
SIMPHONY: AT THE PINNACLE OF NEXT GENERATION SIMULATION MODELING

ENVIRONMENTS FOR THE CONSTRUCTION DOMAIN

Ronald Ekyalimpa
(a)

, Stephen Hague
(b)

, Simaan AbouRizk
(c)

(a)

University of Alberta, 5-047 Markin CNRL Natural Resources Engineering Facility, Edmonton, Alberta, CANADA
(b)

University of Alberta, 5-048 Markin CNRL Natural Resources Engineering Facility, Edmonton, Alberta, CANADA
(c)

 University of Alberta, 3-015 Markin CNRL Natural Resources Engineering Facility, Edmonton, Alberta, CANADA

(a)

 rekyalimpa@ualberta.ca,
(b)

 steve.hague@ualberta.ca,
(c)

 abourizk@ualberta.ca

ABSTRACT

This paper presents Simphony simulation system as a

tool that is leading the way in the evolution of

simulation systems within the construction domain.

This discussion is introduced by presenting an overview

of simulation, the different simulation methods and the

tools that support this method. Simphony is then

introduced as an environment that supports discrete

event and continuous simulation. Other features such as

its extensible API, calendar, data connectivity, special

purpose development abilities etc., are also highlighted

to show why Simphony is a powerful simulation

system. Two practical problems (earth-moving and

traffic light) that are solved using Simphony are

presented to demonstrate the use of some of these

features.

Keywords: Simphony, extensible API, calendars,

simulation methods

1. INTRODUCTION

Simulation is a numeric method that has been in use for

several years and has been applied in the analysis of

complex dynamic systems. The simulation community

has three well established methods to apply a

simulation-based approach in solving their problems:

System Dynamics (SD), Agent-Based Modeling

(ABM), and Discrete Event Simulation (DES).

The use of each of these methods depends on the

complexity of the system being analyzed and the level

to which the modeller would like to abstract the system.

System dynamics is famous for its precision in

modeling systems that have numerous components that

are dynamic, inter-related and interact with a feed-

feedback behavior. This method supports a top-bottom

approach to that analysis of systems e.g. the evaluation

of the impact of different policies or strategies on the

behavior of a system. Simulation systems build to

support this method implement numeric integration

algorithms (e.g. the family of Runga-Kutta equations) in

a continuous fashion. It does not involve the flow of

tokens but rather tracks rates of change in specified

quantities with time using integration. Examples of such

systems include AnyLogic, Vensim, PowerSim,

STELLA (iThink), Simulink, DYNAMO etc.

Agent-based modeling on the other hand supports

a bottom-up approach to the analysis of systems. This

approach models a unit or a component within a system

as an agent that has intelligent behaviors that are

influenced by its peers (other agents) and the

environment in which it operates. An agent exhibits

different behavior by transitioning through different

states. This behavior is controlled by an algorithm

embedded within the agents. This algorithm is defined

using concepts of state diagrams. Communication

between agents and the environment is triggered by the

events (in the computing science sense). Examples of

simulation systems that support this modeling approach

include Repast-Simphony, AnyLogic, A3/AAA, ABLE,

Agent Builder, MASON, NetLogo, SimAgent etc.

Discrete event simulation is an approach in which

a system is described using entities, resources, activities

and other modeling constructs. These constructs interact

with each other to define the state of the system and are

responsible for its evolution at discrete points in time.

In typical DES systems, this change of state is triggered

by the flow of entities. Changes in the state of a system

typically occur when resources are captured or released,

activities are started or finished. DES is best suited for

analyzing systems at an operations level. This explains

why it has been extensively used in analyzing

production systems, supply chain, medical facility

operations and construction operations. Various general

purpose discrete event simulation software systems

have been developed for a wide range of industries:

AweSim (Pritsker, 1997) and GPSS/H (Crain, 1997);

for construction: Micro-CYCLONE (Halpin, 1973),

STROBOSCOPE (Martinez, 1996), and Simphony

(Hajjar and AbouRizk, 1999).

In construction, DES has been widely used to

model and improve processes such as tunnel

construction, earth-moving, fabrication shops, bridge

construction, and scheduling.

 In 1999, AbouRizk et al. developed a special

purpose template in Simphony for analyzing tunnel

construction using TBMs. The template was used to

evaluate the effect of different site setup configurations

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

472

mailto:rekyalimpa@ualberta.ca
mailto:steve.hague@ualberta.ca?subject=Technical%20Contact%20Response
mailto:abourizk@ualberta.ca

at the working shaft through predictions of tunnel

advance rates along the tunnel length. Work on this

template is on-going and has resulted in it evolving into

a more sophisticated yet easy to use simulation tool for

analyzing tunnel construction processes. Examples of

additions to the template include: (1) ability to model

shifts through the use of calendars, (2) features for

generating cost estimate reports for the simulated tunnel

and (3) the ability of the template to participate in a

larger distributed simulation system that is based on the

HLA standards, so that it can support other components

such as visualization of the tunnel construction. Later

on, Zhou et al. (2008) used Simphony to develop a

special purpose template for modeling tunnel shaft

construction. They refined the way tunnel shafts are

simulated so that most site processes and constraints are

well represented. They validated their template by

implementing a case study (NEST NL1-NL2 tunnel in

Edmonton). Modeling constructs developed in this work

are used in the current version of the template. Touran

and Asai (1987) used CYCLONE simulation system to

the advance rate of a TBM during the construction of a

long, small-diameter tunnel. Ioannou and Martinez

(1996) used STROBOSCOPE simulation system to

compare two alternative construction methods for rock

tunneling; a conventional verses the New Austrian

Tunneling Method (NATM). They demonstrated

effective ways of using simulation for comparing

alternatives. Al-Bataineh et al. (2013) recently wrote a

paper in which they used simulation to project planning

and control in tunnel construction.

 The earth-moving operation is one that had been

extensively analyzed using simulation because of its

repetitive nature and simplicity. A small portion of the

work done in simulating earth-moving operations is

discussed here. In 2002, Marzouk and Moselhi

combined simulation and optimization (genetic

algorithms) to get optimal cost and durations associated

with earth-moving operations. Fu (2012) presented a

paper in which he used Global Simulation Platform

(GSP), a simulation system developed by Volvo CE,

and CYCLONE to simulate and compare three loading

scenarios for an earth-moving operation. He compared

the options based on fuel cost per unit production.

However, logic flaws can be identified in some of the

CYCLONE model layouts presented by Fu because

they don’t explicitly represent the loading of haulers

with multiple buckets. In 2011, Cheng et al. proposed a

simulation model for virtual simulation of earthmoving

operations using petri nets. In 2009, Ahn et al.

published a paper in which they presented a simulation-

based sustainability analysis of earth-moving operations

with respect to emissions. STROBOSCOPE and

VITASCOPE were both used as simulation and

visualization platforms for estimating omissions and

visualizing simulated objects respectively. Rekapalli

and Martinez (2011) also presented a recent paper on

earth-moving operations.

 Simulation has been extensively applied for

modeling processes at the different stages of the

delivery of industrial projects. They include: structural

steel fabrication, pipe spool fabrication, module

assembly. In 2008, Liu and Mohamed used an agent-

based modeling approach to simulate the dynamics of

resource allocation within a module assembly yard for a

construction company in Edmonton, Canada. They used

Repast-Simphony for their work. Song and AbouRizk

(2003) developed Simphony general purpose template

models (for a structural steel fabrication shop) which

they integrated with CAD drawings to obtain attributes

of steel pieces whose fabrication process was to be

simulated. Their model used attributes of steel pieces

obtained from CAD drawings and embedded artificial

neural networks to predict durations for the different

fabrication processes (cutting, fitting, welding and

painting) (Song and AbouRizk, 2006). Alvanchi et al.

(2012) developed a special purpose simulation template

in Simphony for modeling the fabrication of structural

steel within a shop. The template reads its input of steel

pieces to be fabricated from an information

management system (database) and simulates the

fabrication process for different shop layouts and

processing equipment so that the operational efficiency

of the shop can be assessed. Sadeghi and Fayek (2008)

developed a Visual Basic application that utilizes the

Simphony discrete event engine behind the scenes to

model operations in a pipe spool fabrication shop.

Mohsen et al. (2008) used Simphony general purpose

template to simulate the erection of a building that was

constructed using a modularized approach. They used

their model to determine the utilization of the different

resources (crane, rigging crew, welding crew and

delivery space) involved in the operation and compared

these with those recorded on site. Wang et al. (2009)

developed models that simulate the operations in a

typical pipe spool fabrication shop. They compared the

“traditional batch-and-queue fabrication system” to “the

new cell-based work flow fabrication systems” by

constructing a simulation model for each system. Cycle

time for the fabrication of pipe spools was used as a

statistic for comparing the two methods and the new

method was found to be more efficient.

 In bridge construction, a number of modeling

studies have been done. Dulcy and Halpin (1998)

pointed out that cable stay bridge construction provides

enormous opportunity for the use of computer

simulation in the analysis and design of the operations

involved. They attributed this to the fact that this type of

bridge involves many repetitive cycles of placing

concrete segments and supporting cables. They

constructed a CYCLONE model for the construction of

a cable-stay bridge (Dame Point Bridge in Jacksonville,

Florida) and used it to investigate different resource

combinations that would result in higher utilizations and

shorter construction durations. They came up with an

optimum mix of resources for this problem. In 2007,

Marzouk et al. also used simulation to model the

construction of a bridge in Cairo, Egypt (“The 15th

May Bridge”) that was constructed using the

incremental launching construction technique. Marzouk

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

473

et al. (2007) stated that concrete bridges can be placed

into 6 categories based on the construction method.

These include: 1) cast-in-situ on false-work, 2)

cantilever carriage, 3) flying shuttering, 4) launching

girder, 5) pre-cast balanced cantilever, and 6)

incremental launching. They further stated that the

incremental launching construction method is the

preferred option when the spans being constructed are

larger than usual. Marzouk and his colleagues used

STROBOSCOPE to develop a special purpose template

of the bridge construction process and resource

constraints. They ran their model for one scenario

similar to that used on site and obtained production

results that were very close to actual values on site.

They then used this model to experiment with different

resource mixes to shorten the project duration. A

number of authors have used simulation-based methods

to visualize/animate the construction of bridges. Recent

examples include: Dori and Borrmann (2011), and

Chui-Te et al. (2011). Visualization helps with the

verification of constructed simulation models and

assists is displaying the evolution of the simulation to

those not knowledgeable in simulation in an effective

manner. Other studies that have involved the use of

simulation for modeling bridge construction processes

include work done by Ailland et al. (2010), Liu (2012),

and Chuen-Tsai et-al (2013).

 Simulation has been used to improve scheduling

practices within the construction domain. For example,

a state-based simulation approach was used by Hu and

Mohammed (2010) to facilitate updates of schedules

developed in Microsoft project. They used the

Simphony simulation engine. Other studies done on

simulation-based scheduling include: Chehayeb and

AbouRizk (1998), Zhang et al. (2002) and Lu (2003).

The aforementioned studies demonstrate the vast

simulation opportunity that construction processes offer

to the simulation community. Simphony has been used

significantly in solving construction problems using a

simulation-based approach, especially the more

complex ones.

2. SIMPHONY SIMULATION SYSTEM

Simphony is a discrete event simulation system that was

originally developed by Hajjar and AbouRizk (1999)

and is currently being extended and maintained by the

2
nd

 and 3
rd

 authors. Simphony provides an-easy-to-use

User Interface (UI), core services (a simulation engine,

resources, files, calendars etc.), modeling services and

simulation templates.

Simphony is built using the Microsoft .NET

framework in a fashion that makes it extensible. Its

Application Programming Interface (API) can therefore

be utilized within the Simphony UI or any other

applications that is compatible with .NET APIs. This is

what makes Simphony exceptionally powerful.

Furthermore, Simphony supports the development

of custom special purpose templates. These templates

provide for an efficient way to abstract complex

processes in a manner that makes it easy for domain

experts to make use of simulation without having in-

depth knowledge of the science behind the method.

Examples of special purpose templates previously

developed and currently supported in Simphony include

the tunneling template, aggregate crushing template, de-

watering template, PERT template, earth-moving

template, structural steel fabrication template, and range

estimating template.

 Simphony supports a general purpose template

that has elegant graphical modeling elements, and

directional arrows which are an essential feature of

discrete event simulation modeling

languages/environments. Constructing GPT models

requires elements to be dragged and dropped onto the

modeling surface and connected with directional arrows

in a convenient way. Simphony GPT also provides

advanced features such as attributes for entities and

scenarios, and formula editors into which user written

code can be embedded within the models to facilitate

solving more sophisticated problems.

 Simphony is built to support Monte-Carlo

simulation experiments. Figure 1.0 summarizes the

manner in which Simphony processes simulation

models.

 Other features or services that exist within

Simphony giving it an edge over other systems include:

 It has discrete event simulation capabilities and

supports combined simulation as well (discrete

event-continuous simulation).

 It supports calendars.

 It provides for data visualization.

 It supports connectivity to data storage

applications e.g. databases.

 It has a neat user interface that provides for

model debugging features (a trace window).

 Templates developed in Simphony can easily

be integrated into larger distributed simulation

systems (developed in line with the HLA).

 The rest of the paper is dedicated to demonstrating

the use of Simphony for modeling typical simulation

problems.

3. MODELING WORK SHIFT DYNAMICS

USING CALENDARS IN SIMPHONY.NET

3.1. An Earth-Moving Operation

In order to demonstrate the use of calendars within

Simphony’s general purpose template, a simple earth-

moving operation is described, modeled and

experimented with. We shall investigate the effect of

using different calendars on the total number of

calendar days it will take 5 dump trucks (@ has a

capacity of 20cy) to move 10,000 cubic yards of dirt

from the source to a placement area. There is one loader

at the source responsible for loading dirt onto trucks.

The details of the load, haul, dump and return activities

are summarized in Table 1.

 A simple operation (earth-moving operation) is

chosen to demonstrate the concepts of utilizing a

calendar within a simulation model. A brief section

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

474

detailing calendar features within Simphony is

introduced and then their applications in modeling the

problem at hand are presented.

Initialize Scenario

Start Simulation

Initialize Services

Initialize Run

Simulate Run

Finalize Run

Finalize Services

Last Run?

Go to next Run

Finalize Scenario

End Simulation

Go to next

Scenario

Last

Scenario?

No

Yes

Yes

No

Figure 1: Schematic Layout of Simphony’s Simulation

Process

Table 1: Earth-Moving Activity Durations

Activity Duration (Minutes)

Load @ Truck Constant(8.0)

Haul to dumpsite Constant(40.0)

Dump Truck load Constant(5.0)

Return to source Constant(55.0)

3.2. Calendars within Simphony.NET 4.0

Embedding and using calendars to constrain the

execution of simulation models requires a clear

understanding of the behavior of calendars from a

simulation perspective. When activated, the calendar in

Simphony continuously transitions through two states:

(1) a working state and (2) a non-working state. The

transition between any two calendar states (that are the

same or different) gives rise to a calendar event. It is

during the processing of a calendar event that a work

shift (or the processing or the simulation model) gets

turned ON or OFF through the “SuspendEvent(entity)”

and “ResumeEvent(entity)” methods, respectively.

 Simphony provides two constructs that facilitate

the modeler to model work shifts: (1) a calendar, and

(2) a calendar entity. The calendar keeps track of the

working time periods, non-working time periods and

their lengths. It is responsible for triggering calendar

events whenever there is a transition in its working

state. The calendar also provides methods that facilitate

the modeler to get the total working or non-working

times for a particular shift and pay type between

specified dates. This is usually useful when the modeler

is tracking costs for simulated operations.

 The Calendar in Simphony is activated to start

raising events as soon as the

“engine.SubscribeCalendar(…)” method is invoked.

The calendar then keeps continuously raising calendar

events and will not stop until the simulation is halted by

either (1) maximum criteria achieved, (2) maximum

count achieved or (3) through an explicit halt invoked

within an “execute element.” The criteria for

terminating the simulation through the engine running

out of simulation events can never be achieved when

the calendar is activated because the calendar keeps

looping and raising calendar events infinitely. The

calendar can be de-activated by invoking the

“engine.UnsubscribeCalendar(…)” method. The

modeller can obtain a calendar from the calendar list

(defined in Simphony core services or in the “calendar

property” of the scenario).

 The calendar entity on the other hand carries with it

information about the calendar event that has been

triggered (summarized in Table 2). This entity is passed

on to the calendar event handler so that this information

can be used for implementing computations at the time

that the calendar event is being processed. These

properties are of a calendar entity are summarized in the

schematic layout presented in Figure 2.0.

Table 2: Properties of a Calendar Entity

Calendar Entity

Property

Purpose of the Property

Calendar

Gets or sets the calendar with

which the entity will be

associated

Entities
Avails the entities controlled by

the calendar

IsWorking

Determines whether the calendar

is currently in a working (true)

or non-working (false) state

Time Remaining
Avails the time to the next

calendar event (time span)

It is important to carefully track the work state of the

calendar because it affects the action taken on the

entities controlled by the calendar (suspends their

processing, resumes their processing or does nothing).

The modeller would like to act on the entities when a

calendar event is associated with a change in the work

state of the calendar (Figure 3.0) and not do anything

when a calendar event is not associated with a change in

the work state of the calendar (Figure 3b). An example

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

475

of a situation where an action is warranted is when there

is a transition between a working period and a work

break and a work break and work period. This is

illustrated in Figure 3a. At calendar event 1, all entities

are suspended and at calendar event 2, processing of all

entities is resumed. An example where there is no need

for action on entities arises when there are two

consecutive work periods, especially when there is a

shift change without a break – i.e. from shift 1 to shift 2

(Figure 3b).

Previous work

state

Current work

state

Current Calendar event

Time remaining – Time Span

Previous Calendar event

Future Calendar event

Figure 2: Schematic Layout for Occurrence of

Simphony Calendar Events

Work Shift 1 Work Shift 1

Work Break for

Shift 1

Calendar

Event 1

Calendar

Event 2

Work Shift 1 Work Shift 2

Calendar

Event 3
Figure 3: Different Transitions between Work Periods

(3a: Work-to-Non Work-to-Work; 3b: Work-to-Work

Details of the working states associated with each

calendar event are summarized in Table 3.0. Based on

the explanations provided, it becomes necessary to keep

track of the current work state associated with each

calendar event (provided by the calendar entity) and the

previous working state (tracked by the modeller).

Table 3: Shift Details Associated with Figure 3.0

Calendar

Event
Current State Previous State Shift

1 Working Non-working 1

2 Non-working Working 2

3 Working Working 1→2

 At present, the intrinsic statistics reported in

Simphony (such as resource utilizations and file length)

are not reliable when calendars are enabled because

they don’t distinguish between working time and non-

working time in the course of the simulation.

3.3. Simphony Model Layout, Discussion and

Results

At the start of simulation, the model subscribes to a

calendar when the initialize run method is invoked on

the “Subscribe to a Calendar” execute element. Within

this element, C# code snippet is written to achieve the

subscription to the calendar. A method associated with

the calendar event handle is written within the partial

formulas class for this execute element. Figure 4.0.

Figure 4: Earth-moving Model Layout in Simphony

 Five truck entities are created at the start of the

simulation which represent dump trucks. These entities

flow through the model (Figure 4.0) emulating the

movement of dirt from source to placement. When there

is no more dirt to move, the simulation is terminated.

At the end of the simulation, the last truck entity flows

through the “Unsubscribe Calendar” execute element

where the the subscription to the calendar is undone and

working days and non-working days retrieved from the

calendar and saved in the respective statistics nodes.

The C# code written within the execute element formula

to achieve this is presented in Figure 5.0.

 Three different calendars were experimented with

in this model; a standard calendar, 24 Hour calendar,

Night Shift and a calendar that was created with custom

settings. The custom calendar used in this experiment

was defined using the Simphony calendar editor

(accessed through the “Calendars” property of the

scenario – see Figure 7.0). The calendar was setup such

that the work (or non-work) periods presented in Table

4.0 are utilized. For simplicity, all work periods were

considered as regular time since the simulation did not

model dynamics of work performance changes with

work time or costs incurred due to different pay types.

 This custom calendar considers Sunday as a non-

working day, Saturday as a working day with one-eight-

hour work shift and all other week days as working

days with two-eight-hour work shifts.

 Simulation results (see Table 5.0) indicate that the

work scope can be completed earliest with the “24

Hour” calendar, followed by the “custom” calendar

defined. Given that the “24 Hour” option is not a

calendar per se, the“custom” calendar would be the

most efficient option to complete the work in the

shortest time. The modeller can experiment with

different resource and shift configurations to obtain

results that can be compared to pick a work plan that

best suits their needs.

This section demonstrates that the Simphony

simulation system fully supports the integration of

calendars in simulation models.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

476

Figure 5: C# Code Snippet for Subscribing to the

Calendar in Execute Shown in Figure 4.0

Table 4: Work Periods Used in the Custom Calendar

Day of Week Work Times

Sunday -

Monday - Friday

6:00 – 10:00

11:00 – 15:00

15:00 – 19:00

20:00 – 00:00

Saturday
6:00 – 10:00

11:00 – 15:00

Figure 6: C# Code Snippet for Unsubscribing to the

Calendar and Computing Work and Non-working Days

Figure 7: Dialogue for Creating or Editing Calendars in

Simphony

public static partial class Formulas

{

 public static System.Boolean

Formula(Simphony.General.Execute context)

 {

 //Get the statistics node from the scenario for the

total work days

 Simphony.General.Statistic S1 =

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # working days during

 simulation");

 //Get the statistics node from the scenario for the

total non-work days

 Simphony.General.Statistic S2 =

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # of non-working days

 during Simulation");

 //Get the statistics node from the scenario for the

total # of days from start to

 end of simulation

 Simphony.General.Statistic S3 =

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # of days from start

 to finish of simulation");

 //Get the calendar from the global attribute --->

So that we can get the working and

 non-working time

 Simphony.Simulation.Calendar MyCalendar = \

(Simphony.Simulation.Calendar)(context.Scenario.Objects[

1]);

 //Collect the total # of work days

S1.Collect(MyCalendar.GetWorkingTime(context.Scenario.St

artDate,

 context.Engine.DateNow).Days);

 //Collect the total # of non-work days

S2.Collect(MyCalendar.GetNonWorkingTime(context.Scenario

.StartDate,

 context.Engine.DateNow).Days);

 //Collect the total # days from start to finish of

simulation

 System.TimeSpan TS = context.Engine.DateNow -

context.Scenario.StartDate;

 S3.Collect(TS.Days);

 //Trace the finish date of Simulation

 System.Diagnostics.Trace.WriteLine("The earth-

moving operations has been completed

 on date:" + context.Engine.DateNow);

 //Get the Calendar entity --> So that we can

unsubscribe calendar

 Simphony.Simulation.CalendarEntity

MyCalendarEntity =

(Simphony.Simulation.CalendarEntity)(context.Scenario.Ob

jects[0]);

 //Unsubscribe the calendar

context.Engine.UnsubscribeCalendar(MyCalendarEntity);

 return true;

 }

 }

public static partial class Formulas

{

 //Private fields for the methods to use in their

 calculations

 private static System.Boolean WasWorking = false;

 public static Simphony.Simulation.DiscreteEventEngine

 SimulationEngine;

 public static System.Boolean

 Formula(Simphony.General.Execute context)

 {

 //Set the Initial quantity of dirt to 10,000 CY

 context.Scenario.Floats[0] = 10000.0;

 //Get a Calendar to subscribe to from the scenario

 Simphony.Simulation.Calendar MyCalendar =

 context.Scenario.Calendars["My Custom Calendar"];

 //Create an instance of a calendar entity

 CalendarEntity MyCalendarEntity = new

 CalendarEntity();

//Make a global attribute point to this calendar

entity

 context.Scenario.Objects[0] = MyCalendarEntity;

 context.Scenario.Objects[1] = MyCalendar;

 //Get access to a calendar

context.Engine.SubscribeCalendar(MyCalendarEntity,MyCalend

ar,CalendarEvent);

 //Make reference to the simulation engine

 SimulationEngine = context.Engine;

 return true;

 }

 //Call the method that is related to the calendar events

 public static void

CalendarEvent(Simphony.Simulation.CalendarEntity e)

 {

 //Check if there is a change in the work state of the

calendar ---> If there is a change,Then do something

 if(e.IsWorking != WasWorking)

 {

 //It is a change from a non-work period to a work

period ---> Resume processing of events

 if(e.IsWorking)

 {

 System.Diagnostics.Trace.WriteLine("A work period

is begining now at time: " +

SimulationEngine.DateNow.DayOfWeek +", "+

SimulationEngine.DateNow + " and will end in "

 + e.TimeRemaining.TotalHours + " hours");

 foreach(var entity in e.Entities)

 {

 //Resume only suspended entities

 if(entity.IsSuspended)

 {

 SimulationEngine.ResumeEvent(entity);

 System.Diagnostics.Trace.WriteLine("Work on

truck #" + entity.Id +" has just been resumed on " +

SimulationEngine.DateNow.DayOfWeek+","+SimulationEngine.Da

teNow);

 }

 }

 }

 else

 { System.Diagnostics.Trace.WriteLine("A work break

is begining now at time: " +

 SimulationEngine.DateNow.DayOfWeek +", "+

SimulationEngine.DateNow + " and will end in "

 + e.TimeRemaining.TotalHours + " hours");

 foreach(var entity in e.Entities)

 {

 //Suspend all entities controlled by this calendar

 SimulationEngine.SuspendEvent(entity);

 System.Diagnostics.Trace.WriteLine("Work on

truck #" + entity.Id.ToString() +" has

 just been suspended on " +

SimulationEngine.DateNow.DayOfWeek + ", " +

 SimulationEngine.DateNow);

 }

 }

 }

 WasWorking = e.IsWorking;}

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

477

Table 5: Experimental Results from Simulation Using

Different Calendars

Calendar Start Date
Finish

Date

Total

work

days

Total

non-

work

days

Standard
July 15,

2013

Aug. 13,

2013
22 7

24

Hours

July 15,

2013

July 22,

2013
7 0

Night
July 15,

2013

Aug.10,

2013
6 19

Custom
July 15,

2013

July 27,

2013
7 5

4. MODELING TRAFFIC LIGHT CONTROLS

IN SIMPHONY

4.1. Problem Description

Simphony is an easy-to-use simulation system for

modeling typical discrete event simulation problems

regardless of whether they are within the construction

domain or not. A sample problem identified from two

popular simulation text books by Halpin (1992) and

Pritsker (1997) is described here and used for purposes

of demonstrating the modeling abilities of the

Simphony environment.

 One lane of a 500 m section of road is closed off

for major repair work. The road comprises two lanes

with traffic flowing in opposite directions (east bound

traffic and west bound traffic). For this section of road,

lights allow traffic to flow for a specified time interval

from only one direction. This arrangement is depicted in

Figure 8.0.

Figure 8: Schematic Layout of Site in the Traffic Light

Problem (Halpin and Riggs, 1992)

 When a light turns green, the waiting cars start and

pass the light every 3 seconds. If a car arrives at the

green light when there are no waiting cars, it passes

through the light without delay. The car arrival pattern

is such that there is an average of 10 seconds between

cars from the east direction and 9 seconds between cars

from the west direction. A light cycle consists of green

for east bound traffic, both red, green for west bound

traffic, both red, and then the cycle is repeated. Both

lights remain red for 50 seconds to allow cars in transit

to leave the repair section before traffic from the other

direction can be initiated. The objective is to obtain

green times for traffic lights that minimize waiting

times for east and west-bound traffic.

4.2. Simphony Models, Discussion and Results

A traffic light cycle is perceived as involving a

sequential process in which lights transition through

different states (signals) represented by different light

colors (Green → All-Red → Red → Green). Each

traffic light is modelled as a resource so as to provide a

convenient link between the traffic light cycle and the

traffic flow (permit flows at right time, halt flows and

track waiting statistics). An entity is used to loop

through the cycle triggering the start and finish of each

state. State change is triggered by capture or release of a

traffic light resource. Higher priorities are given to the

entity flowing within the “traffic light control loop”

(for the capture of traffic light resources) compared to

vehicle entities flowing in the “traffic flow” sub-

models. The time that the system stays within a given

traffic light state is modeled by task elements. “All-

Red” time is set to 50 seconds and we are to experiment

to determine an optimal value of the “Green” light

times that minimize the waiting time of traffic flowing

in both directions.

Figure 9: Model Layout of Traffic Light Controller

Cycle

 A discrete event model was developed in

Simphony.NET 4.0 for the traffic system. The

constructed model is comprised of 3 sub-models: (1) a

traffic light control cycle, (2) an east-bound traffic flow

model and (3) a west-bound traffic flow model. Each of

these sub-models is discussed in detail. In these sub-

models, the traffic lights for the “east-bound” and

“west-bound” traffic lights are modelled explicitly as

resources within the Simphony general purpose

template. The entities in this model include: the traffic

flowing in the east direction, west direction and a flow

unit that triggers the traffic light signals (ON/OFF).

 Figure 9.0 shows a layout of the sub-model that

emulates a typical traffic light cycle. One entity

(“traffic light controller entity”) is created at the start of

simulation which captures the east and west bound

traffic lights. Thereafter, the entity triggers opening of

valves that were retaining entities created to generate

east and west bound traffic, respectively. The traffic

controller entity then releases the east-bound traffic

resource so that east-bound entities arriving capture this

resource and flow through the section. The resource is

freed for a specific duration that emulates the time that

the traffic light is green after which the traffic light is

captured once again by the traffic controller entity

(representing the east-bound traffic light turning red).

At this point, the traffic controller entity has both traffic

light resources in its possession (signaling “all-red” on

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

478

traffic lights) and is transferred into a task element that

holds it for 50 seconds. This 50 second delay mimics

the time required by east-bound traffic (caught in the

construction zone when the east-bound traffic light

turns red) to clear out of this section. The traffic

controller entity then flows into an element that releases

the west-bound resource and then subsequently into a

task element that delays it for a duration equivalent to

that for which the west-bound traffic light is green. The

west-bound traffic light resource is made available to

west-bound traffic entities that were queued or are just

arriving, hence, allowing them to flow through the

construction zero. Thereafter, the “traffic controller

entity” requests for the “west-bound traffic light

resource” with a high priority (3.0). It is granted this

resource after the current “west-bound traffic flow

entity” utilizing it releases it. The “traffic controller

entity” will once again have both traffic light resources

in its possession and is transferred into an “all-red”

task element for 50 seconds during which west-bound

traffic currently flowing in the construction zero section

is expected to clear out. The “traffic light controller

entity” is then looped back to the start of the traffic light

cycle where it resumes with the release of the “east-

bound traffic light resource.”

Figure 10: Model Layout for West-Bound Traffic Flow

 The east-bound (EB) and west-bound (WB) traffic

flow sub-models represent the arrival, queuing and flow

of traffic in the east and west directions, respectively.

The model layouts (Figures 10 and 11) are identical but

involve different resources (“East-Bound Traffic

Resource” and “West-Bound Traffic Resource”),

waiting files (“Queue for East-Bound Traffic”, “Queue

for West-Bound Traffic”, “Traffic Light Queue-East

Bound Traffic” and “Traffic Light Queue-West Bound

Traffic”), valves, tasks, capture and release elements. In

these sub-models, the waiting files for traffic entities are

separated from those of the “traffic light controller

entity” so that the statistics on queued traffic are not

distorted.

 One entity is created in each sub-model at time zero

and held behind a valve control until the “traffic light

controller entity” has captured the “East-Bound Traffic

Resource” and “West-Bound Traffic Resource” and

triggered the valves to open. This entity in each sub-

model serves as a “traffic generating entity.” It is

transferred into a “generate element” which clones it.

Figure 11: Model Layout for East-Bound Traffic Flow

 The entity flowing out of the top point of the

“generate element” represents an arrival of a vehicle

and is routed into an “execute element.” The cloned

entity is transferred out of the bottom output point of

the “generate element” into a “task element” where it

is delayed for the inter-arrival duration before being re-

routed into the “generate element” to release another

entity that represents another vehicle arrival. This cyclic

process keeps going until the simulation is terminated.

 Arriving traffic entities flow through the “execute

element” where they are time-stamped with the time at

which they arrive at the construction zone. Arriving

traffic entities then proceed to a capture element where

they request their respective traffic light resource. If the

traffic light resource is available, the traffic entity

proceeds on its journey without delay; otherwise, it is

queued until the traffic light resource becomes

available. Traffic entities that were queued and are

allowed to travel through the construction zone when

the light turns green are delayed by 3 seconds as they

pass-by the traffic light. These 3 seconds represents

start-up time for vehicles moving from a complete stop.

This logic is modelled with the “task element” using

the VB code snippet shown in Figure 12. This was

inserted into the formula editor of the duration property

for the “task element.”

 After the traffic entity passes by the traffic light, it

releases the traffic light resource to the next entity. It

then flows through the counter element where the traffic

count is registered and then into a “destroy element”

where it is removed from the simulation. The flow of

traffic entities is halted when the green time is used up

(and the “traffic light controller entity” captures the

traffic light resource).

Figure 13: VB Code for Generating a Delay for a

Vehicle Passing a Traffic Light

Public Partial Class Formulas

 Public Shared Function Formula(ByVal context As

Simphony.Modeling.Task(Of

 Simphony.Simulation.GeneralEntity)) As System.Double

 If context.Engine.TimeNow - context.CurrentEntity.Floats(0)=

 0.0 Then

 Return 0.0

 Else Return 3.0

 End If

 End Function

End Class

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

479

 Simulation settings used are summarized in Table

6.0. These were used because of the stochastic inputs

used e.g. the inter-arrivals of traffic. Also, a seed was

fixed to ensure that the same sequence of random

deviates is used for scenarios that are compared.

 To determine the green times to allocate to the east-

bound and west-bound traffic, equal arbitrary values

were used. This phase of the experiment was used to get

the local minimum (waiting time for traffic flowing in

each direction). These were different because traffic

inter-arrivals in each direction were different. Results

from this phase are summarized in Table 7.0 and are

plotted in Figure 14.0. The acronyms EB-GT, WB-GT,

EB-WT and WB-WT represent east-bound green time,

west-bound green time, east-bound waiting time and

west-bound waiting time in seconds respectively.

Table 6: Simulation Setting Used for the Traffic

Problem

Simulation Setting Parameter Value

Seed 5,000

Run Count 100

Time Unit Seconds

Maximum Time 86,400 Seconds (1 day)

Table 7: Phase I Results from Experimenting with the

Traffic Model

EB-GT WB-GT EB-WT WB-WT

50 50 6,979.03 10,505.42

60 60 4,089.52 7,890.69

80 80 225.0058 3,186.14

100 100 115.173 344.3368

110 110 110.3978 192.3788

120 120 109.3351 154.9445

140 140 111.7418 130.1684

150 150 113.9442 129.5323

160 160 116.5949 128.2344

180 180 122.5078 132.7623

200 200 128.9449 137.8971

220 220 135.7282 143.9771

240 240 142.6467 150.9405

Figure 14: Waiting Time Variation with Green Time

 The values obtained from phase I (highlighted in

bold in Table 7.0) are used to guide phase II of the

experimentation which involves determining the global

minimum waiting time for all traffic. Results from this

phase are summarized in Table 8.0. Optimal green times

were found to be 130 and 140 seconds for east-bound

and west-bound traffic respectively.

Table 8: Phase II Results from Experimenting with the

Traffic Model

EB-GT WB-GT EB-WT WB-WT

120 160 194.40 97.19

120 150 155.46 101.47

125 160 155.20 100.62

130 160 139.64 104.34

130 155 133.05 106.57

130 150 127.47 109.70

130 140 117.84 117.45

5. CONCLUSIONS

The paper presents a concise overview of simulation,

the existing simulation methods, different simulation

systems and studies in which simulation has been

previously applied within the construction domain.

 Simphony is introduced as an example of typical

simulation system currently in use, its features

discussed and reasons why it remains relevant in the

process of defining next generation simulation

tools/systems highlighted.

 Two practical problems (an earth-moving problem

involving shift dynamics and a traffic light problem)

modeled in Simphony and experimented with to

generate results that can be used to support decision

making processes are described to showcase capabilities

and features that exist within Simphony.

REFERENCES

AbouRizk, S. M., Ruwanpura, J. Y., Er, K. C., and

Fernando, S., 1999. Special purpose simulation

template for utility tunnel construction. Proceedings

of Winter Simulation Conference, 2: 948-955. Dec.

5-8; Phoenix, AZ.

Ahn, C., Rekapalli, P. V., Martinez, J. C., and F. A.

Pena-Mora., 2009. Sustainability analysis of

earthmoving operations. Proceedings of Winter

Simulation Conference, pp. 2605-2609. Dec. 13-16,

Austin, TX.

Ailland, K., Bargstadt, H., and Hollermann, S., 2010.

Construction process simulation in bridge building

based on significant day-to-day data. Proceedings of

Winter Simulation Conference, pp. 3250-3261. Dec.

5-8, Baltimore, MD.

Al-Bataineh, AbouRizk, S. M., and Parkis, H.,

2013. Using simulation to plan tunnel

construction. Journal of Construction Engineering

and Management, 139(5): 564–571.

Alvanchi, A., Nguyen, A., and AbouRizk, S. M., 2012.

Structural steel fabrication special purpose

simulation. Construction Research Congress, pp.

1391-1399. May, 19-23, Purdue, IN.

Chehayeb, N. N. and AbouRizk S. M., 1998.

Simulation-based scheduling with continuous

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

480

activity relationships. Journal of Construction

Engineering & Management, 124(2): 107-115.

Cheng, F. F., Wang, Y. W., Ling, X. Z., and Bai, Y.,

2011. A Petri net simulation model for virtual

construction of earthmoving operations. Journal of

Automation in Construction, 20: 181-188.

Chui-Te, C., Tseng-Hsing, H., Ming-The, W., and

Hsien-Yen, C., 2011. Simulation for steel bridge

erection by using BIM tools. Proceedings of 28th

ISARC, pp. 560-563. June 29, Seoul, Korea.

Crain, R. C., 1997. Simulation using GPSS/H.

Proceedings of Winter Simulation Conference, pp.

567–573. Dec. 7-10, Atlanta, GA.

Dori, G., and Borrmann, A., 2011. Automatic

generation of complex bridge construction

animation sections by coupling constraint-based

discrete-event simulation with game engines.

Proceedings of International Conference on

Construction Applications of Virtual Reality. Nov.

3-4, Weimar, Germany.

Dulcy, M. A., and Halpin, D. W., 1998. Simulation of

the construction of cable-stayed bridges. Canadian

Journal of Civil Engineering, 25: 490-499.

Fu, J., 2012. A microscopic simulation model for

earthmoving operations. World Academy of Science,

Engineering and Technology, 67: 218-223.

Hajjar, D., and AbouRizk, S. M., 1999. Simphony: An

environment for building special purpose

construction simulation tools. Proceedings of Winter

Simulation Conference, 2: 998-1006. Dec. 5-8,

Phoenix, AZ.

Halpin, D. W., 1973. An investigation of the use of

simulation networks for modeling construction

operations. PhD. Thesis, University of Illinois,

Urbana-Champaign, III.

Halpin, D.W., and Riggs, L.S., 1992. Planning and

Analysis of Construction Operations. John Wiley

& Sons, Inc.

Hu, D., and Mohammed, Y., 2010. State-based

simulation mechanism for facilitating project

schedule updating. Construction Research

Congress, pp. 369-378. May 8-10, Banff, AB.

Ioannou, P. G., and Martinez, J. C., 1996. Comparison

of construction alternatives using matched

simulation experiments. Journal of Construction

Engineering and Management, 122(3): 231-241.

Liu, Y. and Mohamed, Y., 2008. Multi-agent resource

allocation (Mara) for modeling construction

processes. Proceedings of Winter Simulation

Conference, pp. 2361-2369. Dec. 7-10, Miami, FL.

Liu, H., Siu, M. F., Hollerman, S., Ekyalimpa, R., Lu,

M., AbouRizk, S., and Bargstadt, H., 2012.

Simulation of mobile falsework utilization methods

in bridge construction. Proceedings of Winter

Simulation Conference, pp. 1-13. Dec. 9-12, Berlin,

Germany.

Lu, M., 2003. Simplified discrete-event simulation

approach for construction simulation. Journal of

Construction Engineering and Management, 129(5):

537-546.

Martinez, J. C., 1996. STROBOSCOPE – State and

resource based simulation of construction

processes. PhD thesis, University of Michigan.

Marzouk, M., El-Dein, H. Z., and El-Said, M., 2007.

Application of computer simulation to construction

of incremental launching bridges. Journal of Civil

Engineering and Management, 13(1): 27-36.

Marzouk, M., and Moselhi, O., 2002. Simulation

optimization for earthmoving operations using

genetic algorithms. Journal of Construction

Management and Economics, 20(6): 535-543.

Mohsen, O. M., Knytl, P. J., Abdulaal, B., Olearczyk,

J., and Al-Hussein, M., 2008. Simulation of

modular building construction. Proceedings of

Winter Simulation Conference, pp. 2471-2478. Dec.

7-10, Miami, FL.

Pritsker, A. A. B, O’reilly, J. J., and Laval, D. K. , 1997.

Simulation with visual SLAM and AweSim. New

York, NY: John Wiley & Sons, Inc.

Rekapalli, P. and Martinez, J., 2011. Discrete-event

simulation-based virtual reality environments for

construction operations: Technology

introduction. Journal of Construction Engineering

and Management, 137(3): 214–224.

Sadeghi, N. and Fayek. A. R., 2008. A framework for

simulating industrial construction processes.

Proceedings of Winter Simulation Conference, pp.

2396-2401. Dec. 7-10, Miami, FL.

Song, L., and AbouRizk, S. M., 2003. Building a virtual

shop model for steel fabrication. Proceedings of

Winter Simulation Conference, pp. 1510-1517. Dec.

7-10, New Orleans, LA.

Song, L., and AbouRizk, S. M., 2006. Virtual shop

model for experimental planning of steel fabrication

projects. Journal of Computing in Civil Engineering,

20(5): 308-316.

Sun, C.-T., Wang, D.-Y., & Chang, Y.-Y., 2013. Effects

of thinking style on design strategies: Using bridge

construction simulation programs. Educational

Technology & Society, 16 (1): 309–320.

Touran, A. and Asai, T., 1987. Simulation of tunneling

operations. Journal of Construction Engineering

and Management, 113(4): 554–568.

Wang, P., Mohamed, Y., Abourizk, S., and Rawa, A.,

2009. Flow production of pipe spool fabrication:

Simulation to support implementation of lean

technique. Journal of Construction Engineering and

Management, 135(10): 1027–1038.

 Zhang, H., Tam, G. M., and Shi, J. J., 2002.

"Simulation-based methodology for project

scheduling." Journal of Construction Management

and Economics, 20(8): 667-678.

Zhou, F., AbouRizk, S. M., and Fernando, S., 2008. A

simulation template for modeling tunnel shaft

construction. Proceedings of Winter Simulation

Conference, pp. 2455-2461. Dec. 7-10, Miami, FL.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

481

