
A STOCHASTIC APPROACH TO SECURITY SOFTWARE QUALITY
MANAGEMENT

Vojo Bubevski

Legal & General Account

TATA Consultancy Services Ltd

London, United Kingdom

vojo.bubevski@landg.com

ABSTRACT
The conventional approach to security software quality

management specifically for ongoing projects has two major

limits: (1) Six Sigma is not applied; and (2) analytic risk

models are used. This paper proposes a stochastic method,

which applies Six Sigma Define, Measure, Analyze,

Improve and Control (DMAIC), Monte Carlo Simulation

and Orthogonal Security Defect Classification (OSDC).

DMAIC is tactically applied to assess and improve quality.

Simulation predicts quality (reliability) and identifies and

quantifies the quality risk. OSDC allows qualitative

analysis. DMAIC is a verified structured methodology for

systematic process and quality improvements. Simulation is

superior to analytic risk models. OSDC offers qualitative

improvements. This synergetic method eliminates observed

deficiencies gaining important benefits including savings,

quality and customer satisfaction. It is CMMI® (Capability

Maturity Model Integration) compliant. The method is

simplistically elaborated on a published third-party project.

Keywords: Six Sigma; DMAIC; Simulation; Security
Software; Quality Management;

1. INTRODUCTION

Software quality is a multidimensional attribute including
reliability, functionality, usability, performance, etc. It is a

direct consequence of software processes. Software

processes are inherently variable and uncertain, thus

involving substantial risks. A key factor in Software Quality

is Software Reliability as it is one of the the quality

attributes most exposed to customer observation. In this

paper, “reliability” and “quality” are used interchangeably.

Software quality and customer satisfaction are very

important. Managing the software quality, particularly for

security software, is a critical factor for software projects.

Six Sigma is used across industries for improving

processes, quality and customer satisfaction. One of the

principal Six Sigma methodologies is DMAIC (Define,

Measure, Analyze, Improve, Control). In Software

Engineering, Six Sigma is compatible with Capability

Maturity Model Integration (CMMI®). Applications of Six

Sigma methodologies in Software Development are

discussed in published works (Tayntor 2002; Mandl 1985;

Tatsumi 1987; Brownlie, Prowse and Phadke 1992;

Bernstein and Yuhas 1993; Siviy, Penn and Stoddard 2007;

Nanda and Robinson 2011).

Monte Carlo simulation is a methodology which

iteratively evaluates a deterministic model by applying a

distribution of random numbers as inputs, which allows to

use probability and statistical tools to analyze the results. It

is used for modeling phenomena with significant

uncertainty, such as software development processes

(Bratley, Fox, and Schrage 1983; Rubinstein and Kroese

2008). The term “simulation” is generically used in this

paper to refer to “Monte Carlo simulation”.

Software Reliability is a main subject in Software

Reliability Engineering (SRE) (Lyu 1996). The software

reliability analytic models have been available since the

early 1970s (Lyu 1996; Kan 2002; Xie 1991). The need for

a simulation approach to software reliability was recognized

in 1993 by Von Mayrhauser et al. (Von Mayrhauser et al.,

1993). Subsequently, substantial work on simulation was

published (Gokhale, Lyu and Trivedi 1997; Gokhale, Lyu

and Trivedi 1998; Tausworthe and Lyu 1996; Bubevski

2009; Bubevski 2010).

Six Sigma Software practitioners usually employ

conventional analytic models. It has been reported that for

Six Sigma in general, simulation models are superior to

conventional analytic models (Ferrin, Miller and Muthler

2002).

The Orthogonal Security Defect Classification (OSDC)

was established and used by Hunny to improve the quality

of security software (Hunny 2012). OSDC is based on the

Orthogonal Defect Classification (ODC), which was

elaborated by Chillarege and implemented by IBM™ (Lyu

1996, Chapter 9). OSDC provides for applying qualitative

analysis of security software.

1.1. Problem Statement and Proposal

The conventional approach to manage the quality of security

software, specifically for an ongoing software projct, has

two major limitations: (1) it doesn’t apply Six Sigma

methods on a current project, but uses the previous release’s

data to improve the quality of the next release; and (2) it

uses analytic risk models.

The paper proposes a stochastic approach to Security

Software Quality Management. This approach is based on

the new method published by Bubevski (Bubevski, 2013).

However, the approach presented herein applies the DMAIC

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

35

and Simulation methodologies specifically to Security

Software by using OSDC.

The synergy of DMAIC, Simulation and OSDC

eliminates the limitations identified above. By using this

method, substantial savings and quality improvements can

be achieved, increasing customer satisfaction.

1.2. Related Work

Hunny used OSDC in order to improve the quality of

security software. He presented how the failure data

collected for past releases of two software systems, which

are OSDC-classified, can be used to improve the quality of

the next/future release of the systems by applying analytic

models (Hunny 2012).

Bubevski elaborated stochastic approaches to software

quality management, which applied Six Sigma and

Simulation. The methods were demonstrated and verified on

real software projects using published data (Bubevski 2009;

Bubevski 2010).

Bubevski also devised and elaborated a new approach to

Software Quality Management of ongoing software projects

by applying the Six Sigma DMAIC, Simulation and ODC

methodologies. The nw method was proven in practice

achieving savings, quality imrovments and high customer

satisfaction (Bubevski, 2013).

Chillarege applied ODC and the Inflection S-shaped

Software Reliability Growth Model for relative risk

assessment of the final testing stage. The Inflection S-

shaped Software Reliability Growth Model is analytic; it is

used to predict the future course of the software reliability

growth curve. This helped the project to reduce risk, meet

the schedule and assure good field reliability gaining

significant benefits (Lyu 1996, Sec. 9.5, Sec. 3.3.6).

Tausworthe & Lyu applied simulation for software

reliability assessment on the Galileo spacecraft software

project at the Jet Propulsion Laboratory™. The reliability

simulation results were substantially better than the

reliability predictions obtained by the analytic models such

as Jelinski-Moranda, Musa-Okumoto and Littlewood-

Verrall models (Tausworthe and Lyu 1996).

Gokhale, Lyu & Trivedi developed simulation models

for failure behaviour of the most commonly used fault

tolerance architectures. They demonstrated the ability to

simulate very complex failure scenarios with various non-

trivial dependences (Gokhale, Lyu and Trivedi 1997).

Gokhale, Lyu & Trivedi simulated the reliability of

component based software. Discrete event simulation was

applied to analyze complex systems, i.e. a terminating

application, and a real time application with feedback

control. The simulation models applied were superior to the

conventional analytic models including Prevalent

Markovian and Semi Markovian methods (Gokhale, Lyu

and Trivedi 1998).

Simulation was applied by Gokhale & Lyu for

structure-based analysis of software reliability. Simulation

provided for tailoring the testing and repair strategies, and

achieving the desired reliability cost-effectively (Gokhale

and Lyu 2005).

Siviy, Penn and Stoddard used Six Sigma to reduce

defects and improve quality. Conventional Six Sigma tools

were used such as Rayleigh Fitted Histogram Defect Model

and Cause-and-Effect Model, including Computer Aided

Software Reliablity Estimation (Siviy, Penn and Stoddard

2007, Sec. 9.1).

Murugappan & Keeni combined Six Sigma with

CMMI® to create a quality management system. The aim

was to improve software processes and achieve CMMI®

Level 4 compliance, which provides for quantitative and

qualitative software quality management (Murugappan and

Keeni 2003).

An application of CMMI® and Six Sigma in software

processes improvement was elaborated by Xiaosong et al.

The software process management was considered and Six

Sigma and CMMI® integration was implemented achieving

quality improvements (Xiaosong, Zhen, ZhangMin and

Dainuan 2008).

Nanda and Robinson published a book including two

case studies, which use DMAIC and conventional Six

Sigma statistical tools for software defect reduction

purposes. The book demonstrates how Six Sigma is

applicable to the IT industry, with compelling success

stories from today's leading IT companies (Nanda and

Robinson 2011, Chapter 5).

Galinac & Car elaborated an application of Six Sigma

in the continuous improvement of software verification

process. Appling Six Sigma, change management, and

statistical tools and techniques, solved the problem of fault

slippage through the verification phases (Galinac and Car

2007).

Macke & Galinac presented experiences and results of

applying Six Sigma for process improvements in a global

software development organization including process

definition, awareness for different levels of expectations in

globally distributed teams, and introduction of regular

scanning mechanisms. Success indicators were defined

connecting process capability to business value in order to

measure the improvement success (Macke and Galinac

2008).

A six sigma DMAIC approach to software quality

improvement was presented by Redzic & Baik. Tactical

changes were identified and established, which substantially

increased the software quality of all software products

(Redzic and Baik 2006).

 Xiaosong et al used Six Sigma DMAIC and

accomplished continuous quality improvement throughout

the software development process for high-quality software

product. . The software process deficiencies were identified

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

36

and eliminated to ensure the desired software quality

(Xiaosong, Zhen, Fangfang and Shenqing 2008).

2. THE METHOD DEMONSTRATION

(HYPOTHETICAL SCENARIO)

The elaboration is based on a real software project using
published data (Lyu 1996, Dataset ODC4). The project is

finished so this case is hypothetical. The failure data are

available for the entire life cycle but only the data from the

last 15 months are used (Table 1). To emulate the scenario
of an ongoing project, the data from the first 12 months are

used. The last three months’ data are used to verify the

results. We also pretend that the failure data are for a

security software project. Thus, the original data use ODC,

but they are mapped to OSDC (Hunny 2012, Table 3.1)

because OSDC is specifically applicable to sequrity

software. The OSDC Defect Types considered are: Security

Functionality (SF), Security Logic (SL) and Miscellaneous

(Misc.).

Table 1: Actual Failure Count Data

Month SF SL Misc.

1 16 20 32

2 11 8 6

3 203 36 22

4 37 20 7

5 107 43 13

6 240 43 21

7 27 64 18

8 30 112 23

9 147 98 23

10 24 93 23

11 24 106 28

12 24 33 23

13 6 14 8

14 7 7 3

15 4 15 1

2.1. Assumptions

The method involves quantitative analysis of the metrics

data, so the results are data driven. Consequently, the

metrics data must be verified and reliable. Also, the

organisation and the software project must have capabilities

and experiences with quantitative analysis in order to use the

method and provide for good and consistent results.

Therefore, the fundamental assumption for the method

feasibility is that the software organization and the software

project are compliant with CMMI® Level 4.

CMMI® Level 4 requires quantitative management of

software processes and products within an organization.

Thus, the criteria are as follows: (i) detailed measures of the

software process and product quality are collected; and (ii)

both the software process and products are quantitatively

understood and controlled.

Also, there was no information about testing profile,

defect relationship, fix (removal) rate or the rate of

introducing new defects in the published data. Therefore, for

the purpose of the demonstration only and to simplify the

simulation models, at least until the experimental results are

adequately verified, it is assumed that (i) testing operation

profile is uniform, (ii) failures occur independently, (iii)

defects are removed in the same time interval as they are

encountered and (iv) no new defects are introduced with the

fix. It should be considered that the demonstration

simulation model’s results were satisfactorily verified, so

the assumptions were proven to be acceptable.

2.2. Software Quality Risk Management Using Six

Sigma and Simulation

The method follows the DMAIC methodology as a

tactical framework.

2.2.1. The Project Definition (Define)

We assume that the project is within the final testing stage at

the end of Month 12 (TI(12)), which is three months from

the targeted delivery date of the product.

Project Objective: Complete final test phase by the end

of Month 15 (TI(15)) as planned and deliver the system on

time, whilst achieving the quality goal. The delivery date is

at the beginning of Month 16.

Project Quality Goal: The aim is to ensure that the

system is stable and ready for delivery. All detected defects

should be fixed and re-tested before the end of testing. Also,

the final month of testing (Month 15) should have one

defect per Defect-Type and three defects in total. Maximum

two defects per Defect-Type and six defects in total are

allowed.

Problem Statement: Assess and mitigate the risk to

deliver the system on time, whilst achieving the quality

goal. Critical to Quality (CTQ) for the project is the sequrity

software reliability.

2.2.2. The Project Metrics (Measure)

In order to define the Failure Intensity Function (FIF)

deterministic models by Defect-Type, which are required for

simulation, we need to (1) transform the actual data by

applying Rank Transformation (Conover and Iman 1981) to

get the transformed FIF by Defect Type; and (2)

approximate the transformed FIF by Defect Type.

Logarithmic and exponential approximations were

tried. The R-square values by Defect Type were (1)

Logarithmic: i) SF: R² = 0.9254; ii) SL: R² = 0.8981; iii)

Misc.: R² = 0.7385; and iv) Total: R² = 0.9604; and (2)

Exponential: i) SF: R² = 0.8999; ii) SL: R² = 0.9276; iii)

Misc.: R² = 0.7642; and iv) Total: R² = 0.9665.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

37

 Comparing the R-square values, the exponential

approximation is more accurate. Thus, the exponential

approximation of the FIF is selected, which is used by the

Musa’s Basic Execution Time software reliability model

(Lyu 19969, Sec. 3.3.4). The aproximations, i.e. the

deterministic models of the FIF by Defect Type are as

follows:

FIFf(k) = 262.33 exp(-0.274 k) (1)

FIFl(k) = 179.17 exp(-0.217 k) (2)

FIFm(k) = 41.138 exp(-0.127 k) (3)

FIFt(k) = FIFf(k) + FIFa(k) + FIFm(k) (4)

Where, FIFf, FIFl, FIFm and FIFt are the FIF for SF,

SL & Misc. Defect-Type and the Total respectively, and k is

the time interval (k = 1,2,…, n).

2.2.3. Six Sigma Process Simulation (Analyze)

To analyze the process, we simulate the FIFs for the future

three months , i.e. from TI(13) to TI(15) inclusive. The

simulation is based on the Musa’s Basic Execution Time

deterministic model (Lyu 19969, Sec. 3.3.4), which applies

exponential FIFs. The Poisson distribution is used for the

simulation.

To define the quality targets for Month 15 we use the

Six Sigma Target Value, Lower Specified Limit (LSL) and

Upper Specified Limit (USL): a) Target Value is one for all

defect types and three defects for the Total; b) USL is two

for all defect types and six for the Total; b) LSL should be

zero, but it will be set to a very small negative number to

prevent an error in the Six Sigma metrics calculations, i.e.

LSL is -0.0001 for all defect types including the Total. The

Six Sigma process simulation results follows.

Figure 1 shows that the Total’s distribution in Month 15

of testing totally deviates from the target specifications (i.e.

LSL, Target Value and USL). Also, there is a 0.90

probability that the Total would be in the range 11 – 25;

0.05 probability that the Total would be more than 25; and

0.05 probability that the Total would be less than 11.

Figure 1: Total Defects Probability Distribution Month 15

Table 2 shows the predicted mean (µ), Standard

Deviation (σ) and Minimum and Maximum Values for total
number of defects by Defect-Type in the final month of

testing TI(15) including the Total.

Table 1: Predicted FIF for Month 15

Process µ σ Min Max

SF 4 2.06 0 14

SL 7 2.62 0 19

Misc. 6 2.47 0 19

Total 17 4.19 5 36

The predicted Total in TI(15) is 17, with Standard

Deviation of 4.19 defects. This indicates that the product

will not be stable for delivery at the end of Month 15.

The Six Sigma metrics used to measure the

performance are: a) Process Capability (Cp) ; b) Sigma

Level; and c) Probability of Non-Compliance (PNC). The

Sigma metrics by Defect-Type for Month 15 is given in

Table 3. For example, the SF type has the lowest PNC equal
to 0.8057, which is 80.57% deviation from the desired target

range. The PNC for the Total is equal to 0.9988, which is

99.88% deviation from the specified target. All three Six

Sigma metrics strongly suggest that the process would not

perform well, so it would not deliver the desired quality at

the end of Month 15.

Table 3: Process Six Sigma Metrics for Month 15

Process Cp PNC Sigma Level

SF 0.1618 0.8057 0.2460

SL 0.1272 0.9687 0.0392

Misc. 0.1349 0.9461 0.0676

Total 0.2389 0.9988 0.0015

2.2.4. Six Sigma Simulation Sensitivity Analysis:

CTQs Identification (Analyze)

The simulation sensitivity analysis is used to determine the

influence of the change of a particular Defect-Type to the

change of Total Defects for all Defect Types.

The correlation sensitivity shows that the most

influential defect type, i.e. the top risk CTQ, is SL Defect-

Type with correlation coefficient to the Total of 0.63. The

Misc. and SF Defect-Type are less influential as their

correlation coefficients are 0.58 and 0.49 respectively.

The regression sensitivity shows the quantitative

parameters of the influence of the defect types to the total if

they change by one Standard Deviation. That is, if the SL

defects increase by one Standard Deviation, the Total will

increase by 2.62 defects, which is the top risk defect type.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

38

The regression coefficients for Misc. and SF defects are

2.47 and 2.06 defects respectively, so they are less

influential. These results are consistent with the correlation

sensitivity results.

2.2.5. Six Sigma Analysis Conclusions and

Recommendation (Analyze)

The following are the conclusions from this Six Sigma

analysis: a) The testing process would not perform well as

shown by the considered Six Sigma metrics. Therefore, the

system would not be ready for delivery as the quality goals

would not be met at the beginning of Month 16 if the project

maintains the current situation; and b) The CTQ to deliver

the system is the software reliability, i.e. the predicted Total

in TI(15) is 17 defects, versus the target value of three

defects.

Analysis Recommendation: In order to deliver the

system on time and achieve the quality goal, immediately

undertake an improvement project to improve the process

and enhance the software reliability, which is the CTQ.

2.2.6. Improvement Six Sigma Simulation (Improve)

The purpose of this Six Sigma simulation is to quantitatively

determine the solution for improvement, i.e. to predict all

the escaped defects (i.e. the defects that are believed to be in

the system but they are not captured). Therefore, the

software reliability for the future period will be simulated to

predict when the reliability goal will be achieved.

It was analyzed and identified that this target could be

met in Month 24. Thus, FIF by Defect-Type was simulated

for the future period of 12 months, i.e. from Month 13 to

Month 24. All the parameters for this simulation were

exactly the same as for the previous simulation.

Figure 2: Total Defects Probability Distribution Month 24

As Figure 2 shows, the Total’s distribution in Month 24

of testing fits in the process target specifications (LSL,

Target Value and USL are marked on the graph). Also, there

is a 0.949 (94.9%) probability that the Total in TI(24) would

be in the specified target range 0-6 defects; and 0.051

(5.1%) probability that the Total would be more than six.

The probability that there would be three defects in total is

approximately 0.22 (22%).

According to this prediction, the process could achieve

the reliability goal in Month 24 if the project maintains the

current situation.

Table 4: Predicted FIF for Month 24

Process µ σ Min Max

SF 0 0.61 0 4

SL 1 0.98 0 7

Misc. 2 1.39 0 8

Total 3 1.81 0 12

Table 4 shows that predicted number of defects for all
types, including the Total, is within the specified target

range. The Standard Deviation for all types including the

Total, however, is relatively high.

The process Six Sigma metrics at the end of Month 24

are given in Table 5. For example, PNC for Misc. defects is
0.3112 (i.e. 31.12% deviation). The Total however shows

only 5.11% deviation.

Table 5. Process Six Sigma Metrics for Month 24

Process Cp PNC Sigma Level

SF 0.5468 0.0074 2.6783

SL 0.3397 0.0739 1.7872

Misc. 0.2391 0.3112 1.0127

Total 0.5510 0.0511 1.9506

All three Six Sigma metrics suggest that there are

realistic chances that the process could perform and deliver

the desired quality at the end of Month 24.

2.2.7. Improvement Recommendations (Improve)

The following defines and quantifies the solution for the

improvement. The predicted total numbers of defects by

Defect-Type including the Total for the future periods are

shown in Table 6.
The predicted defects for Month 13 – 15 are expected to

be detected and removed by the current project until the end

of Month 15. The predicted defects expected to be found in

the system from Month 16 to Month 24 are unaccounted for.

These defects need to be detected and removed until the end

of Month 15 in order to achieve the quality goal.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

39

Table 6: Predicted Defects per Defect-Type for Future
Periods

Time Period SF SL Misc Total

TI(13) – TI(15) 17 27 21 65

TI(16) – TI(24) 11 25 31 67

TI(13) – TI(24) 28 52 52 132

Therefore, the process improvement recommendation

is: Immediately undertake an improvement project to deliver

the system quality improvements as required to achieve the

quality goals. The objectives of this project are:

1. Reanalyze the unstable defects applying Casual

Analysis and Resolution (CAR);

2. Determine the quality improvement action plan,

establishing an additional tactical test plan;

3. Execute the tactical test plan to additionally test the

system and detect and repair the escaped defects, i.e.

the defects that is believed are in the system but have

not been detected. According to the simulation above,

there are 67 predicted escaped defects in total (TI(16) –

TI(24), Table VI);

4. The additional testing, detection and correction of the

escaped defects should be completed by the end of

Month 15 to achieve the quality goal.

2.2.8. The Improvement Project and Employment of
Additional Resources (Improve)

To undertake the improvement project, additional resources

with special skills are needed. The current project is not

behind schedule and is running according to plan. The

problem is the quality of the product.

To minimize the Brooks’ Law effect in employing the

additional resources, a “surgical team” should be assigned to

the project (Brooks 1995). The objective of the “surgical

team” is to deliver the required quality improvement only.

The current team working on the project should continue

their work according to plan. The “surgical team” will not

share any work with the current team.

2.2.9. Improvement Definition (Improve)

The process improvement is a new testing project, which is

totally independent of the current testing in progress. There

are only three months available to accomplish the

improvement, as the quality goal needs to be met at the end

of testing (i.e. at the ond of Month 15).

Keeping one month as the time interval for observation

is not good because it provides for only two future check

points. Thus, the time interval for observation will be

reduced to one week. Thus, the proposed schedule for the

testing improvement project during the next 13 weeks is: a)

one week to start the project and appoint the staff; b) three

weeks to complete the required analysis and test plans; and

c) nine weeks of testing where the escaped defects will be

detected and fixed.

The predicted distribution of the escaped defects by

Defect-Type including the Total, which need to be detected

and fixed during the testing period of nine weeks, i.e. TI(1)

– TI(9), is: SF: 11 Defects; b) SL: 25 Defects; c) Misc.: 31

Defects; and d) Total: 67 Defects.

2.2.10. Six Sigma Simulation for Monitoring (Control)
It is imperative to establish continuous monitoring in order

to discover any variances in the process performance, and

determine and implement the appropriate corrective actions

to eliminate the deviations. This will ultimately mitigate the

risk and allow for the delivery of the product on time and

the achievement of the quality goals.

In order to deliver the product on time and meet the

quality goals, the control phase should be applied to both

the current and the improvement testing process. It is

recommended to create two additional Six Sigma simulation

models and to apply them regularly on a weekly basis to

both processes until the end of the projects.

A Six Sigma simulation model for monitoring of the

improvement testing process will be demonstrated now. It is

assumed that the improvement testing project is at the end

of Week 3. An actual defect distribution by Defect-Type for

the first three weeks of testing is also assumed, which is

given in Table 7.
We need first to transform the assumed actual failures

over the three weeks period, to determine the FIF. Also, we

need to approximate the FIF by Defect-Type as required for

the simulation. The logarithmic and exponential

approximations were tried.

Table 7: Assumed Actual Failure Count Data

TI (Week) SF SL Misc. Total

1 2 3 5 10

2 3 3 4 10

3 2 4 4 10

Total: 7 10 13 30

The R-square values are:

(1) Logarithmic: i) SF: R² = 0.8668; ii) SL: R² =

0.8668; iii) Misc.: R² = 0.8668; and iv) Total: R² = 0.8668.

(2) Exponential: i) SF: R² = 0.75; ii) SL: R² = 0.75; iii)

Misc.: R² = 0.75; and iv) Total: R² = 0.75.

Comparing the R-square values, the logarithmic

approximation is more precise. Thus, we will select the

Logarithmic Poisson Reliability Model for the simulation.

The aproximation of the FIF by Defect Type is as follows:

FIFf(k) = -0.968 ln(k) + 2.9112 (5)

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

40

FIFl(k) = -0.968 ln(k) + 3.9112 (6)

FIFm(k) = -0.968 ln(k) + 4.9112 (7)

FIFt(k) = FIFf(k) + FIFa(k) + FIFm(k) (8)

Where, FIFf, FIFl, FIFm and FIFt are the FIF for SF,

SL & Misc. Defect-Type and the Total respectively, and k is

the time interval (k = 1,2,…, n).

 The software reliability for the future period of six

weeks will be predicted (simulated), i.e. from TI(4) to TI(9)

inclusive. For this prediction, the discrete event simulation

is used applying the Poisson distribution on the formulas

above (5 - 8).

The major objective of the improvement project is to

capture and fix the escaped defects. The escaped defect

distibution by Defect-Type is a) SF: 11 Defects; b) SL: 25

Defects; c) Misc.: 31 Defects; and d) Total: 67 Defects.

Thus, the Six Sigma Target Value, LSL and USL are: a) SF:

Target Value is 11, LSL is 9 and USL is 13; b) SL: Target

Value is 25, LSL is 22 and USL is 28; c) Misc.: Target

Value is 31, LSL is 28 and USL is 35; and d) Total: Target

Value is 67, LSL is 60 and USL is 74.

The process Six Sigma simulation results (Figure 3)

show that the Total’s distribution for the final week of

testing TI(9) fits well within the process target

specifications. For example, there is a 0.742 (74.2%)

probability that the Total in Week 9 would be in the

specified target range 60-74 defects. This indicates that the

improvement project could achieve the quality target.

Figure 3: Total Defects Probability Distribution for Week 9

Table 8: Predicted FIF for Week 9

Process µ σ Min Max

SF 14 2.61 7 26

SL 23 3.56 12 39

Misc. 32 4.32 18 50

Total 69 6.16 48 91

Also, for Week 9 (Table 8) the predicted Total is 69
defects with Standard Deviation of 6.16 defects (8.93%),

which is acceptable.

The process Six Sigma metrics (Table IX) shows that

for the Total, the PNC metric is 0.2582, i.e. 25.82%

deviation from the desired target range, which is acceptable.

Therefore, the chances that the improvement testing process

could perform as expected are high.

Table IX. Improvement Testing Process Six Sigma Metrics

Process Cp PNC Sigma Level

SF 0.2554 0.5609 0.5815

SL 0.2812 0.5520 0.5948

Misc. 0.2700 0.4230 0.8012

Total 0.3789 0.2582 1.1307

All three Six Sigma metrics strongly suggest that the

improvement testing process performed well during the first

three weeks of testing. Therefore, there is no need for any

corrective action as at the end of Week 3. However, it is

required to continue to analyze the process performance by

applying the above DMAIC-Simulation analysis regularly,

i.e. at the end of every week, until the end of the project.

Similarly, a Six Sigma simulation model can be easily

created to monitor the current testing process regularly on a

weekly basis until the end of the project. For this purpose,

the predicted defect distribution for the period TI(13) –

TI(15) should be transformed in a desired weekly defect

distribution.

2.2.11. Verification of Results

The experimental results, i.e. the predictions, are compared

with the actual available data for verification. It should be

underlined that there are no data available from System’s

Operation. Thus, it is impossible to verify the predictions for

improvments and predictions for control.

 Two comparisons are performed as presented below: a)

Partial Data Comparison; and b) Overall Data Comparison.

Partial Data Comparison:

Table 10: Partial Data Comparison

Defects

Process Actual Pred. Error %

SF 17 17 0

SL 36 27 -25

Misc. 12 21 75

Total 65 65 0

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

41

The results (Table 10) are verified by comparing the
predicted total number of defects by Defect-Type including

the Total for the three months period TI(13) – TI(15),

versus the corresponding actual defects.

The SF defects and the Total are accurately predicted.

The SL defects are underestimatedand Misc. defects are

overestimated. These prediction results are acceptable.

Overall Data Comparison:

The overall data comparison is shown in Table XI.

Table 11: Overall Data Comparison

Defects

Process Actual Pred. Error %

SF 907 907 0

SL 712 703 -1.2640

Misc. 251 260 3.5857

Total 1870 1870 0

The results are verified by comparing the actual and

predicted total number of defects by Defect-Type including

the Total for the entire period TI(1) – TI(15), with the

corresponding actual defects. Again, the SF defects and the

Total are accurately predicted. The SL defects are

underestimated with a minimal error. The Misc. defects are

slightly overestimated. Thus, these prediction results are

very good.

Considering the calculated errors in Table 10 and

Table 11, the experimental results are satisfactorily verified.

3. CONCLUSION

The conventional security software quality management of
ongoing projects has two major weaknesses: i) analytic risk

models are used; and ii) structured methodologies for

process and quality improvements are not systematically

applied. The proposed novel practical method applies Six

Sigma DMAIC, Monte Carlo Simulation and OSDC

methodologies. Simulation is superior to analytic risk

models and DMAIC is a proven and recognized

methodology for systematic process and quality

improvements. OSDC provides for qualitative analysis

offering qualitative improvements. This synergetic method

eliminates the observed limitations of the conventional

approach.

The method fully follows the DMAIC framework

including the five phases: define, control, analyse, improve

and control. It is compatible with CMMI® and can

substantially help software projects to deliver the product on

time and achieve the quality goals.

The method tactically uses the synergy of the three

applied methodologies, i.e. Six Sigma DMAIC, Monte

Carlo Simulation and OSDC, which provides for strong

performance-driven software process improvements and

achieves important benefits including savings, quality and

customer satisfaction.

In comparison with the conventional methods, the

stochastic approach is more reliable and comprehensive as

the inherent variability and uncertainty are accounted for,

allowing for probability analysis of the risk. Therefore, the

confidence in the method’s decision support is substantial,

which is of mission-critical importance for software

projects.

The simulation models used to demonstrate the method

are simple for practical reasons in order to facilitate the

elaboration. The models could be easily enhanced to provide

for more complex analysis of the ongoing software projects.

ACKNOWLEDGMENTS

I acknowledge Lyu (Lyu 1996) for published data used

in this work. Also, I would like to thank my daughter, Ivana

Bubevska, for reviewing the paper and suggesting relevant

improvements.

REFERENCES

Tayntor, C.B., 2002. Six Sigma Software Development.

Auerbach: Boca Raton, Florida, US.

Mandl, R., 1985. Orthogonal Latin Squares: An Application

of Experiment Design to Compiler Testing.

Communications of the ACM, Vol. 128, No. 10, pp.

1054-1058.

Tatsumi, K., 1987. Test Case Design Support System.

Proceedings of ICQC, Tokyo.

Brownlie, R., Prowse, J., and Phadke, M.S., 1992. Robust

Testing of AT&T PMX/StarMAIL Using OATS.

AT&T Technical Journal, Vol. 71. No. 3, pp. 41- 47.

Bernstein, L., and Yuhas, C. M., 1993. Testing Network

Management Software. Journal of Network and System

Management, Vol. 1, No. 1.

Siviy, J.M., Penn, L.M., and Stoddard, R.W., 2007. CMMI®

and Six Sigma: Partners in Process Improvement (SEI

Series in Software Engineering). Addison-Wesley

Professional: Boston, Massachusetts, US.

Bratley, P., Fox, B.L., and Schrage, L.E., 1983. A Guide to

Simulation. Springer-Verlag: New York.

Rubinstein, R.Y., and Kroese, D.P., 2008. Simulation and

the Monte Carlo Method. John Wiley & Sons: New

Jersey.

 Lyu, M.R., 1996. Handbook of Software Reliability

Engineering. IEEE Computer Society Press: Los

Alamitos, CA, US.

Kan, S.H., 2002. Metrics and Models in Software Quality

Engineering. Addison-Wesley Professional: Los

Alamitos, CA, US.

Von Mayrhauser, A., et al., 1993. On the need for
simulation for better characterization of software
reliability. Proceedings of Fourth International
Symposium on Software Reliability Engineering, pp.
264-273. Denver, Colorado, US.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

42

Gokhale, S.S., Lyu, M.R., and Trivedi, K.S., 1997.

Reliability Simulation of Fault-Tolerant Software and

Systems. Proceedings of Pacific Rim International

Symposium on Fault-Tolerant Systems, Taipei,

Taiwan.

 Gokhale, S.S., Lyu, M.R., and Trivedi, K.S., 1998.

Reliability Simulation of Component-Based Software

Systems. Proceedings of Ninth International

Symposium on Software Reliability Engineering,

Paderborn, Germany.

Tausworthe, R.C., and Lyu, M.R., 1996. Software

Reliability Simulation. In: Lyu, M.R., ed. Handbook of

Software Reliability Engineering, Chapter 16. IEEE

Computer Society Press: Los Alamitos, CA, US.

Bubevski, V., 2009. A Simulation Approach to Six Sigma in

Software Development. Proceedings of the 2009

Summer Computer Simulation Conference. pp. 125-

132. Istanbul, Turkey.

Bubevski, V., 2010. An Application of Six Sigma and

Simulation in Software Testing Risk Assessment.

Proceedings of the 2010 Third International

Conference on Software Testing, Verification and

Validation. pp. 295-302. Paris, France.

Ferrin, D.M., Miller, M.J., and Muthler, D., 2002. Six

Sigma and simulation, so what's the correlation?.

Proceedings of the 2002 Winter Simulation

Conference, December 2002, San Diego, California,

US.

Lakey, P.B., 2002. Software Reliability Prediction is not a

Science… Yet. Cognitive Concepts, St. Louis, US.

 Brooks, F.P. Jr., 1995. The Mythical Man-Month (Essays

on Software Engineering, Anniversary Edition).

Addison-Wesley: Boston, Massachusetts, US.

Nanda, V., and Robinson, J.A., 2011. Six Sigma Software

Quality Imrovment. McGraw-Hill Professional: New

York City , NY, US.

Xie, M., 1991. Software Reliability Modelling, World

Scientific: Singapore.

Conover, W.J., and Iman, R.L., 1981. Rank Transformations

as a Bridge Parametric and Nonparametric Statistics.

The American Statistician, Vol. 35. No. 3, August

1981, pp. 124.

Gokhale, S.S., and Lyu, M.R, 2005. A simulation approach

to structure-based software reliability analysis.

Software Engineering, IEEE Transactions on, Vol. 31,

Issue 8, August 2005, pp. 643-656.

Murugappan, M., and Keeni, G., 2003. Blending CMM

and Six Sigma to meet business goals. Software, IEEE,

Vol. 20, Issue 2, Mar/Apr 2003, pp. 42 – 48.

Xiaosong, Z., Zhen, H., ZhangMin, Y.W., and Dainuan, Y.,

2008. Process integration of six sigma and CMMI.

Proceedings of 6th International Conference on

Industrial Informatics (INDIN), pp. 1650-1653. 2008,

Daejeon, Korea.

Galinac, T, and Car, Z., 2007. Software verification

improvement proposal using Six Sigma. LNCS, Vol.

4589, pp. 51-64.

Macke, D., and Galinac, T., 2008. Optimized software

process for fault handling in global software

development. LNCS, Vol. 5007, pp. 395-406.

Redzic, C., and Baik, J., 2006. Six Sigma approach in

software quality improvement. Proceedings of 4th

International Conference on Software Engineering

Research, Management and Applications (SERA), pp.

396-406. 2006, Seattle, Washington, US.

Xiaosong, Z., Zhen, H., Fangfang, G., and Shenqing, Z.,

2008. Research on the application of six sigma in

software process improvement. Proceedings of 4th

International Conference on Intelligent Information

Hiding and Multimedia Signal Processing (IIH-MSP),

pp. 937-940. 2008, Harbin, China.

Hunny, U., 2012. Orthogonal Security Defect Classification

for Secure Software Development. Thesis (PhD)

Queen's University, Kingston, Ontario, Canada.

Bubevski, V., 2013. A Novel Approach to Software Quality

Risk Management”, Software Testing, Verification &

Reliability – STVR. In Early View.

AUTHORS BIOGRAPHY

Vojo Bubevski comes from Berovo, Macedonia. He

graduated from the University of Zagreb, Croatia in 1977,

with a degree in Electrical Engineering - Computer Science.

He started his professional career in 1978 as an Analyst

Programmer in Alkaloid Pharmaceuticals, Skopje,

Macedonia. At Alkaloid, he worked on applying Operations

Research methods to solve commercial and pharmaceutical

technology problems from 1982 to 1986.

In 1987 Vojo immigrated to Australia. He worked for

IBM™ Australia from 1988 to 1997. For the first five years

he worked in IBM™ Australia Programming Center

developing systems software. The rest of his IBM™ career

was spent working in IBM™ Core Banking Solution Centre.

In 1997, he immigrated to the United Kingdom where

his IT consulting career started. As an IT consultant, Vojo

has worked for Lloyds TSB Bank in London, Svenska

Handelsbanken in Stockholm, and Legal & General

Insurance in London. In June 2008, he joined TATA

Consultancy Services Ltd.

Vojo has a very strong background in Mathematics,

Operations Research, Modeling and Simulation, Risk &

Decision Analysis, Six Sigma and Software Engineering,

and a proven track record of delivered solutions applying

these methodologies in practice. He is also a specialist in

Business Systems Analysis & Design (Banking & Insurance)
and has delivered major business solutions across several
organizations. He has received several formal awards and
published a number of written works, including a couple of
textbooks. Vojo has also been featured as a guest speaker at
several prominent conferences internationally.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

43

