurons is calculated as 

follows: 

 
6

2

133
33 2

3 


C  

For MLP and RBF networks, the number of 

input neurons is 3 (each for an input attribute).  

The experimental results are displayed in Table 

3.1. It can be seen that the ELM HONN is considerably 

faster than standard HONN, and in this case it produces 

an accuracy which is higher by 7.1%. For standard HONN 

model, training usually takes longer time because of the 

increased number of input neurons (compared with 

conventional MLP and RBF neural networks): in this 

experiment, the number of input layer neurons is 6 for the 

HONNs while 3 for the MLP and RBF network. However, 

ELM HONN is significantly faster. We can also see that 

the correctness rates (accuracy) produced by the 

conventional ANNs (MLP and RBF) are lower. 

 
Table 3.1. Comparing ELM HONN against standard HONN, 

MLP, RBF neural networks. HL: Hidden Layer, TT: Training 

Time 

ANN Dataset HL 

nodes # 

TT 

(secs) 

Correctness 

or accuracy 

ELM 

HONN 

Skin 9 10.8 84.2% 

Standard 

HONN 

Skin 9 38.7 77.1% 

MLP Skin 22 19.3 71.4% 

RBF Skin 22 17.4 73.5% 

 

3.2 Freezing of Gait Problem 

Freezing of Gait (FoG, inability to step) is a typical 

problem suffered by people with Parkinson’s disease. A 

Daphnet Freezing of Gait dataset has been recorded to 

recognize gait freeze from wearable acceleration sensors 

placed on legs and hip of the patients who have 

volunteered to participate in the study (Bache et al 2013). 

There is a total of 237 instances, with 9 input attributes 

and 3 class attributes in the dataset. The input attributes 

are 

 Ankle (shank) acceleration - horizontal forward 

acceleration 

 Ankle (shank) acceleration - vertical 

 Ankle (shank) acceleration - horizontal lateral 

 Upper leg (thigh) acceleration - horizontal 

forward acceleration 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

661



 Upper leg (thigh) acceleration - vertical 

 Upper leg (thigh) acceleration - horizontal lateral 

 Trunk acceleration - horizontal forward 

acceleration 

 Trunk acceleration - vertical 

 Trunk acceleration - horizontal lateral 

The 3 class attributes are:  

 0 (irrelevant movement)  

 1: no freeze (can be any of stand, walk, turn)  

 2: freeze 

The challenge is to model this problem to determine what 

movements would cause a gait freeze (for patients with 

Parkinson’s disease). 

For this experiment, the dataset is divided into a 

training/learning set made of 75% of the original set and a 

test set made of 15% of the original set. The final 10% is 

used for evaluating the model’s generalisation abilities. 

For ELM HONN and Standard HONN (second 

order), the number of input neurons is calculated as 

follows: 

 
45

2

199
99 2

9 


C  

For MLP and RBF networks, the number of 

input neurons is 9 (each for an input attribute).  

The experimental results are displayed in Table 

3.2. It appears that for this experiment the ELM HONN 

produces similar accuracy as standard HONN, however, 

ELM HONN is significantly faster than standard HONN 

(as well as MLP and RBF networks). Additionally, both 

HONN modes produce higher accuracy than MLP and 

RBF neural networks. 

 
Table 3.2. Comparing ELM HONN against standard HONN, 

MLP, RBF neural networks. HL: Hidden Layer, TT: Training 

Time 

ANN Dataset HL 

nodes # 

TT 

(secs) 

Correctness 

or accuracy 

ELM 

HONN 

FoG 11 4.9 81.5% 

Standard 

HONN 

FoG 11 21.4 80.3% 

MLP FoG 25 11.4 70.2% 

RBF FoG 25 10.4 68.1% 

 

3.3 Modelling Energy Efficiency 

The third experiment deals with modelling energy 

efficiency of buildings: assessing the heating load and 

cooling load requirements of buildings based on 8 

building parameters (factors) (Bache et al 2013). The 

buildings differ from each other with respect to the 

glazing area, the glazing area distribution, and the 

orientation, and others. There is a total of 768 instances in 

the dataset, with 8 input attributes (each representing a 

building feature). The 8 features are 

 Relative Compactness  

 Surface Area  

 Wall Area  

 Roof Area  

 Overall Height  

 Orientation  

 Glazing Area  

 Glazing Area Distribution  

There are 2 class attributes: 

 Heating Load  

 Cooling Load 

The challenge is to learn the relationships between the 8 

features and its heating load and cooling load. 

For this experiment, the dataset is divided into a 

training/learning set made of 70% of the original set and a 

test set made of 15% of the original set. The final 15% is 

used for evaluating the model’s generalisation abilities. 

For ELM HONN and Standard HONN (second 

order), the number of input neurons is calculated as 

follows: 

 
36

2

188
88 2

8 


C  

For MLP and RBF networks, the number of 

input neurons is 8 (each for an input attribute).  

The experimental results are displayed in Table 

3.3. Unsurprisingly the ELM HONN is considerably 

faster than standard HONN (as well as MLP and RBF), 

and in this experiment it produces an accuracy which is 

higher by 10.2% than standard HONN. We can also see 

that the simulation accuracies produced by the HONN 

models are significantly higher than the traditional ANN 

models (MLP and RBF).  

 
Table 3.3. Comparing ELM HONN against standard HONN, 

MLP, RBF neural networks. HL: Hidden Layer, TT: Training 

Time 

ANN Dataset HL 

nodes # 

TT 

(secs) 

Correctness 

or accuracy 

ELM 

HONN 

Energy 13 7.9 87.6% 

Standard 

HONN 

Energy 13 25.5 77.4% 

MLP Energy 33 15.3 68.3% 

RBF Energy 33 16.4 70.1% 

 

4. CONCLUSIONS 

This paper proposes an ELM algorithm for HONN models 

and applies it in an image processing problem, a medical 

problem, and an energy efficiency problem. An obvious 

outcome is that HONN model with ELM algorithm is 

significantly faster than standard HONN model as well as 

traditional ANNs such as MLP and RBF, due to the nature 

of ELM. It appears that, generally speaking, ELM HONN 

produces higher accuracy than standard HONN, as 

demonstrated in the first and third experiments, although 

occasionally (as in the second experiment) both models 

produce similar correctness rates. It can be seen that 

HONN models produce higher accuracies than MLP and 
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RBF neural networks. This paper is a report of work in 

progress. In the future, more experiments involving larger 

datasets will be conducted to further test the new ELM 

algorithm for HONN. Another direction for future 

research would be the use of an ensemble of HONN 

models for modelling and simulation. 
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