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ABSTRACT 

This paper presents Simphony simulation system as a 

tool that is leading the way in the evolution of 

simulation systems within the construction domain. 

This discussion is introduced by presenting an overview 

of simulation, the different simulation methods and the 

tools that support this method. Simphony is then 

introduced as an environment that supports discrete 

event and continuous simulation. Other features such as 

its extensible API, calendar, data connectivity, special 

purpose development abilities etc., are also highlighted 

to show why Simphony is a powerful simulation 

system.  Two practical problems (earth-moving and 

traffic light) that are solved using Simphony are 

presented to demonstrate the use of some of these 

features.   

 

Keywords: Simphony, extensible API, calendars, 

simulation methods 

 

1. INTRODUCTION 

Simulation is a numeric method that has been in use for 

several years and has been applied in the analysis of 

complex dynamic systems. The simulation community 

has three well established methods to apply a 

simulation-based approach in solving their problems: 

System Dynamics (SD), Agent-Based Modeling 

(ABM), and Discrete Event Simulation (DES). 

The use of each of these methods depends on the 

complexity of the system being analyzed and the level 

to which the modeller would like to abstract the system. 

System dynamics is famous for its precision in 

modeling systems that have numerous components that 

are dynamic, inter-related and interact with a feed-

feedback behavior. This method supports a top-bottom 

approach to that analysis of systems e.g. the evaluation 

of the impact of different policies or strategies on the 

behavior of a system. Simulation systems build to 

support this method implement numeric integration 

algorithms (e.g. the family of Runga-Kutta equations) in 

a continuous fashion. It does not involve the flow of 

tokens but rather tracks rates of change in specified 

quantities with time using integration. Examples of such 

systems include AnyLogic, Vensim, PowerSim, 

STELLA (iThink), Simulink, DYNAMO etc.  

Agent-based modeling on the other hand supports 

a bottom-up approach to the analysis of systems. This 

approach models a unit or a component within a system 

as an agent that has intelligent behaviors that are 

influenced by its peers (other agents) and the 

environment in which it operates. An agent exhibits 

different behavior by transitioning through different 

states. This behavior is controlled by an algorithm 

embedded within the agents. This algorithm is defined 

using concepts of state diagrams. Communication 

between agents and the environment is triggered by the 

events (in the computing science sense). Examples of 

simulation systems that support this modeling approach 

include Repast-Simphony, AnyLogic, A3/AAA, ABLE, 

Agent Builder, MASON, NetLogo, SimAgent etc. 

Discrete event simulation is an approach in which 

a system is described using entities, resources, activities 

and other modeling constructs. These constructs interact 

with each other to define the state of the system and are 

responsible for its evolution at discrete points in time. 

In typical DES systems, this change of state is triggered 

by the flow of entities. Changes in the state of a system 

typically occur when resources are captured or released, 

activities are started or finished. DES is best suited for 

analyzing systems at an operations level. This explains 

why it has been extensively used in analyzing 

production systems, supply chain, medical facility 

operations and construction operations. Various general 

purpose discrete event simulation software systems 

have been developed for a wide range of industries: 

AweSim (Pritsker, 1997) and GPSS/H (Crain, 1997); 

for construction: Micro-CYCLONE (Halpin, 1973), 

STROBOSCOPE (Martinez, 1996), and Simphony 

(Hajjar and AbouRizk, 1999). 

In construction, DES has been widely used to 

model and improve processes such as tunnel 

construction, earth-moving, fabrication shops, bridge 

construction, and scheduling. 

 In 1999, AbouRizk et al. developed a special 

purpose template in Simphony for analyzing tunnel 

construction using TBMs. The template was used to 

evaluate the effect of different site setup configurations 
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at the working shaft through predictions of tunnel 

advance rates along the tunnel length. Work on this 

template is on-going and has resulted in it evolving into 

a more sophisticated yet easy to use simulation tool for 

analyzing tunnel construction processes. Examples of 

additions to the template include: (1) ability to model 

shifts through the use of calendars, (2) features for 

generating cost estimate reports for the simulated tunnel 

and (3) the ability of the template to participate in a 

larger distributed simulation system that is based on the 

HLA standards, so that it can support other components 

such as visualization of the tunnel construction. Later 

on, Zhou et al. (2008) used Simphony to develop a 

special purpose template for modeling tunnel shaft 

construction.  They refined the way tunnel shafts are 

simulated so that most site processes and constraints are 

well represented.  They validated their template by 

implementing a case study (NEST NL1-NL2 tunnel in 

Edmonton). Modeling constructs developed in this work 

are used in the current version of the template. Touran 

and Asai (1987) used CYCLONE simulation system to 

the advance rate of a TBM during the construction of a 

long, small-diameter tunnel. Ioannou and Martinez 

(1996) used STROBOSCOPE simulation system to 

compare two alternative construction methods for rock 

tunneling; a conventional verses the New Austrian 

Tunneling Method (NATM). They demonstrated 

effective ways of using simulation for comparing 

alternatives. Al-Bataineh et al. (2013) recently wrote a 

paper in which they used simulation to project planning 

and control in tunnel construction.  

 The earth-moving operation is one that had been 

extensively analyzed using simulation because of its 

repetitive nature and simplicity. A small portion of the 

work done in simulating earth-moving operations is 

discussed here. In 2002, Marzouk and Moselhi 

combined simulation and optimization (genetic 

algorithms) to get optimal cost and durations associated 

with earth-moving operations. Fu (2012) presented a 

paper in which he used Global Simulation Platform 

(GSP), a simulation system developed by Volvo CE, 

and CYCLONE to simulate and compare three loading 

scenarios for an earth-moving operation. He compared 

the options based on fuel cost per unit production. 

However, logic flaws can be identified in some of the 

CYCLONE model layouts presented by Fu because 

they don’t explicitly represent the loading of haulers 

with multiple buckets. In 2011, Cheng et al. proposed a 

simulation model for virtual simulation of earthmoving 

operations using petri nets. In 2009, Ahn et al. 

published a paper in which they presented a simulation-

based sustainability analysis of earth-moving operations 

with respect to emissions. STROBOSCOPE and 

VITASCOPE were both used as simulation and 

visualization platforms for estimating omissions and 

visualizing simulated objects respectively.  Rekapalli 

and Martinez (2011) also presented a recent paper on 

earth-moving operations.   

 Simulation has been extensively applied for 

modeling processes at the different stages of the 

delivery of industrial projects. They include: structural 

steel fabrication, pipe spool fabrication, module 

assembly. In 2008, Liu and Mohamed used an agent-

based modeling approach to simulate the dynamics of 

resource allocation within a module assembly yard for a 

construction company in Edmonton, Canada. They used 

Repast-Simphony for their work. Song and AbouRizk 

(2003) developed Simphony general purpose template 

models (for a structural steel fabrication shop) which 

they integrated with CAD drawings to obtain attributes 

of steel pieces whose fabrication process was to be 

simulated. Their model used attributes of steel pieces 

obtained from CAD drawings and embedded artificial 

neural networks to predict durations for the different 

fabrication processes (cutting, fitting, welding and 

painting) (Song and AbouRizk, 2006).  Alvanchi et al. 

(2012) developed a special purpose simulation template 

in Simphony for modeling the fabrication of structural 

steel within a shop. The template reads its input of steel 

pieces to be fabricated from an information 

management system (database) and simulates the 

fabrication process for different shop layouts and 

processing equipment so that the operational efficiency 

of the shop can be assessed. Sadeghi and Fayek (2008) 

developed a Visual Basic application that utilizes the 

Simphony discrete event engine behind the scenes to 

model operations in a pipe spool fabrication shop. 

Mohsen et al. (2008) used Simphony general purpose 

template to simulate the erection of a building that was 

constructed using a modularized approach.  They used 

their model to determine the utilization of the different 

resources (crane, rigging crew, welding crew and 

delivery space) involved in the operation and compared 

these with those recorded on site. Wang et al. (2009) 

developed models that simulate the operations in a 

typical pipe spool fabrication shop. They compared the 

“traditional batch-and-queue fabrication system” to “the 

new cell-based work flow fabrication systems” by 

constructing a simulation model for each system. Cycle 

time for the fabrication of pipe spools was used as a 

statistic for comparing the two methods and the new 

method was found to be more efficient.  

 In bridge construction, a number of modeling 

studies have been done. Dulcy and Halpin (1998) 

pointed out that cable stay bridge construction provides 

enormous opportunity for the use of computer 

simulation in the analysis and design of the operations 

involved. They attributed this to the fact that this type of 

bridge involves many repetitive cycles of placing 

concrete segments and supporting cables. They 

constructed a CYCLONE model for the construction of 

a cable-stay bridge (Dame Point Bridge in Jacksonville, 

Florida) and used it to investigate different resource 

combinations that would result in higher utilizations and 

shorter construction durations. They came up with an 

optimum mix of resources for this problem. In 2007, 

Marzouk et al. also used simulation to model the 

construction of a bridge in Cairo, Egypt (“The 15th 

May Bridge”) that was constructed using the 

incremental launching construction technique. Marzouk 
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et al. (2007) stated that concrete bridges can be placed 

into 6 categories based on the construction method. 

These include:  1) cast-in-situ on false-work, 2) 

cantilever carriage, 3) flying shuttering, 4) launching 

girder, 5) pre-cast balanced cantilever, and 6) 

incremental launching. They further stated that the 

incremental launching construction method is the 

preferred option when the spans being constructed are 

larger than usual. Marzouk and his colleagues used 

STROBOSCOPE to develop a special purpose template 

of the bridge construction process and resource 

constraints. They ran their model for one scenario 

similar to that used on site and obtained production 

results that were very close to actual values on site. 

They then used this model to experiment with different 

resource mixes to shorten the project duration. A 

number of authors have used simulation-based methods 

to visualize/animate the construction of bridges. Recent 

examples include: Dori and Borrmann (2011), and 

Chui-Te et al. (2011). Visualization helps with the 

verification of constructed simulation models and 

assists is displaying the evolution of the simulation to 

those not knowledgeable in simulation in an effective 

manner. Other studies that have involved the use of 

simulation for modeling bridge construction processes 

include work done by Ailland et al. (2010), Liu (2012), 

and Chuen-Tsai et-al (2013).  

 Simulation has been used to improve scheduling 

practices within the construction domain. For example, 

a state-based simulation approach was used by Hu and 

Mohammed (2010) to facilitate updates of schedules 

developed in Microsoft project. They used the 

Simphony simulation engine. Other studies done on 

simulation-based scheduling include: Chehayeb and 

AbouRizk (1998), Zhang et al. (2002) and Lu (2003). 

The aforementioned studies demonstrate the vast 

simulation opportunity that construction processes offer 

to the simulation community. Simphony has been used 

significantly in solving construction problems using a 

simulation-based approach, especially the more 

complex ones.  

 

2. SIMPHONY SIMULATION SYSTEM 

Simphony is a discrete event simulation system that was 

originally developed by Hajjar and AbouRizk (1999) 

and is currently being extended and maintained by the 

2
nd

 and 3
rd

 authors. Simphony provides an-easy-to-use 

User Interface (UI), core services (a simulation engine, 

resources, files, calendars etc.), modeling services and 

simulation templates. 

Simphony is built using the Microsoft .NET 

framework in a fashion that makes it extensible. Its 

Application Programming Interface (API) can therefore 

be utilized within the Simphony UI or any other 

applications that is compatible with .NET APIs. This is 

what makes Simphony exceptionally powerful. 

Furthermore, Simphony supports the development 

of custom special purpose templates. These templates 

provide for an efficient way to abstract complex 

processes in a manner that makes it easy for domain 

experts to make use of simulation without having in-

depth knowledge of the science behind the method. 

Examples of special purpose templates previously 

developed and currently supported in Simphony include 

the tunneling template, aggregate crushing template, de-

watering template, PERT template, earth-moving 

template, structural steel fabrication template, and range 

estimating template. 

 Simphony supports a general purpose template 

that has elegant graphical modeling elements, and 

directional arrows which are an essential feature of 

discrete event simulation modeling 

languages/environments. Constructing GPT models 

requires elements to be dragged and dropped onto the 

modeling surface and connected with directional arrows 

in a convenient way. Simphony GPT also provides 

advanced features such as attributes for entities and 

scenarios, and formula editors into which user written 

code can be embedded within the models to facilitate 

solving more sophisticated problems.  

 Simphony is built to support Monte-Carlo 

simulation experiments. Figure 1.0 summarizes the 

manner in which Simphony processes simulation 

models. 

 Other features or services that exist within 

Simphony giving it an edge over other systems include: 

 It has discrete event simulation capabilities and 

supports combined simulation as well (discrete 

event-continuous simulation). 

 It supports calendars. 

 It provides for data visualization. 

 It supports connectivity to data storage 

applications e.g. databases. 

 It has a neat user interface that provides for 

model debugging features (a trace window). 

 Templates developed in Simphony can easily 

be integrated into larger distributed simulation 

systems (developed in line with the HLA).  

 The rest of the paper is dedicated to demonstrating 

the use of Simphony for modeling typical simulation 

problems. 

 

3. MODELING WORK SHIFT DYNAMICS 

USING CALENDARS IN SIMPHONY.NET  

 

3.1. An Earth-Moving Operation 

In order to demonstrate the use of calendars within 

Simphony’s general purpose template, a simple earth-

moving operation is described, modeled and 

experimented with. We shall investigate the effect of 

using different calendars on the total number of 

calendar days it will take 5 dump trucks (@ has a 

capacity of 20cy) to move 10,000 cubic yards of dirt 

from the source to a placement area. There is one loader 

at the source responsible for loading dirt onto trucks. 

The details of the load, haul, dump and return activities 

are summarized in Table 1. 

 A simple operation (earth-moving operation) is 

chosen to demonstrate the concepts of utilizing a 

calendar within a simulation model. A brief section 
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detailing calendar features within Simphony is 

introduced and then their applications in modeling the 

problem at hand are presented. 

 

Initialize Scenario

Start Simulation

Initialize Services

Initialize Run

Simulate Run

Finalize Run

Finalize Services

Last Run?

Go to next Run

Finalize Scenario

End Simulation

Go to next 

Scenario

Last 

Scenario?

No

Yes

Yes

No

 
Figure 1: Schematic Layout of Simphony’s Simulation 

Process 

 

Table 1: Earth-Moving Activity Durations 

Activity Duration (Minutes) 

Load @ Truck Constant(8.0) 

Haul to dumpsite Constant(40.0) 

Dump Truck load Constant(5.0) 

Return to source Constant(55.0) 

 

3.2. Calendars within Simphony.NET 4.0  

Embedding and using calendars to constrain the 

execution of simulation models requires a clear 

understanding of the behavior of calendars from a 

simulation perspective. When activated, the calendar in 

Simphony continuously transitions through two states: 

(1) a working state and (2) a non-working state. The 

transition between any two calendar states (that are the 

same or different) gives rise to a calendar event. It is 

during the processing of a calendar event that a work 

shift (or the processing or the simulation model) gets 

turned ON or OFF through the “SuspendEvent(entity)” 

and “ResumeEvent(entity)” methods, respectively.   

 Simphony provides two constructs that facilitate 

the modeler to model work shifts: (1) a calendar, and 

(2) a calendar entity. The calendar keeps track of the 

working time periods, non-working time periods and 

their lengths. It is responsible for triggering calendar 

events whenever there is a transition in its working 

state. The calendar also provides methods that facilitate 

the modeler to get the total working or non-working 

times for a particular shift and pay type between 

specified dates. This is usually useful when the modeler 

is tracking costs for simulated operations.   

 The Calendar in Simphony is activated to start 

raising events as soon as the 

“engine.SubscribeCalendar(…)” method is invoked. 

The calendar then keeps continuously raising calendar 

events and will not stop until the simulation is halted by 

either (1) maximum criteria achieved, (2) maximum 

count achieved or (3) through an explicit halt invoked 

within an “execute element.” The criteria for 

terminating the simulation through the engine running 

out of simulation events can never be achieved when 

the calendar is activated because the calendar keeps 

looping and raising calendar events infinitely.  The 

calendar can be de-activated by invoking the 

“engine.UnsubscribeCalendar(…)” method. The 

modeller can obtain a calendar from the calendar list 

(defined in Simphony core services or in the “calendar 

property” of the scenario).  

 The calendar entity on the other hand carries with it 

information about the calendar event that has been 

triggered (summarized in Table 2). This entity is passed 

on to the calendar event handler so that this information 

can be used for implementing computations at the time 

that the calendar event is being processed. These 

properties are of a calendar entity are summarized in the 

schematic layout presented in Figure 2.0.   

 

Table 2: Properties of a Calendar Entity 

Calendar Entity 

Property 

Purpose of the Property 

Calendar 

Gets or sets the calendar with 

which the entity will be 

associated 

Entities 
Avails the entities controlled by 

the calendar 

IsWorking 

Determines whether the calendar 

is currently in a working (true) 

or non-working (false) state 

Time Remaining 
Avails the time to the next 

calendar event (time span) 

 

It is important to carefully track the work state of the 

calendar because it affects the action taken on the 

entities controlled by the calendar (suspends their 

processing, resumes their processing or does nothing). 

The modeller would like to act on the entities when a 

calendar event is associated with a change in the work 

state of the calendar (Figure 3.0) and not do anything 

when a calendar event is not associated with a change in 

the work state of the calendar (Figure 3b).   An example 
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of a situation where an action is warranted is when there 

is a transition between a working period and a work 

break and a work break and work period. This is 

illustrated in Figure 3a. At calendar event 1, all entities 

are suspended and at calendar event 2, processing of all 

entities is resumed. An example where there is no need 

for action on entities arises when there are two 

consecutive work periods, especially when there is a 

shift change without a break – i.e. from shift 1 to shift 2 

(Figure 3b). 

 

Previous work 

state

Current work 

state

Current Calendar event

Time remaining – Time Span

Previous Calendar event

Future Calendar event
 

Figure 2: Schematic Layout for Occurrence of 

Simphony Calendar Events 

 

Work Shift 1 Work Shift 1

Work Break for 

Shift 1

Calendar 

Event 1

Calendar 

Event 2      

Work Shift 1 Work Shift 2

Calendar 

Event 3  
Figure 3: Different Transitions between Work Periods 

(3a: Work-to-Non Work-to-Work; 3b: Work-to-Work 

 

Details of the working states associated with each 

calendar event are summarized in Table 3.0. Based on 

the explanations provided, it becomes necessary to keep 

track of the current work state associated with each 

calendar event (provided by the calendar entity) and the 

previous working state (tracked by the modeller). 

 

Table 3: Shift Details Associated with Figure 3.0 

Calendar 

Event 
Current State Previous State Shift 

1 Working Non-working 1 

2 Non-working Working 2 

3 Working Working 1→2 

 

 At present, the intrinsic statistics reported in 

Simphony (such as resource utilizations and file length) 

are not reliable when calendars are enabled because 

they don’t distinguish between working time and non-

working time in the course of the simulation.   

 

3.3. Simphony Model Layout, Discussion and 

Results 

At the start of simulation, the model subscribes to a 

calendar when the initialize run method is invoked on 

the “Subscribe to a Calendar” execute element. Within 

this element, C# code snippet is written to achieve the 

subscription to the calendar. A method associated with 

the calendar event handle is written within the partial 

formulas class for this execute element. Figure 4.0. 

 

 
Figure 4: Earth-moving Model Layout in Simphony 

 

 Five truck entities are created at the start of the 

simulation which represent dump trucks. These entities 

flow through the model (Figure 4.0) emulating the 

movement of dirt from source to placement. When there 

is no more dirt to move, the simulation is terminated.   

At the end of the simulation, the last truck entity flows 

through the “Unsubscribe Calendar” execute element 

where the the subscription to the calendar is undone and 

working days and non-working days retrieved from the 

calendar and saved in the respective statistics nodes. 

The C# code written within the execute element formula 

to achieve this is presented in Figure 5.0. 

 Three different calendars were experimented with 

in this model; a standard calendar, 24 Hour calendar, 

Night Shift and a calendar that was created with custom 

settings. The custom calendar used in this experiment 

was defined using the Simphony calendar editor 

(accessed through the “Calendars” property of the 

scenario – see Figure 7.0). The calendar was setup such 

that the work (or non-work) periods presented in Table 

4.0 are utilized. For simplicity, all work periods were 

considered as regular time since the simulation did not 

model dynamics of work performance changes with 

work time or costs incurred due to different pay types. 

 This custom calendar considers Sunday as a non-

working day, Saturday as a working day with one-eight-

hour work shift and all other week days as working 

days with two-eight-hour work shifts. 

 Simulation results (see Table 5.0) indicate that the 

work scope can be completed earliest with the “24 

Hour” calendar, followed by the “custom” calendar 

defined. Given that the “24 Hour” option is not a 

calendar per se, the“custom” calendar would be the 

most efficient option to complete the work in the 

shortest time. The modeller can experiment with 

different resource and shift configurations to obtain 

results that can be compared to pick a work plan that 

best suits their needs. 

This section demonstrates that the Simphony 

simulation system fully supports the integration of 

calendars in simulation models. 
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Figure 5: C# Code Snippet for Subscribing to the 

Calendar in Execute Shown in Figure 4.0 

 

Table 4: Work Periods Used in the Custom Calendar 

Day of Week Work Times 

Sunday - 

Monday - Friday 

6:00 – 10:00 

11:00 – 15:00 

15:00 – 19:00 

20:00 – 00:00 

Saturday 
6:00 – 10:00 

11:00 – 15:00 

 

 
Figure 6: C# Code Snippet for Unsubscribing to the 

Calendar and Computing Work and Non-working Days 

 

 
Figure 7: Dialogue for Creating or Editing Calendars in 

Simphony 

public static partial class Formulas 

{ 

  public static System.Boolean 

Formula(Simphony.General.Execute context) 

   { 

     //Get the statistics node from the scenario for the 

total work days 

     Simphony.General.Statistic S1 =     

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # working days during  

     simulation");      

     //Get the statistics node from the scenario for the 

total non-work days 

     Simphony.General.Statistic S2 =     

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # of non-working days  

     during Simulation"); 

     //Get the statistics node from the scenario for the 

total # of days from start to  

     end of simulation 

     Simphony.General.Statistic S3 =     

context.Scenario.GetElement<Simphony.General.Statistic>(

"Total # of days from start  

     to finish of simulation");   

     //Get the calendar from the global attribute ---> 

So that we can get the working and  

     non-working time 

     Simphony.Simulation.Calendar MyCalendar =  \     

(Simphony.Simulation.Calendar)(context.Scenario.Objects[

1]);   

      //Collect the total # of work days      

S1.Collect(MyCalendar.GetWorkingTime(context.Scenario.St

artDate,  

      context.Engine.DateNow).Days); 

      //Collect the total # of non-work days      

S2.Collect(MyCalendar.GetNonWorkingTime(context.Scenario

.StartDate,  

      context.Engine.DateNow).Days); 

      //Collect the total # days from start to finish of 

simulation 

      System.TimeSpan TS = context.Engine.DateNow - 

context.Scenario.StartDate; 

      S3.Collect(TS.Days);   

      //Trace the finish date of Simulation 

      System.Diagnostics.Trace.WriteLine("The earth-

moving operations has been completed  

      on date:" + context.Engine.DateNow);  

      //Get the Calendar entity --> So that we can 

unsubscribe calendar 

      Simphony.Simulation.CalendarEntity 

MyCalendarEntity =     

(Simphony.Simulation.CalendarEntity)(context.Scenario.Ob

jects[0]);   

      //Unsubscribe the calendar      

context.Engine.UnsubscribeCalendar(MyCalendarEntity); 

      return true;  

     } 

 } 

public static partial class Formulas 

{  

  //Private fields for the methods to use in their   

  calculations 

  private static System.Boolean WasWorking = false; 

  public static Simphony.Simulation.DiscreteEventEngine  

  SimulationEngine;   

  public static System.Boolean  

  Formula(Simphony.General.Execute context) 

  {  

    //Set the Initial quantity of dirt to 10,000 CY 

    context.Scenario.Floats[0] = 10000.0;  

    //Get a Calendar to subscribe to from the scenario 

    Simphony.Simulation.Calendar MyCalendar =  

    context.Scenario.Calendars["My Custom Calendar"]; 

    //Create an instance of a calendar entity 

    CalendarEntity MyCalendarEntity = new  

    CalendarEntity();   

//Make a global attribute point to this calendar     

entity 

    context.Scenario.Objects[0] = MyCalendarEntity; 

    context.Scenario.Objects[1] = MyCalendar;  

    //Get access to a calendar     

context.Engine.SubscribeCalendar(MyCalendarEntity,MyCalend

ar,CalendarEvent);   

    //Make reference to the simulation engine  

    SimulationEngine = context.Engine;     

    return true; 

   }  

  //Call the method that is related to the calendar events 

  public static void 

CalendarEvent(Simphony.Simulation.CalendarEntity e) 

  {  

    //Check if there is a change in the work state of the 

calendar ---> If there is a change,Then do something 

    if(e.IsWorking != WasWorking) 

    { 

      //It is a change from a non-work period to a work 

period ---> Resume processing of events       

      if(e.IsWorking) 

      { 

        System.Diagnostics.Trace.WriteLine("A work period 

is begining now at time: " +        

SimulationEngine.DateNow.DayOfWeek +", "+ 

SimulationEngine.DateNow + " and will end in "  

        + e.TimeRemaining.TotalHours + " hours");         

        foreach(var entity in e.Entities) 

        { 

          //Resume only suspended entities 

          if(entity.IsSuspended) 

          {     

        SimulationEngine.ResumeEvent(entity); 

            System.Diagnostics.Trace.WriteLine("Work on 

truck #" + entity.Id +" has just been resumed on " + 

SimulationEngine.DateNow.DayOfWeek+","+SimulationEngine.Da

teNow); 

           }      

         }     

       }        

       else 

       { System.Diagnostics.Trace.WriteLine("A work break 

is begining now at time: " +  

         SimulationEngine.DateNow.DayOfWeek +", "+ 

SimulationEngine.DateNow + " and will end in "  

         + e.TimeRemaining.TotalHours + " hours");      

         foreach(var entity in e.Entities) 

         { 

     //Suspend all entities controlled by this calendar 

          SimulationEngine.SuspendEvent(entity);  

          System.Diagnostics.Trace.WriteLine("Work on 

truck #" + entity.Id.ToString() +" has  

           just been suspended on " + 

SimulationEngine.DateNow.DayOfWeek + ", " +  

           SimulationEngine.DateNow); 

          }      

         } 

       }        

       WasWorking = e.IsWorking;} 
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Table 5: Experimental Results from Simulation Using 

Different Calendars 

Calendar Start Date 
Finish 

Date 

Total 

work 

days 

Total 

non-

work 

days 

Standard 
July 15, 

2013 

Aug. 13, 

2013 
22 7 

24 

Hours 

July 15, 

2013 

July 22, 

2013 
7 0 

Night 
July 15, 

2013 

Aug.10, 

2013 
6 19 

Custom 
July 15, 

2013 

July 27, 

2013 
7 5 

  

4. MODELING TRAFFIC LIGHT CONTROLS 

IN SIMPHONY 

 

4.1. Problem Description 

Simphony is an easy-to-use simulation system for 

modeling typical discrete event simulation problems 

regardless of whether they are within the construction 

domain or not. A sample problem identified from two 

popular simulation text books by Halpin (1992) and 

Pritsker (1997) is described here and used for purposes 

of demonstrating the modeling abilities of the 

Simphony environment. 

   One lane of a 500 m section of road is closed off 

for major repair work. The road comprises two lanes 

with traffic flowing in opposite directions (east bound 

traffic and west bound traffic). For this section of road, 

lights allow traffic to flow for a specified time interval 

from only one direction. This arrangement is depicted in 

Figure 8.0. 

 

 
Figure 8: Schematic Layout of Site in the Traffic Light 

Problem (Halpin and Riggs, 1992) 

 

 When a light turns green, the waiting cars start and 

pass the light every 3 seconds. If a car arrives at the 

green light when there are no waiting cars, it passes 

through the light without delay. The car arrival pattern 

is such that there is an average of 10 seconds between 

cars from the east direction and 9 seconds between cars 

from the west direction. A light cycle consists of green 

for east bound traffic, both red, green for west bound 

traffic, both red, and then the cycle is repeated. Both 

lights remain red for 50 seconds to allow cars in transit 

to leave the repair section before traffic from the other 

direction can be initiated. The objective is to obtain 

green times for traffic lights that minimize waiting 

times for east and west-bound traffic. 

 

4.2. Simphony Models, Discussion and Results 

A traffic light cycle is perceived as involving a 

sequential process in which lights transition through 

different states (signals) represented by different light 

colors (Green → All-Red → Red → Green). Each 

traffic light is modelled as a resource so as to provide a 

convenient link between the traffic light cycle and the 

traffic flow (permit flows at right time, halt flows and 

track waiting statistics). An entity is used to loop 

through the cycle triggering the start and finish of each 

state. State change is triggered by capture or release of a 

traffic light resource. Higher priorities are given to the 

entity flowing within the “traffic light control loop” 

(for the capture of traffic light resources) compared to 

vehicle entities flowing in the “traffic flow” sub-

models.  The time that the system stays within a given 

traffic light state is modeled by task elements. “All-

Red” time is set to 50 seconds and we are to experiment 

to determine an optimal value of the “Green” light 

times that minimize the waiting time of traffic flowing 

in both directions.  

 

 
Figure 9: Model Layout of Traffic Light Controller 

Cycle  

  

 A discrete event model was developed in 

Simphony.NET 4.0 for the traffic system. The 

constructed model is comprised of 3 sub-models: (1) a 

traffic light control cycle, (2) an east-bound traffic flow 

model and (3) a west-bound traffic flow model. Each of 

these sub-models is discussed in detail. In these sub-

models, the traffic lights for the “east-bound” and 

“west-bound” traffic lights are modelled explicitly as 

resources within the Simphony general purpose 

template. The entities in this model include: the traffic 

flowing in the east direction, west direction and a flow 

unit that triggers the traffic light signals (ON/OFF). 

   Figure 9.0 shows a layout of the sub-model that 

emulates a typical traffic light cycle. One entity 

(“traffic light controller entity”) is created at the start of 

simulation which captures the east and west bound 

traffic lights. Thereafter, the entity triggers opening of 

valves that were retaining entities created to generate 

east and west bound traffic, respectively. The traffic 

controller entity then releases the east-bound traffic 

resource so that east-bound entities arriving capture this 

resource and flow through the section. The resource is 

freed for a specific duration that emulates the time that 

the traffic light is green after which the traffic light is 

captured once again by the traffic controller entity 

(representing the east-bound traffic light turning red). 

At this point, the traffic controller entity has both traffic 

light resources in its possession (signaling “all-red” on 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

478



traffic lights) and is transferred into a task element that 

holds it for 50 seconds. This 50 second delay mimics 

the time required by east-bound traffic (caught in the 

construction zone when the east-bound traffic light 

turns red) to clear out of this section. The traffic 

controller entity then flows into an element that releases 

the west-bound resource and then subsequently into a 

task element that delays it for a duration equivalent to 

that for which the west-bound traffic light is green. The 

west-bound traffic light resource is made available to 

west-bound traffic entities that were queued or are just 

arriving, hence, allowing them to flow through the 

construction zero. Thereafter, the “traffic controller 

entity” requests for the “west-bound traffic light 

resource” with a high priority (3.0).  It is granted this 

resource after the current “west-bound traffic flow 

entity” utilizing it releases it. The “traffic controller 

entity” will once again have both traffic light resources 

in its possession and is transferred into an “all-red” 

task element for 50 seconds during which west-bound 

traffic currently flowing in the construction zero section 

is expected to clear out. The “traffic light controller 

entity” is then looped back to the start of the traffic light 

cycle where it resumes with the release of the “east-

bound traffic light resource.” 

 

 
Figure 10: Model Layout for West-Bound Traffic Flow 

 

 The east-bound (EB) and west-bound (WB) traffic 

flow sub-models represent the arrival, queuing and flow 

of traffic in the east and west directions, respectively. 

The model layouts (Figures 10 and 11) are identical but 

involve different resources (“East-Bound Traffic 

Resource” and “West-Bound Traffic Resource”), 

waiting files (“Queue for East-Bound Traffic”, “Queue 

for West-Bound Traffic”, “Traffic Light Queue-East 

Bound Traffic” and “Traffic Light Queue-West Bound 

Traffic”), valves, tasks, capture and release elements. In 

these sub-models, the waiting files for traffic entities are 

separated from those of the “traffic light controller 

entity” so that the statistics on queued traffic are not 

distorted.   

 One entity is created in each sub-model at time zero 

and held behind a valve control until the “traffic light 

controller entity” has captured the “East-Bound Traffic 

Resource” and “West-Bound Traffic Resource” and 

triggered the valves to open. This entity in each sub-

model serves as a “traffic generating entity.” It is 

transferred into a “generate element” which clones it. 

 

 
Figure 11: Model Layout for East-Bound Traffic Flow 

 

 The entity flowing out of the top point of the 

“generate element” represents an arrival of a vehicle 

and is routed into an “execute element.” The cloned 

entity is transferred out of the bottom output point of 

the “generate element” into a “task element” where it 

is delayed for the inter-arrival duration before being re-

routed into the “generate element” to release another 

entity that represents another vehicle arrival. This cyclic 

process keeps going until the simulation is terminated. 

 Arriving traffic entities flow through the “execute 

element” where they are time-stamped with the time at 

which they arrive at the construction zone. Arriving 

traffic entities then proceed to a capture element where 

they request their respective traffic light resource. If the 

traffic light resource is available, the traffic entity 

proceeds on its journey without delay; otherwise, it is 

queued until the traffic light resource becomes 

available. Traffic entities that were queued and are 

allowed to travel through the construction zone when 

the light turns green are delayed by 3 seconds as they 

pass-by the traffic light. These 3 seconds represents 

start-up time for vehicles moving from a complete stop. 

This logic is modelled with the “task element” using 

the VB code snippet shown in Figure 12. This was 

inserted into the formula editor of the duration property 

for the “task element.” 

 After the traffic entity passes by the traffic light, it 

releases the traffic light resource to the next entity. It 

then flows through the counter element where the traffic 

count is registered and then into a “destroy element” 

where it is removed from the simulation. The flow of 

traffic entities is halted when the green time is used up 

(and the “traffic light controller entity” captures the 

traffic light resource). 

 

 
Figure 13: VB Code for Generating a Delay for a 

Vehicle Passing a Traffic Light 

 

Public Partial Class Formulas 

 Public Shared Function Formula(ByVal context As 

Simphony.Modeling.Task(Of     

  Simphony.Simulation.GeneralEntity)) As System.Double 

    If context.Engine.TimeNow - context.CurrentEntity.Floats(0)=  

     0.0 Then 

     Return 0.0 

     Else Return 3.0 

    End If  

 End Function 

End Class 
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 Simulation settings used are summarized in Table 

6.0. These were used because of the stochastic inputs 

used e.g. the inter-arrivals of traffic. Also, a seed was 

fixed to ensure that the same sequence of random 

deviates is used for scenarios that are compared.  

 To determine the green times to allocate to the east-

bound and west-bound traffic, equal arbitrary values 

were used. This phase of the experiment was used to get 

the local minimum (waiting time for traffic flowing in 

each direction). These were different because traffic 

inter-arrivals in each direction were different. Results 

from this phase are summarized in Table 7.0 and are 

plotted in Figure 14.0. The acronyms EB-GT, WB-GT, 

EB-WT and WB-WT represent east-bound green time, 

west-bound green time, east-bound waiting time and 

west-bound waiting time in seconds respectively. 

 

Table 6: Simulation Setting Used for the Traffic 

Problem 

Simulation Setting Parameter Value 

Seed 5,000 

Run Count 100 

Time Unit Seconds 

Maximum Time 86,400 Seconds (1 day) 

 

Table 7: Phase I Results from Experimenting with the 

Traffic Model 

EB-GT WB-GT EB-WT WB-WT 

50 50 6,979.03 10,505.42 

60 60 4,089.52 7,890.69 

80 80 225.0058 3,186.14 

100 100 115.173 344.3368 

110 110 110.3978 192.3788 

120 120 109.3351 154.9445 

140 140 111.7418 130.1684 

150 150 113.9442 129.5323 

160 160 116.5949 128.2344 

180 180 122.5078 132.7623 

200 200 128.9449 137.8971 

220 220 135.7282 143.9771 

240 240 142.6467 150.9405 

  

 
Figure 14: Waiting Time Variation with Green Time 

 

 The values obtained from phase I (highlighted in 

bold in Table 7.0) are used to guide phase II of the 

experimentation which involves determining the global 

minimum waiting time for all traffic. Results from this 

phase are summarized in Table 8.0. Optimal green times 

were found to be 130 and 140 seconds for east-bound 

and west-bound traffic respectively. 

 

Table 8: Phase II Results from Experimenting with the 

Traffic Model 

EB-GT WB-GT EB-WT WB-WT 

120 160 194.40 97.19 

120 150 155.46 101.47 

125 160 155.20 100.62 

130 160 139.64 104.34 

130 155 133.05 106.57 

130 150 127.47 109.70 

130 140 117.84 117.45 

 

5. CONCLUSIONS 

The paper presents a concise overview of simulation, 

the existing simulation methods, different simulation 

systems and studies in which simulation has been 

previously applied within the construction domain. 

 Simphony is introduced as an example of typical 

simulation system currently in use, its features 

discussed and reasons why it remains relevant in the 

process of defining next generation simulation 

tools/systems highlighted.   

 Two practical problems (an earth-moving problem 

involving shift dynamics and a traffic light problem) 

modeled in Simphony and experimented with to 

generate results that can be used to support decision 

making processes are described to showcase capabilities 

and features that exist within Simphony.    
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