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ABSTRACT 
In this paper, we consider an analysis of car dynamics 
and its optimization on urban networks of City type, 
namely rectangular networks with roads of unequal 
length. In particular, we study the traffic variations due 
to changes of permeability parameters, that describe the 
amount of flow allowed to enter a junction from 
incoming roads. On each road, we distinguish a free and 
a congested regime, characterized by an arrival and a 
departure flow, respectively. Dynamics at nodes of the 
network is solved maximizing the through flux. The 
evolution on the whole network gives rise to very 
complicated equations, as car traffic at a single node 
may involve time – delayed terms from all other nodes. 
Hence, the network solution is found by an alternative 
hybrid approach, via the introduction of additional logic 
variables. Finally, simulations on a portion of the 
Salerno network, in Italy, allows to test the obtained 
results.  
 
Keywords: traffic dynamics, control theory, simulation, 
optimization.  

 
1. INTRODUCTION 
Urban areas are often characterized by strange 
phenomena for car traffic: high car densities, leading to 
various congestion types; reductions of velocities for 
transport vehicles; pollutions problems, mainly due to 
fuel consumption. From a more specific point of view, 
traffic flows, especially in cities, are basic examples of 
material flows, mostly organized in networks.  

Traffic flows have been modeling for years via 
several approaches (Bretti et al. 2006; Daganzo, 1995b; 
Helbing et al. 2005; Herty and Klar, 2003; Herty and 
Klar, 2004; Herty et al. 2006; Hilliges et al. 1995; 
Lebacque and Khoshyaran, 2005); some of them are 
based on conservation laws (Coclite et al. 2005; 
Garavello et al. 2006). The reason for such a choice is 
simple: the solutions of these equations have nonlinear 
characteristics, very useful to describe almost all the 
dynamic effects of car traffic, especially for vehicle 
queues. Although it is proved that conservation laws are 

a possible valid alternative for urban traffic models, 
road network modeling always represents a hard task, 
considering that the adoption of conservation laws does 
not always guarantee that: phenomena of daily lives are 
well described, such as traffic jams in some road 
sections (see Daganzo, 1995a; Helbing, 2001; Kerner, 
2004; Schönhof et al. 2006); it is not always possible to 
define a total solution for the overall urban networks 
and, as a consequence, a global optimization procedure 
for traffic flows. This last problem is highly non trivial. 
In fact, although it often happens that traffic 
congestions have to be reduced in some little portions of 
networks (see Cascone et al. 2007; Cascone et al. 2008; 
D’Apice et al. 2011), the necessity of a total redesign of 
network roads and junctions is often required, with 
necessity of finding solutions of global type and 
extendible to various network topology. For this reason, 
we need a model that, beside all advantages due to 
conservation laws formulation, is able to focus on the 
overall network dynamics.  

In order to achieve this aim, in this work we use a 
two – phase model for flows on roads (see Helbing et 
al. 2007; Rarità et al. 2010). In particular, the road is 
decomposed into road sections (links) of homogeneous 
capacity and nodes for their connections. Traffic 
dynamics along the road sections are assumed to follow 
the Lighthill – Whitham – Richards (briefly, LWR) 
model (see Lighthill et al. 1955; Richards, 1956; 
Whitham, 1974), but with a simplified representation, 
reducing the Partial Differential Equation (PDE) 
approach to a delayed Ordinary Differential Equation 
(ODE) one. For each road, two regimes are considered: 
free and congested. The lengths of the corresponding 
areas determine the exact dynamics of cars. This two – 
phase model, beside the obvious mathematical 
simplification, allows either the representation of all 
phenomena described via conservation laws, or the 
analysis of some real effects in urban traffic, such as 
transitions from free to congestion traffic flows due to 
lack of capacity, the propagation speeds of vehicles in 
congested traffic, spill – over effects and traffic jams, 
the last ones expressed by a suitable equation. 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

601



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: a portion of the real network of Salerno (up, left), consisting of two road junctions (up, right; bottom, left) and 
its graph (bottom, right) 

Flows at nodes are regulated by permeability 
parameters γ , that indicate the amount of cars allowed 
to enter the junction from incoming roads. In Helbing et 
al. 2007, such parameters are assumed either zero or 
one, modeling the possibility of traffic lights at 
intersections. Here, following the approach in Rarità et 
al. 2010, permeabilities can also vary between zero and 
one. This adds the following interesting further 
interpretation: 0 1γ< <  indicates the situation in which 
the traffic is free to circulate, but only a part of it is 
allowed to enter the junction. This is quite normal in the 
usual traffic conditions, due to queues on roads that 
imply velocity reductions and delays in crossing the 
road junctions. Notice that 0 1γ< <  represents not only 
the possibility of modeling traffic lights, but also the 
normal traffic at not light – controlled road junctions.  

Dynamics at nodes is, according to Coclite et al. 
2005, described by the following two rules: 

(A) The incoming traffic distributes to outgoing 
roads according to fixed (statistical) 
distribution coefficients; 

(B) Drivers behave in order to maximize the 
through flux. 

Here, we consider permeability parameters as 
controls in order to optimize the dynamics of complex 
networks, of “City” type, namely rectangular networks 
with roads of unequal length. Precisely, the variations 
of permeability parameters allows to establish some 
optimization criteria. In particular, we focus on the 
minimization of a cost functional, which represents the 
sum of queue lengths, i. e. number of delayed vehicles 
or lengths of congested areas. It is described that queues 
on roads can influence the dynamics on the whole 
network, leading to a “nested” equation, which cannot 
be solved in an analytical way.  

Hence, the total solution of the network, also in 
terms of optimization procedures, is found using 
additional logic variables that represent the emptying of 

queues or filling the road segments. Such variables are 
influenced by delayed and non delayed continuous 
variables (queue lengths, arrival and departure flows). 
Indeed, they themselves influence the continuous 
quantities, leading to a particular system of hybrid type.  

Considering the Pontryagin Maximum Principle 
(Bressan and Piccoli, 2007), we consider needle 
variations of permeability parameters, and the hybrid 
modeling allows either a rich description of all 
phenomena connected to the car traffic or the definition 
of a procedure to state, for the overall network, the 
optimal solution of minimizing car queues on roads.   

The obtained results for the hybrid dynamics are 
tested by simulation using a modified Runge – Kutta 
numerical algorithm that considers delayed terms for 
incoming and outgoing flows into road sections. 
Numerical results are analyzed for a real case: a portion 
of Salerno urban network, which is one of the most 
suitable examples of rectangular network in the south of 
Italy. The topology of the network, represented in 
Figure 1, consists of three principal roads: Corso 
Garibaldi, Via Adolfo Cilento, Via Arturo De Felice. 
Road junctions are in this case of 2 2×  type, namely 
they are characterized by two incoming roads and two 
outgoing roads. For this last case, it is proved (details 
are found in Rarità et al. 2010) that a simple needle 
variation of a permeability parameter provokes a wealth 
of variations in the other quantities at nearby nodes. 
This situations indicates that the hybrid approach 
permits, on one side, the description of the network 
evolution with nodes dynamics having separate 
equations; and, on the other hand, it keeps all 
characteristics of the original system.  

The paper is organized as follows. Section 2 shows 
the model for roads, while Section 3 concerns city 
networks and descriptions of dynamics at nodes. In 
Section 4, the optimal control problem and the nested 
equations are analyzed; logic variables are introduced in 
order to define a hybrid dynamics; the variational 
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equations, useful to define how permeability parameters 
influence the overall network flows, are described. 
Simulations for the case study are presented in Section 
5. Conclusions and future perspectives are reported in 
Section 6. 
 
2. FLOWS MODELLING ON ROADS 
This section focuses on the car traffic behaviour on each 
single road of a traffic network, while the dynamics at 
nodes is analyzed for the special case of City type 
networks in next Section. The following assumptions 
are made: (A1) The road network consists of road 
sections of homogeneous capacity (links) and nodes 
describing their connections; (A2) A first order 
approach (such as LWR) gives a good description of car 
traffic on roads; (A3) On each road section, the 
fundamental diagram (density-flux graph) is well 
approximated by a triangular shape, with an increasing 
slope 0

iV  (i.e. maximum speed of vehicles, 
corresponding to the freed speed or speed limit on road 
section i) at low densities and a decreasing slope 

( ) 1
max= ρ −

c T  in the congested regime, where: maxρ  
denotes the maximum vehicle density in car queues; T 
is the safe time headway, which is constant along the 
road section; (A4) Who enters a road section first exits 
first (FIFO principle); (A5) Each road section has a first 
subsection in free phase and a second subsection in 
congested phase. 

A road is characterized by (see Helbing et al. 2007; 
Rarità et al. 2010): the  arrival flow ( )jA t , which 
indicates the inflow of vehicles into the upstream end of 
road section j; the  departure flow ( )jO t , which is the 
flow of vehicles leaving road section j at its downstream 
end; the maximum in – or outflow of road sections j, 

( ) ( )
11 10 0 0

m m
ˆ = =ρ ρ

−− −⎡ ⎤+ +⎢ ⎥⎣ ⎦j j ax j ax jQ T V cV c V . All the 

above quantities refer to flows  per lane, indicating by 
jI  the number of lanes and by jL  the length of road 

section j. Moreover, the length ( ) ≤j jl t L  represents the 
length of the congested area on link j (measured from 
the downstream end), and Δ jN  is the number of 
stopped or delayed vehicles. An ideal representation of 
road section j is in Figure 2. 
 

 
Figure 2: road section j 

 
Functions ( )jA t  and ( )jO t  are also assumed upper 

limited by ˆ ( )jA t  and ˆ ( )jO t , respectively. In order to 
define these bounds, we refer to the following: 

Definition. For road section j, the function 

[ ]( ) 0,1j tγ ∈ , 0t ≥ , is said “permeability parameter”. 

It defines the amount of cars that goes out from road 
section j. 
Remark. Following the approach used in Rarità et al. 
2010, the permeability parameter for road section j has 
the following interpretations: 0jγ =  implies a red or 

amber light; 1jγ =  corresponds to a green light, and 

all cars can flow out from road section j; 0 1jγ< <  

represents the green light for a situation in which not 
all cars can go out immediately from road section j, 
thus indicating that unvanished queues are still present 
nearby the road junction, with consequent non perfect 
migration of cars. Notice that 0 1jγ< ≤  is also useful 

to indicate situations in which no traffic lights are 
present at road intersections, but cars are free to 
circulate according to some yielding rules. 
 

We assume that ( )jA t  is bounded by the maximum 

inflow ˆ
jQ , if road section j is not fully congested, 

namely ( ) <j jl t L ; otherwise, if road section j is full 

( ( ) =j jl t L ), ( )jA t  is limited by ( )/−j jO t L c  a time 

period /jL c  before. Hence, we have ˆ0 ( ) ( )j jA t A t≤ ≤ , 
with:  
 

( )
ˆ , ( ) < ,ˆ ( ) :

/ , ( ) = .
j j j

j

j j j j

Q if l t L
A t

O t L c if l t L

⎧⎪= ⎨
−⎪⎩

                       (1) 

 
Moreover, the potential departure flow ˆ ( )jO t  of road 
section j is given by its permeability ( )γ j t  times the 

maximum outflow ˆ
jQ  from this road section, if there is 

a queue of vehicles, namely ( ) > 0Δ jN t ; otherwise, if 
road section j is empty ( ( ) = 0Δ jN t ), the outflow is 
limited by the permeability times the arrival flow 

( )0/−j i iA t L V  a time period 0/i iL V  before. We get that 
ˆ0 ( ) ( )j jO t O t≤ ≤ , with: 

 
( )0/ , ( ) = 0,ˆ ( ) : ( )

ˆ , ( ) > 0.

j i i j

j j

j j

A t L V if N t
O t t

Q if N t
γ

⎧ − Δ⎪= ⎨
Δ⎪⎩

          (2) 

 
2.1. An equation for traffic jams 
As for traffic jams, we consider one of the suggested 
approaches in Helbing et al. 2007. Setting 

( ) ( )0
0

, /
: /

j j

t
j j j jj L V

AO A t L V O t= − − , the number of 

delayed vehicles for road section j, jNΔ , is given by the 
following equation: 
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( )

0

0

0

, /

, /

max , /

,      

=   0,

,     0,

j j

j j

j j

t

j L V

t
j j L V

t
j j L V

AO if t t or

N t t t and AO

L if t t and AOρ

⎧ <
⎪
⎪Δ ≥ <⎨
⎪
⎪ ≥ ≥
⎩

i
            (3) 

 
where t  is the time instant for which 

( ) max=j jN t L ρΔ . It is proved in Rarità et al. 2010 that 
(3) represents an alternative exhaustive formulation of 
LWR model for roads modelling.  
Remark. Notice that dynamics of traffic queues is also 
considered in (2), replacing ( ) <j jl t L  by 

( ) max
max< := ρΔ j j jN t N L  and ( ) =j jl t L  by 

( ) maxΔ =j jN t N . This corresponds to a situation in 

which the vehicles would not queue up along the road 
section, but at its downstream end. 
 
3. CITY NETWORKS 
A City network is given by a rectangular network, seen 
as a matrix with N  rows and M  columns. In 
particular, the network is described by the couple 
( ),I J , where I  and J  indicate, respectively, the set 
of roads and junctions. Moreover = C R∪I I I , where 

CI  and RI  represent, respectively, the set of vertical 
and horizontal roads (columns and rows of the network 
graph). Each node is identified by a couple ( ),i j ∈J , 
with i∈N  and j∈M , and has two incoming and two 
outgoing roads (junction of 2 2×  type). At node ( ),i j , 
vertical roads are labelled as ijC  (entering) and 1i jC +  
(exiting), while horizontal ones are indicated by ijR  
(entering) and 1ijR +  (exiting), as in Figure 3.  
 

 
Figure 3: City network (left) and zoom on a portion 
(right) 
 
To simplify the notation, we make the following 
assumption: (CN) All roads ij CC ∈ I , ij RR ∈ I , i∈N , 
j∈M , have the same maximum in – and outflow, i.e. 
ˆ ˆ=kQ Q   k∀ ∈ I  and free speed: 0

0=kV V   k∀ ∈ I . 
Notice, however, that we consider possibly different 
lengths of roads 

ijCL  and 
ijRL .  

Permeability parameters of roads ijC  and ijR  are 

indicated by ( )
ijC tγ  and ( )

ijR tγ . As the two roads 

belong to the same node ( ),i j , we assume that 

( ) ( )0 1
ij ijC Rt tγ γ≤ + ≤ . 

 
3.1. Traffic at nodes 
The dynamics at nodes is defined by solutions to 
Riemann problems, i.e. Cauchy problems with initial 
constant data on each road. The map, which associates 
to every initial data the corresponding fluxes at the 
node, is called Riemann Solver and indicated by RS. 
The solution depends on initial fluxes and on the 
number of delayed vehicles (resp. length of congested 
zone) of all roads meeting at the node. Now, we 
consider two rules (see Coclite et al. 2005; Garavello 
and Piccoli, 2006) to define uniquely the solution to an 
RS: (A) At each node ( ),i j ∈J  drivers distribute 
according to fixed coefficients, given by a matrix X ; 
(B) Respecting (A), drivers behave so as to maximize 
the flux through node ( ),i j .  
Remark. Considering road junctions of 2 2×  type, we 
assume that: 
 

= ,
1 1

ij ij

ij ij

X
α β
α β

⎛ ⎞
⎜ ⎟− −⎝ ⎠

                                                 (4) 

 
where 0 , 1ij ijα β≤ ≤  and ijα  (resp. ijβ ) represents the 

percentage of traffic that, from road ijC  (resp. ijR ), 

goes to road 1ijR +  (resp. 1ijC + ). 

Remark. Using both rules (A) and (B) under the 
assumption ij ijα β≠ , we get a rich set of possible 

solutions for the dynamics at road junctions, depending 
on the state of roads, namely if they are empty, almost 
congested or totally congested. Details are in Rarità et 
al. 2010. 
From formulas (1) and (2), we also get that the 4 – tuple 

( )1 1
, , ,C R C Ri j ij ij ij

A A O O
+ +

, defined by the RS for the node 

( ),i j ∈J , is essentialy determined by: ijα ; ijβ ; Rij
γ ; 

Cij
γ ; NΔ  of roads connected to ( ),i j ; delayed ( ),A O  

for other nodes. 
 
4. AN OPTIMAL CONTROL PROBLEM AND A 

HYBRID DYNAMIC 
Now, we consider an optimal control problem for City 
Networks. The dynamics over the network is 
represented as a control system of the form: 

 

( )= , ,x f x δγ γ
i

,                                                           (5) 
 

where x is the state (the number of delayed vehicles 
NΔ ), γ  is the control (the permeability parameters) 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

604



and δγ  are delayed controls. Introduce the variable ky  

such that ( )= , ,k ky N x δγ γΔ
i

, ( )0 0ky = , i∈ I . For a 
class Γ  of admissible controls, we state the following 
optimal control problem: 
 

( )min k
k

y t
γ∈Γ

∈
∑

I

                                                               (6) 

 
for a fixed initial condition x . Notice that (6) 
represents the minimization of delayed vehicles over the 
whole network in terms of permeability parameters. 
Now, we consider the dynamics in detail.  
 
4.1. Queues on roads 
Fix a generic node ( ),i j ∈J . The dynamics for the 
whole network is described by the system (5), where 

( )= , , ,
ij ij ij ijC R C Rx y y N NΔ Δ . 

First, assume that, for roads ijC  and ijR , 
0

ijCNΔ >  and 0
ijRNΔ > . Omitting, for simplicity, the 

dependence on traffic distribution coefficients, which 
are not dependent on time, we get the following 
equations, where the evolution of queues is function, 
through RS, of delayed and non delayed controls at node 
( ),i j : 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

1 1

1 1

0

0

= ,  = ,

= , , , / ,

= , , , / .

ij ijij ij

ij ij ij i j i j ij

ij ij ij ij ij ij

C RC R

C C R C R C

R C R C R R

y N y N

N RS t t L V

N RS t t L V

γ γ γ γ

γ γ γ γ

− −

− −

Δ Δ

Δ −

Δ −

i i

i

i

(7) 

 
Consider now that roads ijC  and ijR  are empty, 

namely 0
ij ijC RN NΔ = Δ = . Dropping as usual the 

dependence on traffic distribution coefficients, for road 
ijC  we have: 

 

( ) ( )( )1 0

= ,

= / , ,

ijij

ij ij ij ij

CC

C C C C

y N

N g A t L V O t

Δ

Δ −

i

i                         (8) 

 
where 1g  is some function. Considering for simplicity 
the only presence of nodes ( )1,i j−  and ( )2,i j−  

inside the network, ( )0/
ij ijC CA t L V−  is written as: 

 

( )

( ) ( ) 1

1 1 1

2 2 2 2

0 0

0

2

2 2

, ( , , ) ,

, , , ,

ij ij

i j ij

ij i j i j i j

i j i j i j i j

C C

C C

C R C R

C R C R

L L

V V

L L

V

A t RS g RS O t

g RS g RS O O t

γ γ

γ γ −

− − −

− − − −

+

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                                                                                     (9) 

 
where 2g  is a function different from 1g . Notice that 
(9) represents a “nested equation”, as phenomena at 
( ),i j  are dependent on other nodes, namely the 
evolution of 

ijCy  and 
ijCNΔ , expressed by (8), is written 

in terms of all nodes of the network. For road ijR , we 
have similar equations. 
 
4.2. A hybrid dynamic and needle variations 
Here, we consider a hybrid dynamic to avoid the nested 
equations in case of empty queues. Continuous 
equations involving the whole network can be replaced 
introduced some extra logic variables. The latter, in 
turn, are affected and affect the continuous variables 
evolution. 

Define the logic variables 
ijCε  as: 

 

max

max

1,  if 0,

: 0,    if 0 ,

1,  if .

ij

ij ij ij

ij ij

C

C C C

C C

N

N N

N N

ε

⎧− Δ =
⎪⎪= < Δ < Δ⎨
⎪
+ Δ = Δ⎪⎩

                              (10) 

 
We set the following: ( )

1 1
: ,

i j i jC Rγ γγ
− −

= , ( ): ,
ij ijC Rγ γγ = , 

( ) ( )1 1 1 1
: , ,  : , ,

ij i j i j ijC R C RO OO O O O
− + + +

= = ( )1 1
: ,

i j i jC RA A A
− −

= , 

( ): ,
ij ijC RA A A= , ( )1 1 1 1

: , , ,
i j i j ij i jC R C Rε ε ε ε ε
− − − +

= , and 

( )1 1
: , , ,

ij ij i j ijC R C Rε ε ε ε ε
+ +

= . A complete hybrid dynamics 

for node ( ),i j  is given by the following equations (for 
simplicity, the dependence of distribution coefficients 
on time is omitted, while the exponent δ  indicates a 
delayed dependence on time): 
 

( ) ( )
= ,  = ,

= , , , ,  = , , , .

ijij ij ijij

ij ij

CC C CC

C C

y N N A O

A RS A O O RS A O

δ

δ δ δ δγ ε γ ε

Δ Δ −
i i

    (11) 

 
For 

ijRε , the definition is similar, substituting C with R. 

Moreover, also for road ijR  we have equations similar 
to (11). Suitable differences are already explained in 
Rarità et al. 2010. 

The dynamic of control parameters γ  (and 
distribution coefficients α  or β ) influence the 
evolution of the couple ( ),A O  through RS. In turn, the 

values of ( ),A O  influence themselves through RS and 
determine the continuous dynamics of NΔ . The 
dynamics of NΔ  defines that of y  and discrete 
changes, through ε , of the couple ( ),A O . In Figure 4, 
a summarizing scheme is reported, where c and d 
indicate, respectively, if the dynamics is continuous or 
delayed. 
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Figure 4: scheme of the hybrid dynamics 

 
Now, we consider the sensitivity of the control system 
(5) with respect to control variations, adopting the point 
of view of Pontryagin Maximum Principle (PMP), see 
Bressan at al. 2007. In particular, we consider special 
variation of controls, called “needle variations”, and 
variational equations along trajectories to determine the 
relative effects on the dynamics.  

Consider the control system (5), where 
( ) ( )=t tδγ γ δ−  and 0δ > . Fix a candidate optimal 

control [ ] [ ]: 0, = 0,1T Uγ ∗Γ ∋  and let x∗  be the 
corresponding trajectory, starting from a given point x . 
A needle variation is defined as follows:  
Definition (Needle Variation). Consider the map 

( ) ( ) ( )( ): , ,t f x t t tδϕ γ γ∗ ∗ ∗  and let τ  be a Lebesgue 

point for ϕ . Given Uω∈ , define a family of controls 

( ), , ,tγη τ ζ ω , [ [0,ζ τ∈  in the following way: 

 

( )
( ) [ [

[ [
( ) [ ]

*

*

,  if 0, ,

, , , : ,        if , ,

,  if , .

t t

t t

t t T

γ

γ τ ζ

η τ ζ ω ω τ ζ τ

γ τ

⎧ ∈ −
⎪⎪= ∈ −⎨
⎪

∈⎪⎩

                   (12) 

 
and let ( ), , ,x tη τ ζ ω  be the trajectories corresponding 

to γη  with ( )0, , ,x xη τ ζ ω = . We call the couple 

( ) ( ), = , ( , )x xγ γη η η η τ ω  a needle variation of 

( ), ,x δγ γ∗ ∗ ∗ . If the trajectories are uniquely determined 

by controls we use the simplified notation ( , )γη τ ω . 

Given a needle variation, for every time t τ≥  it is 
defined a curve of points ( ), , ,x tη τ ζ ω  that are reached 
at time t by admissible controls γη ∈Γ . In particular, at 

the final time, the points ( ), , ,x Tη τ ζ ω  are reached. If 

the cost is given as in (6),  for γ *  to be optimal we need 

that: ( ) ( ) 0k
k

y T v T∗

∈

⎛ ⎞∇ ⋅ ≥⎜ ⎟
⎝ ⎠
∑

I

, where ( )v t  is the tangent 

vector to the curve ( ), , ,x Tη τ ζ ω  at = 0ζ , equal to 

( ) ( )
=0

, , ,
= xd t

d
v t

ζ

η τ ζ ω

ζ
.  

The vector v, for >t τ , satisfies the variational 

equation ( )= , ,xv D f x vδγ γ∗ ∗ ∗ ⋅
i

, with initial condition: 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )= , , , ,v f x f xδ δτ τ ω γ τ τ γ τ γ τ∗ ∗ ∗ ∗ ∗− ,       (13) 
 
that presents a jump at time τ δ+ , see Rarità et al. 
2010. For a City network, if a variation of ,C Rij ij

γ  occurs 

at node ( ),i j , we have to consider the tangent vectors 

,
y
C Rij ij

v  and ,
N

C Rij ij
vΔ  for the variables ,C Rij ij

y  and ,C Rij ij
NΔ , 

respectively. Hence, the variational equations are 

described by 
y N

C Cij ij
v v

Δ

=
i i

, 
y N

R Rij ij
v v

Δ

=
i i

 and 0
N N

C Rij ij
v v
Δ Δ

= =
i i

. 
Needle variations of permeability parameters 

(controls) generate other needle variations for the 
arrival and departure flows, which in turn provokes 
jumps in the variational vectors for delayed vehicles. In 
Table 1, we summarize an exhaustive scheme of jumps 
due to needle variations. Notice that column 1 shows 
which is the parameter ( γ , A or O) for which a needle 
variation occurs; columns 2 indicates what are the 
quantities on which the needle variation provokes 
jumps. 
 

Table 1: scheme of needle variations and jumps 
1 2 

ijCγ  
11

,  ,  
ijiji j R CCA A O

++
 

ijRγ  
11

,  ,  
ijiji j R RCA A O

++
 

ijCO  
11 1 1

,  ,  ,  
i jij i j i jR C RCA A O O
−− + −

 if max
ij ijC CN NΔ = Δ  

ijRO  
1 11 1

,  ,  ,  
ijij iji j R C RCA A O O
− −+ −

 if max
ij ijR RN NΔ = Δ  

ijCA  
11 1 1

,  ,  
i ji j i jR C RA O O
−− + −

 if 0
ijCNΔ =  

ijRA  
11 1 1

,  ,  
iji j ijC C RA O O
−+ − −

 if 0
ijRNΔ =  

 
The interpretations of Table 1 is the following: it is 
sufficient the variation of just one permeability 
parameter to provoke jumps in incoming and outgoing 
flows. Notice that some jumps occur only if roads are 
empty (case of incoming flows) or full (case of 
outgoing flows).  
Remark. For sake of space, we omit dynamics of jumps 
for logic variables, which is in Rarità et al. 2010.  
 
5. SIMULATIONS 
We aim to illustrate the effect of a needle variation on a 
single permeability parameter for a given node in a 
network. For this reason we present some simulations of 
a real road network, proving that a unique little 
variation can provoke some cascade effects on 
incoming flows, and car queues.  

We run some simulation for a City type network, 
which is a portion of the real network of Salerno (see 
Figure 1). In particular, according to the notations of 
Section 3, we label by ( ),i j  the junction between 
Corso Garibaldi and Via Adolfo Cilento; hence, 
( ), 1i j +  indicates the intersection between Corso 
Garibaldi and Via Arturo De Felice. In particular, Corso 
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Garibaldi is identified by the three road segments 1ijR + , 

ijR , and 1ijR − ; Via Arturo De Felice by the road 
segments 1ijC + , and 1 1i jC − + ; Via Adolfo Cilento by ijC , 
and 1i jC + . Figure 5 shows the topology of the 
considered network. 
 

 
Figure 5: topology of the network 

 
A fourth Runge – Kutta scheme is used, with temporal 
step 0.01h =  and a total simulation time 25 minT = . 
We assume that: 

1
6

ijRL
+
= ; 

1
5

ijCL
+
= ; 

1 1 1
4

i j ij i jC R CL L L
− + +

= = = ; 
1

3
ij ijC RL L

−
= = ; for all roads, 

0 2V c= = , max 1ρ = , hence ˆ 1Q = ; incoming fluxes: 
 

( ) ( ) ( )
1 1

0.5,  if 0,
0,     otherwise;ij ij ijR C C

t
A t A t A t

+ +

≥⎧
= = = ⎨

⎩
        (14) 

 
distribution matrices ( ),i jX  and ( ), 1i jX +  at nodes ( ),i j  

and ( ), 1i j +  equal to: 
 

( ) ( ), , 10.3 0.3 0.2 0.2
;  

0.7 0.7 0.8 0.8
i j i jX X +⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

;               (15) 

 
initial conditions for queues are: ( )

1
0 3

ijRN
+

Δ = ; 

( ) ( ) ( ) ( )
1 1 1 1

0 0 0 0 2
ij i j ij i jC C R CN N N N
+ − + +

Δ = Δ = Δ = Δ = , 

and ( ) ( )
1

0 0 1
ij ijC RN N

−
Δ = Δ = ; constant permeability 

parameters, with the exception of ( )
ijR tγ , for which a 

needle variation occurs, namely we have that: 
1 1

0.5
ij ij ijR C Cγ γ γ
+ +
= = = ; 

1 1 1
0.3

i j i jC Cγ γ
− + +

= = , and 

1
0.7

ijRγ −
= ; finally: 

 

( )
[ ] ] ]
] ]

*
1 2

1 2

,  if 0, , ,

,  if , ,
ij

ij

ij

R

R

R

t t t T
t

t t t

γ
γ

ω

⎧ ∈ ∪⎪= ⎨
∈⎪⎩

                          (16) 

 
with * 0.5

ijRγ =  and 0.2
ijRω = , 1 11 mint =  and 

2 13 mint = . 
Remark. Notice that lengths of roads, velocities in free 
and congested regimes, initial conditions for queues 
and the maximal densities are normalized with respect 

to the length 116L  meters, measured on the real 
network that we are considering. 

In Figure 6, we present the evolution of ( )
ijRO t , 

while ( )
ijRA t  and ( )

ijRN tΔ  are represented in Figures 7 
and 8, respectively. 
 

 
 

Figure 6: ( )
ijRO t  due to a needle variation for ( )

ijR tγ  
 

 
 

Figure 7: ( )
ijRA t  due to a needle variation for ( )

ijR tγ  
 

 
 
Figure 8: ( )

ijRN tΔ  due to a needle variation for ( )
ijR tγ  

 
Notice that: for 0 0/ 2

ijRt t L V≤ = = , ( )
ijRN tΔ  

decreases, as the solutions of RS at nodes ( ), 1i j +  and 

( ),i j  imply, respectively, ( ) *
0 0.7

ij ijR RA t t A− = =  and 
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( ) ( ) ˆ 0.5
ij ijR RO t t Qγ= = , with ( ) ( )0 0

ij ijR RA t t O t− − > . 

At 1t t= , the needle variation for ( )
1ijR tγ
+

 generates a 

needle variation for ( )
ijRO t , that provokes an 

immediate change of slope for ( )
ijRN tΔ . At 2t t= , the 

needle variation for ( )
1ijR tγ
+

 vanishes, hence we get an 

immediate further change of slope for ( )
ijRN tΔ  while 

( )
ijRO t  comes back to the nominal value imposed by 

RS at node ( ),i j . At 3 14 mint ,  ( ) max
ij ijR RN t NΔ = Δ  

and ( )
ijRA t  follows the delayed ( )

ijRO t , namely: 
 

( ) 3 3

*
3 4

ˆ 0.2,  if , ,

ˆ 0.5,  if , ,
ij ij

ij ij

ij

R R

R R

R

L

c

Q t t t
A t O t

Q t t t

ω

γ

⎧ = ∈ ⎡ ⎤⎛ ⎞ ⎣ ⎦⎪= − =⎜ ⎟ ⎨⎜ ⎟ = ∈ ⎤ ⎤⎪⎝ ⎠ ⎦ ⎦⎩

(17) 

 
where  3 2 0t t t= + , 4 3 0t t t= + . At 4t , ( )

ijRN tΔ  starts to 

decrease as ( ) ( )0 0
ij ijR RA t t O t− − < , and 

( ) * 0.7
ij ijR RA t A= = , the value imposed by RS at node 

( ), 1i j + ; ( )
ijRN tΔ  becomes constant for [ [5 6,t t t∈ , 

with 5 3 0t t t= + , 6 4 0t t t= + , as ( ) ( )0 0
ij ijR RA t t O t− − = . 

At 6t , ( )
ijRN tΔ  starts to increase, and it grows until 

7 19.5 mint , for which ( ) max
ij ijR RN t NΔ = Δ  and, as a 

consequence, ( ) * ˆ 0.5ij

ij ij ij

R

R R R

L
A t O t Q

c
γ

⎛ ⎞
= − = =⎜ ⎟⎜ ⎟

⎝ ⎠
. 

Moreover, ( )
ijRN tΔ  remains at its maximal value, as 

( ) ( )0 0
ij ijR RA t t O t− − =  for 7 0t t t≥ + . 

A further analysis can also be made. For the 
network of Figure 5, we want to solve the optimization 
control problem (6). From a theoretical point of view, it 
is necessary to find a set of permeability parameters 
such as to minimize the sum of queues for all roads, 
namely ( ) ( )k

k

Y t y t
∈

= ∑
I

, k ∈ I , where I  is the set of 

roads, { }1 1 1 1 1 1, , , , , ,ij ij ij ij i j i j ijR R R C C C C+ − + − + +∈I . As we 
introduced logic variables and defined an hybrid 
framework to avoid nested equations, the minimization 
of ( )Y t  is simply found analyzing needle variations of 
the only permeability parameters, as their only variation 
provokes cascade effects on the whole network in terms 
of incoming flows, outgoing flows and queues on roads. 
For the portion of the real network of Salerno, traffic at 
nodes ( ),i j  and ( ), 1i j +  is regulated through ( )

1ijR tγ
+

, 

( )
1ijC tγ
+

, ( )
ijR tγ , and ( )

1i jC tγ
+

. A suitable choice of 
such parameters allows to optimize the performances on 
the whole network in terms of delayed vehicles.  

Assume, for simplicity, that ( ) ( )
1 1

1
ij ijR Ct tγ γ
+ +

+ =  and 

( ) ( )
1

1
ij i jR Ct tγ γ

+
+ = . Then, the choice for the 

optimization clearly depends only on ( )
1ijR tγ
+

 and 

( )
ijR tγ . Using the numerical software Mathematica, it 

is possible to use a steepest descent method in order to 
find the couple ( )1

* *,
ij ijR Rγ γ
+

 that solves problem (6). In 

our case, with the same simulation parameters we have 
considered before, we get that 

( ) ( )
1

* *, 0.415,0.318
ij ijR Rγ γ
+

 in eight iterations, starting 

from ( ) ( )
1

0 0, 0.65,0.25
ij ijR Rγ γ
+

= . The cost functional 

( )Y t  decreases from 13 to 3.6. In Figures 9, 10 and 11, 

we report how ( )
1ijR tγ
+

 and ( )
ijR tγ  vary according to 

the different steps of the numerical minimization 
method and, finally, the cost functional, that decreases 
until the steady state minimum value.  
 

 
Figure 9: variations of ( )

1ijR tγ
+

 in different steps of the 
numerical minimization algorithm 
 

 
Figure 10: variations of ( )

ijR tγ  in different steps of the 
numerical minimization algorithm  
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Figure 11: variations of ( )Y t  

 
Although it is evident that the minimization of queues is 
achieved, it is not possible to erase all queues on roads. 
A such phenomenon is not surprising, as dynamics at 
nodes does not always allow a complete emptying of 
queues, and this is the classical situation, that arises in 
normal traffic in cities. 
 
6. CONCLUSIONS 
We considered a delayed – ODE approach to describe 
car traffic in road networks of City type. The 
minimization of the number of vehicles was studied in 
terms of permeability parameters, which regulate the 
inflows at nodes. As the overall dynamics gives rise to 
nested equations, logic variables were introduced and a 
hybrid framework was thus obtained. A sensitivity 
analysis, based on needle variations, was developed for 
permeability parameters. The total effects of variations, 
also in terms of optimization of traffic performances, 
were described and then verified by simulations of a 
portion of the real network of Salerno, Italy.  

Further research should be developed to achieve 
more information on optimal controls, e. g. using 
necessary conditions for hybrid control systems. This 
problem was not completely solved yet from a 
theoretical point of view.  

From a numerical point of view, large scale 
simulations, extended to the overall network of big 
cities, are nowadays giving meaningful results for the 
optimization of traffic performances.  
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