
EXPLORING UNKOWN NETWORKS USING A COOPERATIVE MAS-BASED

APPROACH

Pedro Simeão Carvalho, Rosaldo J. F. Rossetti, Ana Paula Rocha, Eugénio C. Oliveira

Informatics Engineering Department, Artificial Intelligence and Computer Science Lab

Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, S/N, 4200-465 Porto, Portugal

{pedro.simeao, rossetti, arocha, eco}@fe.up.pt

ABSTRACT

This paper reports on a novel method to explore and

map an entirely unknown network using a cooperative

Multi-Agent System (MAS) to extract knowledge or

information from nodes and connections. We consider

the likely presence of obstacles, eventually making the

network disconnected. The MAS architecture is

applicable to a vast range of scenarios. Our main goal is

to discover the entire network as quickly as possible,

characterizing its nodes’ meta-structures. In this paper,

we propose a novel method that relies on agents that can

communicate to each other through simple messages,

ensuring that there is no resource sharing. The proposed

method is compared to other two non-cooperative

methods through simulation, in order to establish a basis

for comparison. Preliminary results show that our

cooperative approach produces better results than the

other two implemented and guarantees that the entire

network is explored at the end.

Keywords: network exploration, multi-agent systems,

cooperation in MAS.

1. INTRODUCTION

The motivation for this work is the need to completely

explore an a priori unknown network, defined as an

abstract set of nodes connected to each other through

edges. There is also the need to consider the presence of

“dark nodes” on the network, which are nodes that can

be neither analyzed by agents nor even crossed by them

while moving over the network (e.g. physical or abstract

obstacles, unreadable nodes, etc.)

This problem specification considers no specific

application domain and is applicable to a vast range of

scenarios, provided they can be represented as a

network. This approach might be used, for instance, in

space exploration vehicles or robots, data block

processing, navigation systems, social networks, and

generic network discovery. Thus, our main goal is to

discover the entire network as quickly as possible,

characterizing its nodes’ meta-structures and/or its

connections.

In the past years, the widely adoption of Multi-

Agent Systems (MASs) has increased in problem

solving across many areas, such as informatics,

intelligent systems and even the industrial sector. The

MAS concept allows the use of distributed computation

that can be either virtual or physical. These agents are

autonomous, share an environment through

communication and interactions, and make decisions

according to the situation (Parker 2003). This approach

is useful when processing a considerable amount of data

such as in large networks, because this exploration and

processing can be divided into small pieces and

performed by individual agents. We believe that this

idea can be used when exploring networks as well, so

they can increase the overall performance (Tan 1993).

Although there are many search algorithms used in

graphs or networks (Knuth 1997, Knuth 1998), such as

Breadth-First Search (BFS) (Bader 2006, Yoo 2005),

Depth-First Search (DFS), Dijkstra and Kruskal, they

are all thought to search for values on networks, not to

explore them. These algorithms were not thought to be

used either for very large and highly connected

networks, for the presence of obstacles or for being used

by multiple agents simultaneously. Moreover, some

algorithms do not consider the distance between nodes

or even a cost to travel through them. Thus, they cannot

be used in our scenario. There are still other algorithms

based on the Ant Colony approach (Weyns 2007, Claes

2011, Colorni 1991, Dorigo 1992) that might be

interesting to this scenario but they do not fully meet

our constraints.

We propose a novel method using a MAS

architecture to explore a network, where agents can

only communicate between them using simple

messages, so as to share information and to accomplish

the entire discovery. This method guarantees almost full

isolation of the agents and no resource sharing. These

agents do not need to negotiate, so they are naturally

fault safe considering the overall process.

To prove the usefulness of this method, we had

developed a simulation with two other methods as a

basis for comparison. The application domain for this

simulation was the discovery of a new planet by space

vehicles of different types. We implemented three types

of agents, each of them with a different method

(random, non-cooperative and cooperative). The

comparison was made using the full exploration mean

time for each agent type.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

333

The remainder of this paper is structured as

follows. Section 2 discusses on the proposed approach,

where we present the problem formalization and our

solution method. In Section 3, preliminary results are

presented and analyzed. Related work on network

exploration are presented in Section 4, whereas in

Section 5 we draw conclusions about the proposed

method.

2. PROPOSTED APPROACH

The basis for the cooperative discovery approach

proposed in this paper is the use of altruistic agents that

work together to discover all the network.

The core for this agents is the A* algorithm, whose

premises rely on agents featuring two sets of node

identifiers. These sets contain the nodes that the agent

wishes to explore (SNwish) and those it has already

explored (SNexplored). At the beginning, both SNwish and

SNexplored are empty. This is the only information that an

agent needs to store in its memory. Each agent has

memory and only keeps knowledge of its experience

and history; thus, despite what it actually knows, an

agent is unaware of the remaining network and of what

other agents know. Therefore, each agent is independent

from other agents, which guarantees that there is no

memory/resource sharing and no breaking points all

over its activity.

Since an agent is isolated, as mentioned before, it

can only send and receive messages to and from other

agents. These messages can be directed to one agent in

particular, or be broadcast across the network to all

other agents. Thus, there must exist a messaging service

to provide this requirement. There are only three types

of messages that the agents can send:

1. Inform all other agents that it is visiting one

node (Messageinform); this is a broadcast

message;

2. Ask all agents what is the content of their

SNwish set (Messageask-help); this is a broadcast

message;

3. Reply to a specific agent that previously has

sent Messageask-help the content of the SNwish set

(Messageresponse-help).

 These messages will be used on specific situations

and will be explained with the algorithm. Each agent

has its own mail box.

The visibility of each agent on each node is limited

to the node itself and to the node’s adjacencies, which

means that the sole information it can have are nodes’

identifier and whether all connected nodes are dark

nodes or not. That means that an agent can “see” which

connected nodes can be explored prior to moving to

them. This is particularly useful, e.g. when an agent is

exploring a map and there is a wall on his path.

Figure 1 shows the state diagram for this method,

representing an algorithm overview. More specifically,

at each step, an agent does the following (considering

that the agent is inside a node):

1. Read mail box and process all messages

(explained ahead);

2. Extracts the needed node information;

3. Sends a broadcast message to all other agents

(Messageinform) saying that the node being

analyzed is already explored, so other agents

can remove this node from theirs SNwish, if it

exists, and add it to SNexplored;

4. Adds that node identifier to SNexplored;

5. From the neighbor nodes, chooses the ones that

are not dark nodes, and adds them to SNwish, if

not present in SNexplored;

6. If SNwish is not empty, chooses the nearest

node from SNwish (if there are more than one,

use random choice) and goes to it (then, return

to step 2);

7. If SNwish is empty, sends a broadcast message

to all other agents (Messageask-help), asking

them to send their SNwish contents, so that it

can have new nodes to explore.

Figure 1: Agent State Diagram

There is no defined algorithm to move across

nodes; one can use any heuristics, depending on the

problem. When moving between nodes, it executes

steps 2, 3 and 4. Thus, the agent maintains its goal and

builds on the work. Step 6 can be performed using a

heuristic utility that tries to maximize any goal.

However, this is optional.

The mail box reading process uses the following

rules, according to the message received:

 If Messageinform: reads the node identifier from

the message. Removes that node from SNwish,

if exists. Add that node to SNexplored;

 If Messageask-help: sends the content of

Messagewish to the agent that sent this message;

 If Messageresponse-help: copy the received nodes

identifiers to SNwish.

When SNwish is empty and there is no response for

Messageask-help (Messageresponse-help messages), the work

is done. That means there is no known nodes to further

explore, and the job is complete.

This method guarantees that the entire network is

discovered, because each agent contributes, at each step,

to this process. Despite these agents are isolated and do

not explicitly share information about their knowledge,

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

334

they can guarantee, as a whole, that the network is fully

explored. At an earlier stage, each agent tries to explore

all the nodes that are in their SNwish set; later on, when

their job queue is empty, they try to collaborate with

other agents and do their work.

Each agent is independent and acts by itself, so

there is no critical point in the whole process (i.e., a

coordinator base) - the exploration is just cooperative,

and there is no need to have a centralized coordinator.

That means there are no breaking points in the

exploration, which makes them naturally fault safe and

act as reactive agents. In other words, if one agent fails,

the full exploration is not compromised. According to

Stan Franklin and Art Graesser, these agents are

autonomous, goal-oriented, temporally continuous and

communicative (Graesser 1996).

3. PRELIMINARY RESULTS AND

DISCUSSION

To test the proposed method, we developed a simulated

case study, using the REPAST1 simulation framework.

The chosen scenario was the exploration of an unknown

planet by some space rovers (space exploration

vehicles/robots).

3.1. Simulation setup

The planet surface was represented in a 2D

perspective, using the torus concept. The surface had

many obstacles, representing the “dark nodes”. Each

node (position), represented by the coordinate pair (X,

Y), was connected to the closest eight near cells (degree

equals 8) using the Moore’s neighborhood concept.

There was a starting point, called “base”, where all the

robots were at the beginning of the simulation, and 250

obstacle points (representing walls or rocks that the

robot cannot cross), distributed in different forms, in

order to provide a complete experience. Figure 2 depicts

the map (size was 50x50) used for this experiment.

Figure 2: map with obstacles (brown points) and one

base (yellow square)

In order to establish a basis for comparison of the

proposed method, we developed three types of agents:

random agents (AR), non-cooperative (selfish) agents

(ANC) and cooperative (altruistic) agents (AC).

1 http://repast.sourceforge.net

AR agents, at each iteration, choose the next node

randomly from the connected nodes. They have no

knowledge or memory. This is the simplest agent.

ANC agents use pre-determined blocks to explore

(areas), previously calculated, and they follow it,

avoiding obstacles when found. Although the division

of this scenario (network) in blocks is based on the map

size, this division can be done by other heuristic that do

not need that information. Moreover, the block-division

algorithm does not know the map content, either. The

reason for choosing this algorithm was its simplicity to

be implemented; nonetheless, it could be any other

algorithm as long as it is non-cooperative-based.

The third type of agent, AC, uses the methodology

presented in this paper, whose performance we want to

compare with the former two.

At each simulation step (‘tick’ in REPAST

framework), the order of execution of each agent was

random. In order to compare all agents, we measured

the number of explored positions on the map over time

(ticks) for each agent type.

We did seven tests, with 10, 15, 20, 25, 30, 35 and

40 agents of each type. For statistical significance, we

run each experiment 160 times; the average of the

ending time was calculated, and the less (lower values)

the better.

3.2. Results and Discussion

In some of our tests, our AR (random) got results over

7000 ticks in all rounds, so it will not be considered in

the analysis. This happens because this map size is too

big for this number of agents, so they need more time to

explore everything.

Table 1 and Table 2 show the results obtained in

the experiments.

Table 1: Execution ticks averages

Nr. of Agents AR ANC AC

10 N/A 878.98 484.16

15 N/A 665.64 408.56

20 5733.76 537.66 412.18

25 4132.44 440.61 413.36

30 3948.95 479.74 371.99

35 3306.01 425.40 388.91

40 3038.31 425.30 386.26

In Table 1 we present the ticks average of

complete exploration for all the algorithms. As

expected, AR gets better as there are more agents to

explore this network. However, those results are much

higher than those corresponding to ANC and AC. AC got

in all tests always a better result than ANC.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

335

Figure 3: Execution ticks average for ANC (blue line)

and AC (green line), with confidence range level of

95%.

Table 1 also shows that the performance obtained

in the AC method has a low variance. In other words,

the difference between the best and worst value for ANC

was 453.68 ticks and for AC was just 112.6 ticks.

Table 2 shows the precision of the mean obtained

in Table 1, with a confidence level of 95%, calculated

with equation 1 for experimental results (JCGM 2008,

Carvalho, et al. 2012, Simões 2008). Figure 3 shows the

execution tick average for ANC and AC, for all

experiments, with precision range indicated on Table 2.

𝜎𝑚(95%) = 2𝜎𝑚 = 2
𝜎

√𝑁
≈ 2√

∑(𝑥𝑖−�̅�)
2

𝑛(𝑛−1)
 (1)

Table 2: Standard Deviation of the Mean (confidence

level of 95%) in ticks and corresponding percentages.

Nr. of Agents AR ANC AC

10 N/A
9.92

(1.1%)

15.97

(3.3%)

15 N/A
12.61

(1.9%)

16.76

(4.1%)

20
604.01

(10.5%)

10.01

(1.9%)

18.07

(4.4%)

25
304.80

(7.4%)

5.23

(1.2%)

17.87

(4.3%)

30
382.79

(9.7%)

13.07

(2.7%)

13.55

(3.6%)

35
289.04

(8.7%)

5.61

(1.3%)

15.96

(4.1%)

40
364.30

(12.0%)

7.12

(1.7%)

17.09

(4.4%)

As shown in Table 2, the confidence level for the

mean of the AC method is around 4%, which represents

a good precision value. Applying the range of �̅� ±
𝜎𝑚(95%) for all results, we can prove that AC is still

always better (lower) than ANC.

Figure 4 and Figure 5 show two simulation

executions, indicating the number of explored positions

vs. tick time, for each type of agent. We can see that the

evolution of the methods are different. AC proves to be

linear through time, dealing well with the obstacles

found.

Figure 4: Execution example with 10 agents. Explored

nodes vs. ticks. Blue line - ANC; green line - AC.

Figure 5: Execution example for 20 agents. Explored

nodes vs. ticks. Red line - AR; blue line - ANC; green

line - AC.

These results shows that our proposed method is

always better than the other two used for comparison.

This happens in result for the existence of dark nodes

inside the network, which oblige agents to cope with

them. In these experiments, our network has a lot of

combinations of dark nodes (horizontal, vertical and

diagonal walls, “S-shapped” walls and isolated

obstacles). Although we can use some simple and

reactive obstacle avoidance algorithm such as Bug1 or

Bug2 (Ribeiro 2005, Stepanov 1990, V. a. Lumelsky

1990, Choset 2005), they still have to cope with them,

so agents will have to overcome these obstacles. In our

experiment, ANC had predefined areas to explore;

sometimes, agents needed to abandon their “working

area” to avoid some obstacles, which proves to be a

high cost to the overall exploration process.

Figure 6 shows the states evolution of our AC in a

simulation with 40 agents, as defined in Figure 1. In the

initial phase there are more agents exploring than

moving. In the middle of the execution, search and

moving states are equal and then, when the network

starts to be fully explored (approximately 90% at 100

ticks), all agents start to move and request points. That

means only approximately 10% of the network is still

not explored and it consumes almost the same time to

explore it as in the first 90%. This difference is a result

of the traveling time of agents to explore some missing

points across the network. Figure 7 can be used to check

the evolution of this experience.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

336

Figure 6: Collaborative agents’ state for an execution

example with 40 agents. IDLE - red line; SEARCH -

blue line; MOVE - green line; REQUEST POINTS -

dark line.

Figure 7: Execution time with 40 AC (green line)

The fact that agents AC do not need to negotiate

between them has the consequence that there is no need

for a synchronizing phase. Even without sharing

information about the network, all agents proved

effective when coping (on their own only) with

unpredictable obstacles during exploration.

4. RELATED WORK

Network exploration and network search in computer

science and mathematics is not a recent topic. There are

many algorithms that try to optimize the searching

mechanism on a network, to find the best path between

two nodes or even to explore its metadata (Leiserson

2001). There are also other approaches based on the Ant

Colony concept that use the environment as a

communication medium, to perform a cooperative

exploration. Furthermore, some authors have used

parallel processing in their algorithms, as well as MAS

architectures to perform their tasks using different

approaches such as decentralized search (Zhang 2005).

However, to the best of the authors’ knowledge

there are no such methods or algorithms that meet all

constraints for the type of networks here presented.

Consequently, this work was not based on any

previously published works.

5. CONCLUSIONS

In this paper, we presented a novel method that

performs a cooperative exploration of an unknown

network with obstacles using a MAS-based approach, in

order to explore it as quickly as possible. Our concept

relied on isolated and altruist agents that communicate

through simple messages in order to exchange some

information.

We performed a basis for comparison with other

two non-cooperative methods through simulation. Our

method always outperformed the non-cooperative ones

whenever dark nodes were present on the network. The

precision of our results was about 4%, for a confidence

level of 95%. Thus, results show that our agents have a

higher performance when there are a few agents running

the exploration algorithm for a given network,

compared with the other methods. That means

cooperative agents can produce better results when

dealing with large networks. This is also true even

though a dark node is an articulation point in the

network, for instance, when the associated graph

representing the network will be disconnected.

As our agents will explore the whole bunch of

nodes within range, we only need to ensure that the

entering points are normally distributed over the

network to guarantee total coverage. Moreover, our

agents are kept isolated, with no resource sharing, and

there is no need of negotiation, so there is no fault point

in the whole process. Also, they do not try to foresee the

future, so they are very reactive according to the

environment. Their behavior relies on the information

that they have at that very moment.

Further improvements may include, for instance,

developing better communication and path calculation

algorithms, to optimize and minimize the length of the

path traveled by the agent when it finds a dark node or

needs to travel between nodes. Thus, the future goal is

to minimize the wasting time in any journey and use it

for discovery purposes.

Depending on the scenarios, other improvements

or modifications can be made, such as the existence of a

“refresh” time of the nodes or the need for a specific

agent to analyze a nodes’ set. Our method is flexible in

many aspects in order to adapt to existing constraints.

The knowledge of each agent is relatively

exclusive to its execution but, as a whole, agents learn

and behave in an implicit way. This method guarantees

that the entire network is explored to the end, despite

the network size or characteristics. Thus, this method

can be applied either to extract nodes metadata or to

analyze their connections using a cooperative MAS

approach.

ACKNOWLEDGMENTS

The authors are indebted to José Pedro Silva for helpful

discussions about some of the ideas presented in this

work at its earlier stages.

REFERENCES

Bader, D.A., Madduri, K., 2006. Designing

multithreaded algorithms for breadth-first search

and st-connectivity on the Cray MTA-2.

Proceedings of the 35th International Conference of

Parallel Processing (ICPP 2006), pp. 523--530,

August, Columbus (Ohio, U.S.A).

Carvalho, P.S., Sousa, A.S., Paiva, J., Ferreira, A. 2012.

Ensino Experimental das Ciências. Um guia para

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

337

professores do ensino secundário. Física e Química.

Porto: Editorial U.Porto.

Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.,

Burgard, W., Kavraki, L.E., Thrun, S., 2005.

Principles of robot motion: theory, algorithms, and

implementations. Cambridge: The MIT press.

Claes, R., Holvoet, T., Weyns, D., 2011. A

decentralized approach for anticipatory vehicle

routing using delegate multiagent systems. IEEE

Transactions on Intelligent Transportation Systems.

12 (2), 364--373.

Colorni, A., Dorigo, M., Maniezzo, V., 1991.

Distributed optimization by ant colonies.

Proceedings of the First European Conference on

Artificial Life, pp. 134--142 (Paris, France).

Dorigo, M., 1992. Optimization, learning and natural

algorithms. Thesis (PhD). Politecnico di Milano

(Italy).

Graesser, A., Franklin S., 1996. Is it an Agent, or just a

Program?: A Taxonomy for Autonomous Agents.

Proceedings of the 3rd International Workshop on

Agent Theories, Architectures, and Languages, pp.

21-35, Springer-Verlag London (UK).

JCGM, 2008. Evaluation of measurement data - Guide

to the expression of uncertainty in measurement.

Sèvres: Bureau Internationale des Poids et Mésures.

Knuth, D.E., 1997. The Art Of Computer Programming.

3. Vol. 1. Boston: Addison-Wesley.

Knuth, D.E., 1998. The Art of Computer Programming.

Vol. 3. Harlow: Addison-Wesley.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.,

2001. Introduction to Algorithms. Cambridge: The

MIT press.

Lumelsky, V.J., Skewis, T., 1990. Incorporating range

sensing in the robot navigation function. IEEE

Transactions on Systems, Man and Cybernetics, 20

(5), 1058-1069.

Parker, D.C., Manson, S., Janssen, M.A., Hoffmann,

M.J., Deadman, P., 2003. Multi-agent systems for

the simulation of land-use and land-cover change: a

review. Annals of the Association of American

Geographers, 93 (2): 314--337.

Ribeiro, M.I., 2005. Obstacle avoidance. Instituto de

Sistemas e Robótica, Instituto Superior Técnico.

Simões, J.A.M., Castanho, M.A.R.B., Lampreia, I.M.S.,

Santos, F.J.V., Castro, C.A.N., Norberto, M.F.,

Pamplona, M.T., Mira, L., Meireles, M.M., 2008.

Guia do Laboratório de Química e Bioquímica.

Lisboa: Lidel.

Lumelsky V.J., Stepanov, A., 1987. Path-planning

srategies for a point mobile automaton amidst

unknown obstacles of arbitrary shape. Algorithmica,

2, 403-430, Springer.

Tan, M., 1993. Multi-agent reinforcement learning:

Independent vs. cooperative agents. Proceedings of

the 10th international conference on machine

learning, vol. 337, pp. 330-337, Amherst

(Massachusetts, U.S.A.).

Weyns, D., Holvoet, T., Helleboogh, A., 2007.

Anticipatory vehicle routing using delegate multi-

agent systems. Proceedings of the Intelligent

Transportation Systems Conference (ITSC 2007.

IEEE), pp. 87--93. September. 30-October 3, Seattle

(Washington, U.S.A.)

Yoo, A., Chow, E., Henderson, K., McLendon, W.,

Hendrickson, B., Catalyurek, U., 2005. A scalable

distributed parallel breadth-first search algorithm on

BlueGene/L. Proceedings of the ACM/IEEE

Conference on Superconductiong, pp. 25--25,

Noverber 12-18, Seattle (Washington, U.S.A.).

Zhang, J., Ackerman, M.S., 2005. Searching for

expertise in social networks: a simulation of

potential strategies. Proceedings of the

Iinternational ACM SIGGROUP Conference on

Supporting group work (ACM 2005), pp. 71--80,

Sanibel Island (Florida, U.S.A.).

AUTHORS BIOGRAPHY

Pedro Simeão Carvalho is graduated in Informatics

and Computing Engineering where he took his master

degree; he is now working at software developer

TLANTIC SI enterprise, in mobile systems department.

Rosaldo J. F. Rossetti is an assistant professor at

Faculty of Engineering, University of Porto, and

member of the Artificial Intelligence and Computer

Science Laboratory.

Ana Paula Rocha is an assistant professor at Faculty of

Engineering, University of Porto, and member of the

Artificial Intelligence and Computer Science

Laboratory.

Eugénio C. Oliveira is a full professor at Faculty of

Engineering, University of Porto. Prof. Oliveira is the

head of the Artificial Intelligence and Computer

Science Laboratory, and his research interests are

mainly in the field of Multi-Agent Systems and their

applications

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

338

