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ABSTRACT 

The paper deals with testing of selected optimization 

methods used for optimization of specified objective 

functions of three discrete event simulation models and 

four selected testing functions. The developed 

simulation optimizer uses modified optimization 

methods which automatically adapt input parameters of 

discrete event simulation models. Random Search, Hill 

Climbing, Tabu Search, Local Search, Downhill 

Simplex, Simulated Annealing, Differential Evolution 

and Evolution Strategy were modified in such a way 

that they are applicable for discrete event simulation 

optimization purposes. The other part of the application 

is focused on testing the implemented optimization 

methods. We have proposed some evaluation 

techniques which express the success of the 

optimization method in different ways. These 

techniques use calculated box plot characteristics from 

the series of optimization experiments.  

 

Keywords: simulation optimization, heuristic 

optimization methods, discrete event simulation models, 

testing function 

 

1. INTRODUCTION 

Many of today´s industrial companies try to design their 

own production system as effectively as possible. The 

problem is that this intention is affected by many 

factors. We can say the problem is NP-a hard problem 

in most cases. A possible answer to the problem is using 

discrete event simulation and simulation optimization. 

The use of discrete event simulation focuses on the 

invisible problems in the production system many times 

and also avoids bad decisions made by the human 

factor.  

 The next question is effectively finding a suitable 

solution to the modelled problem. We can use a 

simulation optimizer to find an optimal/suboptimal 

feasible solution respecting the defined model 

constraints. The basic problem of global optimization 

can be formulated as follows: 

      XFFXF
X

~
:

~
minarg ~ 


XXXXXX

X


 (1) 

 

where X


 denotes the global minimum of the objective 

function;  XF  denotes the objective function value of 

the candidate solution – the range includes real 

numbers; X
~

  denotes the Search space. This optimal 

solution is represented by the best configuration (input 

parameters values) of the simulation model.  

 Current simulation software (Arena, Witness, 

PlantSimulation etc.) uses its own simulation 

optimizers. These integrated optimization modules are 

black-boxes but many of them use similar optimization 

methods. We have tested the following optimization 

methods: Random Search, Hill Climbing, Tabu Search, 

Local Search, Downhill Simplex, Simulated Annealing, 

Differential Evolution and Evolution Strategy. These 

methods were modified in such a way that they are 

applicable for discrete event simulation optimization 

purposes. The goal of our research is to compare some 

of these widely used optimization methods. Hence we 

have designed our own simulation optimizer. We have 

to say that it is not possible to implement exactly the 

same optimization methods which are used in these 

simulation optimizers.  

 Another reason for testing the optimization 

methods and designing our own simulation optimizer 

was that our department focuses on modelling and 

optimizing production and non-production processes in 

industrial companies (Kopecek, 2012; Votava, Ulrych, 

Edl, Korecky and Trkovsky, 2008). Some projects have 

to be solved with difficulty without the use of special 

simulation optimization tools because of the large 

complexity of the discrete event simulation model. The 

problem is that some integrated simulation optimizers 

cannot affect all the parameter types of the designed 

simulation model.   
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2. SELECTED OPTIMIZATION METHODS 

We have transformed some of the selected optimization 

methods to use the principle of evolutionary algorithms. 

These optimization methods generate a whole 

population (instead of one possible solution) in order to 

avoid getting stuck on a local optimum. Previous testing 

of optimization methods confirms that generating one 

solution leads to premature convergence in most cases 

(depending on objective function type). Different 

variants of selected optimization methods obtained from 

a literature review were united into the algorithm. The 

user can combine different variants of optimization 

methods by setting the optimization method parameters.  

 

2.1. Random Search 

A new candidate solution is generated in the search 

space with uniform distribution (Monte Carlo method). 

This method is suitable for cases where the user has no 

information about the objective function type. The user 

is able to perform a number of simulation experiments. 

 

2.2. Downhill Simplex 

This method uses a set of n + 1 linearly independent 

candidate solutions (n denotes search space dimension) 

- Simplex. The method uses four basic phases – 

Reflection, Expansion, Contraction and Reduction. 

(Tvrdík 2004; Weise 2009) 

 

2.3. Stochastic Hill Climbing  

Candidate solutions are generated (populated) in the 

neighbourhood of the best candidate solution from the 

previous population. Generating new possible solutions 

is performed by mutation. This method belongs to the 

family of local search methods. 

 

2.4. Stochastic Tabu Search  

The newly generated candidate solution is an element of 

the Tabu List during the optimization process. This 

candidate solution cannot be visited again if the 

aspiration criterion is not satisfied (this feature prevents 

the method from becoming stuck at a local optimum). 

The method uses the FIFO method of removing the 

candidate solution from the Tabu List. The user can set 

whether the new candidate solution is generated using 

mutation of the best candidate solution from the 

previous population or the new solution is generated 

using mutation of the best found candidate solution. 

(Monticelli, Romero and Asada 2008; Weise 2009) 

 

2.5. Stochastic Simulated Annealing 

A candidate solution is generated in the neighbourhood 

of the candidate solution from the previous iteration. 

This generating could be performed through the 

mutation of a randomly selected gene or through the 

mutation of all genes. Acceptance of the worse 

candidate solution depends on the temperature. 

Temperature is reduced if the random number is smaller 

than the acceptance probability or the temperature is 

reduced if and only if a worse candidate solution is 

generated. If the temperature falls below the specified 

minimum temperature, temperature is set to the initial 

temperature. (Monticelli, Romero and Asada 2008; 

Weise 2009) 

 

2.6. Stochastic Local Search  

A candidate solution is generated in the neighbourhood 

of the best candidate solution. 

 

2.7. Evolution Strategy 

This optimization method uses Steady State Evolution – 

population consists of children and parents with good 

fitness. A candidate solution (child) is generated in the 

neighbourhood of the candidate solution (parent) and it 

is based on the Rechenberg 1/5th-rule. The population 

is sorted according to the objective values (Rank-Based 

Fitness Assignment). The optimization method uses 

Tournament selection. (Koblasa, Manlig and Vavruska 

2013; Miranda 2008; Tvrdík 2004) 

 

2.8. Differential Evolution 

Selection is carried out between the parent and its 

offspring. The offspring is created through a crossover 

between the parent and the new candidate solution 

(individual) which was created through the mutation of 

four selected individuals and the best one selected from 

the population – BEST method. The optimization 

method uses General Evolution and the Ali and Törn 

adaptive rule. The user can define the probability of a 

crossover between the new candidate solution and the 

parent. (Tvrdík 2004; Wong, Dong, 2008) 

 

3. DEVELOPED APPLICATION 

We have developed our own simulation optimization 

application which addresses the problems listed in the 

first chapter. The application contains seven different 

global optimization methods. This application contains 

two modules. The first module is a simulation optimizer 

which enables optimization of developed simulation 

models in ARENA or PlantSimulation simulation 

software. The objective function of the models is 

specified within the discrete simulation models. The 

user can also test a specified objective function without 

the need of creating the simulation model – Figure 1.  

 

Figure 1: Graphical user interface of simulation 

optimizer - first module 

Optimization process – Evolution Strategy 

Best found solution 

objective function value 

Specified objective function Specified constraints 
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 The application was created in Visual Basic 2010. 

This programming language was used for connection to 

ARENA simulation software and Microsoft Access 

database. The data from simulation experiments results 

and settings are stored in this database. The file contains 

information about: 

1. Controls – identification, names, low and high 

boundaries, type (discrete vs. continuous), 

initial values of controls and comments. 

2. Constraints – specification of the constraint 

function through using the mathematical 

operator buttons and the list of controls. User 

can validate the built expression. 

3. Objective function - specification of the 

objective function without the need of a 

simulation software tool. Objective function is 

composed of mathematical operators and 

selected controls from the list of all controls. 

User can validate the built expression. 

4. Optimization experiment setting – 

minimization vs. maximization of objective 

function, Termination criterion (Value to 

reach, number of simulation experiments, 

specified time, sub-optimum improvement 

ratio etc.), parameters settings of selected 

optimization method, low and high boundaries 

of selected optimization method parameters, 

number of replications, creation of a 

knowledge base of a simulation model, etc. 

  

 The second module is designed for testing the 

behaviour of the implemented optimization method in 

terms of setting the parameters for the optimization 

method. The user can specify the range of optimization 

method parameters. After finishing the number of 

optimization experiments replications (series of 

concrete optimization method setting) the data are 

exported to MS Excel workbook.  

 We have also developed an application which 

enables 3D visualization of simulation experiments 

when there are two controls and one objective function. 

Simulation experiments are represented by the points in 

the 3D chart of the objective function. The objective 

function surface is generated from the data obtained 

from simulation experiments. Another possibility is to 

generate a whole 3D chart from the data obtained from 

the simulation runs of all possible settings of the 

simulation model input parameters – complete search 

space.  

 

4. DISCRETE EVENT SIMULATION MODELS 

AND OBJECTIVE FUNCTIONS 

The testing of optimization methods which search for 

global optima was applied to three discrete event 

simulation models. These models reflect real production 

systems of industrial companies. Discrete event 

simulation models were built in Arena simulation 

software. We specified different objective functions 

considering the simulated system. All possible solutions 

and their objective function values were mapped to find 

the global optimum in the search space.  

 

4.1. The Manufacturing System and Logistics 

This discrete event simulation model represents the 

production of different types of car lights in a whole 

production system. The complex simulation model 

describes many processes; for example, logistics in 

three warehouses, production lines, 28 assembly lines, 

painting, etc. The objective function is affected by the 

sum of the average utilization of all assembly lines and 

average transport utilization. The objective function is 

maximized. Controls are the number of forklifts 

responsible for: transport of small parts from the 

warehouse to the production lines and assembly lines, 

transport of large parts from the warehouse to the 

assembly lines and the transport of the final product 

from the assembly lines to the warehouse. The objective 

function landscape of this model when the number of 

forklifts for transport of large parts = 14 is shown in 

Figure 2. 

 

 
Figure 2: Objective Function - The Manufacturing 

System And Logistics Discrete Event Simulation Model 

- Number of Forklifts for Large Parts = 14 

 

4.2. The Penalty  

This simulation model represents a production line 

which consists of eight workstations. Each workstation 

contains a different number of machines. Each product 

has a specific sequence of manufacturing processes and 

machining times. The product is penalized if the 

product exceeds the specified production time. A 

penalty also occurs if the production time value is 

smaller than the specified constant. The penalty 

function is shown in Figure 3 where T denotes 

production time; Tmin denotes required minimum 

production time; Tmax denotes required maximum 

production time; Tcrit denotes critical production time; 

k  denotes the penalty for early production (slope of the 

line - constant); 
1

k  denotes the penalty for exceeding 

the specified production time (slope of the line - 

constant); 
1P  denotes the penalty for exceeding the 

specified production time (constant); 
2P  denotes the 

penalty for exceeding the specified critical production 

time (constant); P denotes the penalty of the product. 
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Figure 3: Penalty Function 

 

 This rule is defined because premature production 

leads to increasing storage costs – the JIT product. The 

objective function is affected by the total time spent by 

the product in the manufacturing system. The objective 

function is minimized. Controls of the production line 

simulation model are the arrival times of each product 

in the system. The objective function is shown in 

Figure 4. 

 

 
Figure 4: Objective Function – The Penalty Discrete 

Event Simulation Model  

 

4.3. The Assembly Line  

This model represents an assembly line. Products are 

conveyed by conveyor belt. The assembly line consists 

of eleven assembly workplaces. Six of these workplaces 

have their own machine operator. The rest of the 

workplaces are automated. A specific scrap rate is 

defined for each workplace. At the end of the 

production line is a sorting process for defective 

products. The objective function reflects the penalty 

which is affected by the number of defective products 

and the palettes in the system. The objective function is 

maximized. The objective function is shown in 

Figure 5. The input simulation model parameters 

(controls) are the numbers of fixtures in the system and 

the number of fixtures when the operator has to move 

from the first workplace to the eleventh workplace to 

assemble waiting parts on the conveyor belt. 

 

 
Figure 5: Objective function - The Assembly Line 

discrete event simulation model 

 

5. TESTING FUNCTIONS  

We also tested implemented optimization methods on 

four standard testing functions. All testing functions are 

minimized.  

 

5.1.  De Jong´s Function 

It is a continuous, convex and unimodal testing 

function. The function definition: 

 

  



n

j

jxF
1

2
X   (2) 

 

where  XF  denotes the objective function; j denotes 

index of control; n denotes the dimension of the search 

space; xj
 denotes the value of control. The objective 

function is shown in Figure 6. 

 

 
Figure 6: Objective Function - De Jong´s Function 

 

5.2. Rosenbrock´s Function 

Rosenbrock´s (Rosenbrock's valley, Rosenbrock's 

banana) function is a continuous, unimodal and 

non-convex testing function. The function definition: 

 

   22

1

1

1

2 1)(100 jj

n

j

j xxxF  





X  (3) 

 

 The objective function is shown in Figure 7. 
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Figure 7: Objective Function -  Rosenbrock´s Function 

 

5.3. Michalewicz´s Function 

Michalewicz´s function is a multimodal test function (n! 

local optima). The parameter m defines the "steepness" 

of the valleys or edges. Larger m leads to a more 

difficult search. For very large m the function behaves 

like a needle in a haystack (the function values for 

points in the space outside the narrow peaks give very 

little information on the location of the global 

optimum). (Pohlheim 2006) 
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 We selected 5m  in our simulation model. The 

objective function is shown in Figure 8. 

 

 
Figure 8: Objective Function - Michalewicz´s Function 

 

5.4. Ackley´s Functions 

Ackley´s function is a multimodal test function. This 

function is a widely used testing function for premature 

convergence. (Tvrdík 2004) 
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 The objective function is shown in Figure 9. 

 

 

Figure 9: Objective Function - Ackley´s Function 

 

6. EVALUATION METHOD 

Simulation experiments results are saved to a database 

file during simulation experiments if the user uses a 

simulation optimizer. Simulation experiments results 

are visualized in the objective function chart and stored 

in the table placed in the application. The graphical user 

interface of the first module is shown in Figure 1. 

 If the second module is used the simulation 

experiments data are exported to MS Excel workbook 

after finishing the series (series - replications of 

optimization experiments with concrete optimization 

method setting). Excel was selected because of its wide 

usage 

 Considering the number of simulation experiments 

we can divide the number of simulation experiments – 

Figure 10: 

1. Simulation experiment – simulation run of 

simulation model. 

2. Optimization experiment – performed with 

concrete optimization method setting to find 

optimum of objective function. 

3. Series – replication of optimization 

experiments with concrete optimization 

method setting. 

 The second module focuses on testing the 

behaviour of the implemented optimization method in 

terms of setting the parameters for the optimization 

method. The user can set up the parameters of a selected 

optimization method, low and high boundaries of the 

selected optimization method parameters, number of 

replications, and export the objective function chart to 

image – Figure 11.  

 The same conditions had to be satisfied for each 

optimization method, e.g. the same termination criteria, 

the same search space. If the optimization method has 

the same parameters as another optimization method, 

we set up both parameters with the same boundaries 

(same step, low and high boundaries). 
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Figure 10: The Number of Simulation Experiments  

 

 

Figure 11: GUI of the Second Module 

 

 Box plot characteristics (the smallest observation – 

sample minimum Q1, lower quartile Q2, median Q3, 

upper quartile Q4, and largest observation - sample 

maximum Q5) are calculated for each performed setting 

of the optimization method parameters – Figure 12.  

 

  

Figure 12: Example of Results from Simulation 

Optimization Experiments Provided by Evolution 

Strategy Displayed in Box Plot Chart – The Assembly 

Line Simulation Model 

 

 *

0XF  denotes the found optimum (local in this 

case). These characteristics are visualized in the box 

plot chart – Figure 12.  

 Three box plot charts are generated - Best objective 

function value, Range of provided function objective 

values during the simulation experiments, and Number 

of experiments required to find global (local) optimum. 

Visualization can help the user to find a suitable setting 

of optimization method more quickly. 

 Due to the large volume of data (over 4 billion 

simulation experiments) we have to propose evaluation 

techniques (criteria) which express the failure of the 

optimization method in different ways. Each criterion 

value is between [0, 1]. If the failure is 100[%] the 

criterion equals 1 therefore we try to minimize all 

specified criteria. We implemented the graphical user 

interface to MS Excel workbook which enables the user 

to set up the weights of each criterion and other 

parameters of the evaluation. These parameters are 

automatically loaded from the simulation experiments 

results. We used the VBA for MS Excel.  

 

6.1. Optimization Method Success 

The first criterion f1 is the value of not finding the 

known VTR (value to reach). This value is expressed 

by: 

 

s

ns
f succ
1

  (8) 

 

where s denotes the number of performed series, succn  

denotes the series where the VTR was found. 

Simulation runs of all possible settings of simulation 

model input parameters were performed. This means 

that we have evaluated all possible solutions of the 

search space hence we can determine the global 

optimum (VTR) in the search space. Average Method 

Success of Finding Optimum can be formulated as 

follows:  
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where i denotes the index of one series, 
i

f1
 denotes the 

value of the first criterion (Optimization method success 

– the best value is zero), s denotes the number of 

performed series. The average optimization method 

success of finding the optimum of testing functions is 

shown in Figure 13. 
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 We can see that the Evolution Strategy and 

Simulated Annealing are successful optimization 

methods. Random Search also achieves good results. It 

was affected by doing many simulation experiments by 

this method. The probability of finding the optimum 

increases with a high number of simulation 

experiments. This strategy is simply random and if the 

search space is huge (NP-hard) we can say it is lucky to 

find the optimum. This method is usable when the user 

has no information about the objective function type. 

We have to evaluate each possible solution in the search 

space to obtain the optimum hence the search space 

cannot be too huge.  

 

 
Figure 13: Average Optimization Method Success – 

Simulation Optimization Results of Testing Functions 

  

 Average optimization method success of 

finding the optimum of discrete event simulation 

models is shown in Figure 14. We can say that 

Simulated Annealing and Evolution Strategy are quite 

successful optimization methods again. Random Search 

was not successful in the case of the Penalty model 

because of the larger search space. The Penalty discrete 

event simulation model has a complicated objective 

function landscape. The area around the optimum is 

straight and the method could not obtain information 

about rising or decreasing the objective function terrain.  

 

 
Figure 14: Average Method Success – Simulation 

Optimization Results of Discrete Event Simulation 

Models 

 

Previous charts express the average success of 

optimization methods of all optimization methods 

settings. These charts also contain bad settings therefore 

we separated the bad series from the good series. The 

next chart contains the filtered series with the best 

found first criterion value only (in this case f1 = 0 so the 

optimum was found in each optimization experiment). 

The percentage of absolutely successful series 

compared to all performed series is shown in Figure 15. 

It is obvious that the favourite, Evolution Strategy, has 

problems with the multimodal Ackley function. The 

success of this method was affected by the number of 

individuals randomly chosen from the population for 

the tournament – exploration vs. exploitation of the 

search space.  

The first approach is to generate other new 

solutions which have not been investigated before - 

exploration. Since computers have only limited 

memory, the already evaluated solution candidates 

usually have to be discarded in order to accommodate 

new ones. Exploration is a metaphor for the procedure 

which allows search operations to find new and maybe 

better solution structures. Exploitation, on the other 

hand, is the process of improving and combining the 

traits of the currently known solutions, as done by the 

crossover operator in evolutionary algorithms, for 

instance. Exploitation operations often incorporate 

small changes into already tested individuals leading to 

new, very similar solution candidates or try to merge 

building blocks of different, promising individuals. 

They usually have the disadvantage that other, possibly 

better, solutions located in distant areas of the problem 

space will not be discovered. (Michalewicz 2004) 

The behaviour of Hill Climbing, Local Search and 

Tabu Search is similar considering the similar pseudo 

gradient principle.   

 Substandard results were achieved with the 

Downhill Simplex method. This optimization method 

works by calculating the points of the centroid (center 

of gravity of the simplex). We have to modify this 

optimization method in such a way that it is applicable 

for discrete event simulation optimization purposes 

where the step in the search space is defined. We use 

the rounding of coordinates of the vector (new 

calculated point) to the nearest feasible coordinates in 

the search space and this leads to deviation from the 

original direction. We performed other simulation 

experiments with smaller steps and the success of 

finding the optimum was higher than before. This 

problem can be solved by using a calculation with the 

original points and the objective function value will be 

calculated by the approximations of the objective value 

of the nearest feasible points in the search. 

Differential Evolution uses the elitism strategy in 

our case. This leads to copying of identical individuals 

which suppresses the diversity of new promising 

individuals.  Random Search looks successful, but there 

were only two possible settings – generating the same 

individual possibility. This evaluation can be modified 

by using the coefficient which recalculates the value of 

success depending on the number of performed series. 

The termination criterion was the number of possible 
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solutions in the search space when there is little search 

space. This led to increasing the probability of success 

of this optimization method. 

 

 
Figure 15: Percentage of Absolutely Successful Series 

Compared To All Performed Series - Testing Functions 

 

 

Figure 16: Percentage of Absolutely Successful Series 

Considering All Performed Series - Discrete Event 

Simulation Models 

 

6.2. The Difference between Optimum and Local 

Extreme 

The second criterion f2 is useful when there is no series 

which contains any optimum or the solution whose 

objective function value is within the tolerance of 

optimum objective function value. The first criterion f1 

equals zero in this case. The function where the output 

of the function can take value  1,02 f . This function 

evaluates the difference between the objective function 

value of the best solution found in the series and the 

optimum objective function value. The effort is to 

minimize f2. The list of found optimums considering 

objective function value using the comparator function 

is sorted in ascending order. After that the value of the 

second criterion is calculated using the formula: 

   

   Worst

*

Best

*

2
XFF

XFF
f






X

X   (10) 

 

where  *
XF  denotes the objective function value of the 

global optimum of the search space;  BestXF  denotes 

the objective function value of the best solution found 

in concrete series;  WorstXF  denotes objective function 

value of the worst solution (element) of the search 

space. 

 The difference between the optimum and the local 

extreme is shown in Figure 17 (testing functions) and 

Figure 18 (discrete event simulation models). The charts 

contain only series where the f1 = 0 (no optimum was 

found in the series).  The average of second criterion f2 

is shown for each optimization method – these values 

express the failure of the optimization method. Output 

of function can take value  1,02 f . 

 

 

Figure 17: Average of the Second Criterion f2 - 

Difference between Optimum and Local Extreme - 

Testing Functions 

 

 
Figure 18: Average of the Second Criterion f2 - 

Difference between Optimum and Local Extreme - 

Discrete Event Simulation Models 

 

6.3. The Distances of Quartiles  

Third criterion f3 expresses the distance between 

quartiles of a concrete series. Weights are used for 

evaluation purposes.  These weights penalize the 

solutions) placed in quartiles. Values of the weights 

were defined based on the results of the simulation 

experiments. The user can define the weight value. The 

sum of weights equals one. The third criterion when the 

objective function is minimized can be formulated as 

follows: 
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where  *

XF  denotes the objective function value of the 

global optimum of the search space; 
34 fw denotes the 

weight (penalty) of objective function values between 

sample minimum Q1 and lower quartile Q2;  

33 fw denotes the weight of objective function values 

between lower quartile Q2 and median Q3; 
32 fw denotes 

the weight of objective function values between median 

Q3 and upper quartile Q4; 
31 fw denotes the weight of 

objective function values between upper quartile Q4 and 

largest observation - sample maximum Q5;    W o r s tXF  

denotes objective function value of the worst solution 

(element) of the search space. The evaluation of 

optimization experiments using the third criterion is 

shown in Figure 19 and in Figure 20.  

 

 

Figure 19: Average of the Third Criterion f3 - Distances 

of Quartiles - Testing Functions 

 

 

Figure 20: Average of the Third Criterion f3 - Distances 

of Quartiles - Discrete Event Simulation Models 

 

 The effort is to minimize f3 (  1,03 f ). If the first 

criterion equals zero 12 f  then the third criterion 

equals zero 03 f  (absolutely successful series). The 

Downhill Simplex optimization method provided the 

worst optimization results of all tested optimization 

methods due to rounding the coordinates. Pseudo 

gradient optimization methods found solutions of 

similar quality.  Simulated Annealing provides a worse 

solution than the Evolution Strategy. 

 

6.4. The Number of Simulation Experiments Until 

the Optimum Was Found 

The fourth criterion f4 evaluates the speed of finding the 

optimum – the number of performed simulation 

experiments until the optimum/best solution was found 

in each series. The effort is to minimize f4 (  1,04 f ). 

The fourth criterion when the objective function is 

minimized can be formulated as follows: 
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 (11) 

 
where 

44 fw denotes the weight (penalty) of number of 

simulation experiments until the optimum was found 

between sample minimum Q1 and lower quartile Q2;  

43 fw denotes the weight of number of simulation 

experiments until the optimum was found between 

lower quartile Q2 and median Q3; 
42 fw  denotes the 

weight of number of simulation experiments until the 

optimum was found between median Q3 and upper 

quartile Q4; 
41 fw  denotes the weight of number of 

simulation experiments until the optimum was found 

between upper quartile Q4 and largest observation - 

sample maximum Q5;  
X

m ~  denotes the number of 

feasible solutions in the search space. The evaluation of 

optimization experiments using the third criterion is 

shown in Figure 21 and in Figure 22. 

 

 

Figure 21: Average of the Fourth Criterion f4 - Number 

of Simulation Experiments until the Optimum Was 

Found - Testing Functions 
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Figure 22: Average of The Fourth Criterion f4 - Discrete 

Event Simulation Models 

 

7. CONCLUSION 

The goal of our research is to compare selected 

modified optimization methods (Random Search, Hill 

Climbing, Tabu Search, Local Search, Downhill 

Simplex, Simulated Annealing, Differential Evolution 

and Evolution Strategy) used in the developed 

simulation optimizer and used in the second module 

which is focused on testing the implemented 

optimization methods. Optimization methods generate 

whole populations instead of one possible solution 

which prevents premature convergence. The success of 

optimization methods depends on the objective function 

landscape. Evolution Strategy is a suitable optimization 

method for all the tested objective functions (a little 

propensity to bad tuning of the method parameters). 

This optimization method achieves good values for 

specified criteria. The alternative to Evolution Strategy 

optimization methods is Simulated Annealing. 

Simulated Annealing has the ability to escape from the 

local extreme thanks to the implemented approach of 

setting the temperature to the initial temperature. We 

can expect to find good results using Random Search if 

there is a small search space. If the dimension of the 

search space is bigger, there is little probability of 

success. Optimization methods based on pseudo-

gradient searching such as Hill-Climbing, Local Search, 

Tabu Search achieve almost the same results for the 

simple objective function landscape due to their similar 

nature. Differential Evolution avoids repressing the 

diversity of solutions (elitism - an advantage of this 

approach is the faster finding of a feasible solution but 

not the finding of the global optimum). The range of 

provided simulation optimization results using this 

optimization method is better than the optimization 

methods based on pseudo-gradient searching.    
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