
EXPLORING UNKOWN NETWORKS USING A COOPERATIVE MAS-BASED 

APPROACH 
 

 

Pedro Simeão Carvalho, Rosaldo J. F. Rossetti, Ana Paula Rocha, Eugénio C. Oliveira 

 

 

Informatics Engineering Department, Artificial Intelligence and Computer Science Lab 

Faculty of Engineering, University of Porto 

Rua Dr. Roberto Frias, S/N, 4200-465 Porto, Portugal 

 

{pedro.simeao, rossetti, arocha, eco}@fe.up.pt 

 

 

 

ABSTRACT 

This paper reports on a novel method to explore and 

map an entirely unknown network using a cooperative 

Multi-Agent System (MAS) to extract knowledge or 

information from nodes and connections. We consider 

the likely presence of obstacles, eventually making the 

network disconnected. The MAS architecture is 

applicable to a vast range of scenarios. Our main goal is 

to discover the entire network as quickly as possible, 

characterizing its nodes’ meta-structures. In this paper, 

we propose a novel method that relies on agents that can 

communicate to each other through simple messages, 

ensuring that there is no resource sharing. The proposed 

method is compared to other two non-cooperative 

methods through simulation, in order to establish a basis 

for comparison. Preliminary results show that our 

cooperative approach produces better results than the 

other two implemented and guarantees that the entire 

network is explored at the end. 

 

Keywords: network exploration, multi-agent systems, 

cooperation in MAS. 

 

1. INTRODUCTION 

The motivation for this work is the need to completely 

explore an a priori unknown network, defined as an 

abstract set of nodes connected to each other through 

edges. There is also the need to consider the presence of 

“dark nodes” on the network, which are nodes that can 

be neither analyzed by agents nor even crossed by them 

while moving over the network (e.g. physical or abstract 

obstacles, unreadable nodes, etc.) 

This problem specification considers no specific 

application domain and is applicable to a vast range of 

scenarios, provided they can be represented as a 

network.  This approach might be used, for instance, in 

space exploration vehicles or robots, data block 

processing, navigation systems, social networks, and 

generic network discovery. Thus, our main goal is to 

discover the entire network as quickly as possible, 

characterizing its nodes’ meta-structures and/or its 

connections. 

In the past years, the widely adoption of Multi-

Agent Systems (MASs) has increased in problem 

solving across many areas, such as informatics, 

intelligent systems and even the industrial sector. The 

MAS concept allows the use of distributed computation 

that can be either virtual or physical. These agents are 

autonomous, share an environment through 

communication and interactions, and make decisions 

according to the situation (Parker 2003). This approach 

is useful when processing a considerable amount of data 

such as in large networks, because this exploration and 

processing can be divided into small pieces and 

performed by individual agents. We believe that this 

idea can be used when exploring networks as well, so 

they can increase the overall performance (Tan 1993). 

Although there are many search algorithms used in 

graphs or networks (Knuth 1997, Knuth 1998), such as 

Breadth-First Search (BFS) (Bader 2006, Yoo 2005), 

Depth-First Search (DFS), Dijkstra and Kruskal, they 

are all thought to search for values on networks, not to 

explore them. These algorithms were not thought to be 

used either for very large and highly connected 

networks, for the presence of obstacles or for being used 

by multiple agents simultaneously. Moreover, some 

algorithms do not consider the distance between nodes 

or even a cost to travel through them. Thus, they cannot 

be used in our scenario. There are still other algorithms 

based on the Ant Colony approach (Weyns 2007, Claes 

2011, Colorni 1991, Dorigo 1992) that might be 

interesting to this scenario but they do not fully meet 

our constraints. 

We propose a novel method using a MAS 

architecture to explore a network, where agents can 

only communicate between them using simple 

messages, so as to share information and to accomplish 

the entire discovery. This method guarantees almost full 

isolation of the agents and no resource sharing. These 

agents do not need to negotiate, so they are naturally 

fault safe considering the overall process. 

To prove the usefulness of this method, we had 

developed a simulation with two other methods as a 

basis for comparison. The application domain for this 

simulation was the discovery of a new planet by space 

vehicles of different types. We implemented three types 

of agents, each of them with a different method 

(random, non-cooperative and cooperative). The 

comparison was made using the full exploration mean 

time for each agent type. 
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The remainder of this paper is structured as 

follows. Section 2 discusses on the proposed approach, 

where we present the problem formalization and our 

solution method. In Section 3, preliminary results are 

presented and analyzed. Related work on network 

exploration are presented in Section 4, whereas in 

Section 5 we draw conclusions about the proposed 

method. 

 

2. PROPOSTED APPROACH 

The basis for the cooperative discovery approach 

proposed in this paper is the use of altruistic agents that 

work together to discover all the network. 

The core for this agents is the A* algorithm, whose 

premises rely on agents featuring two sets of node 

identifiers. These sets contain the nodes that the agent 

wishes to explore (SNwish) and those it has already 

explored (SNexplored). At the beginning, both SNwish and 

SNexplored are empty. This is the only information that an 

agent needs to store in its memory. Each agent has 

memory and only keeps knowledge of its experience 

and history; thus, despite what it actually knows, an 

agent is unaware of the remaining network and of what 

other agents know. Therefore, each agent is independent 

from other agents, which guarantees that there is no 

memory/resource sharing and no breaking points all 

over its activity. 

Since an agent is isolated, as mentioned before, it 

can only send and receive messages to and from other 

agents. These messages can be directed to one agent in 

particular, or be broadcast across the network to all 

other agents. Thus, there must exist a messaging service 

to provide this requirement. There are only three types 

of messages that the agents can send: 

 

1. Inform all other agents that it is visiting one 

node (Messageinform); this is a broadcast 

message; 

2. Ask all agents what is the content of their 

SNwish set (Messageask-help); this is a broadcast 

message; 

3. Reply to a specific agent that previously has 

sent Messageask-help the content of the SNwish set 

(Messageresponse-help). 

 

 These messages will be used on specific situations 

and will be explained with the algorithm. Each agent 

has its own mail box. 

The visibility of each agent on each node is limited 

to the node itself and to the node’s adjacencies, which 

means that the sole information it can have are nodes’ 

identifier and whether all connected nodes are dark 

nodes or not. That means that an agent can “see” which 

connected nodes can be explored prior to moving to 

them. This is particularly useful, e.g. when an agent is 

exploring a map and there is a wall on his path. 

Figure 1 shows the state diagram for this method, 

representing an algorithm overview. More specifically, 

at each step, an agent does the following (considering 

that the agent is inside a node): 

 

1. Read mail box and process all messages 

(explained ahead); 

2. Extracts the needed node information; 

3. Sends a broadcast message to all other agents 

(Messageinform) saying that the node being 

analyzed is already explored, so other agents 

can remove this node from theirs SNwish, if it 

exists, and add it to SNexplored; 

4. Adds that node identifier to SNexplored; 

5. From the neighbor nodes, chooses the ones that 

are not dark nodes, and adds them to SNwish, if 

not present in SNexplored; 

6. If SNwish is not empty, chooses the nearest 

node from SNwish (if there are more than one, 

use random choice) and goes to it (then, return 

to step 2); 

7. If SNwish is empty, sends a broadcast message 

to all other agents (Messageask-help), asking 

them to send their SNwish contents, so that it 

can have new nodes to explore. 

 

 
Figure 1: Agent State Diagram 

 

There is no defined algorithm to move across 

nodes; one can use any heuristics, depending on the 

problem. When moving between nodes, it executes 

steps 2, 3 and 4. Thus, the agent maintains its goal and 

builds on the work. Step 6 can be performed using a 

heuristic utility that tries to maximize any goal. 

However, this is optional. 

The mail box reading process uses the following 

rules, according to the message received: 

 

 If Messageinform: reads the node identifier from 

the message. Removes that node from SNwish, 

if exists. Add that node to SNexplored; 

 If Messageask-help: sends the content of 

Messagewish to the agent that sent this message; 

 If Messageresponse-help: copy the received nodes 

identifiers to SNwish. 

 

When SNwish is empty and there is no response for 

Messageask-help (Messageresponse-help messages), the work 

is done. That means there is no known nodes to further 

explore, and the job is complete. 

This method guarantees that the entire network is 

discovered, because each agent contributes, at each step, 

to this process. Despite these agents are isolated and do 

not explicitly share information about their knowledge, 
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they can guarantee, as a whole, that the network is fully 

explored. At an earlier stage, each agent tries to explore 

all the nodes that are in their SNwish set; later on, when 

their job queue is empty, they try to collaborate with 

other agents and do their work. 

Each agent is independent and acts by itself, so 

there is no critical point in the whole process (i.e., a 

coordinator base) - the exploration is just cooperative, 

and there is no need to have a centralized coordinator. 

That means there are no breaking points in the 

exploration, which makes them naturally fault safe and 

act as reactive agents.  In other words, if one agent fails, 

the full exploration is not compromised. According to 

Stan Franklin and Art Graesser, these agents are 

autonomous, goal-oriented, temporally continuous and 

communicative (Graesser 1996). 

 

3. PRELIMINARY RESULTS AND 

DISCUSSION 

To test the proposed method, we developed a simulated 

case study, using the REPAST1 simulation framework. 

The chosen scenario was the exploration of an unknown 

planet by some space rovers (space exploration 

vehicles/robots). 

 

3.1. Simulation setup 

The planet surface was represented in a 2D 

perspective, using the torus concept. The surface had 

many obstacles, representing the “dark nodes”. Each 

node (position), represented by the coordinate pair (X, 

Y), was connected to the closest eight near cells (degree 

equals 8) using the Moore’s neighborhood concept. 

There was a starting point, called “base”, where all the 

robots were at the beginning of the simulation, and 250 

obstacle points (representing walls or rocks that the 

robot cannot cross), distributed in different forms, in 

order to provide a complete experience. Figure 2 depicts 

the map (size was 50x50) used for this experiment.  

 

 
Figure 2: map with obstacles (brown points) and one 

base (yellow square) 

 

In order to establish a basis for comparison of the 

proposed method, we developed three types of agents: 

random agents (AR), non-cooperative (selfish) agents 

(ANC) and cooperative (altruistic) agents (AC). 

1 http://repast.sourceforge.net 

AR agents, at each iteration, choose the next node 

randomly from the connected nodes. They have no 

knowledge or memory. This is the simplest agent. 

ANC agents use pre-determined blocks to explore 

(areas), previously calculated, and they follow it, 

avoiding obstacles when found. Although the division 

of this scenario (network) in blocks is based on the map 

size, this division can be done by other heuristic that do 

not need that information. Moreover, the block-division 

algorithm does not know the map content, either. The 

reason for choosing this algorithm was its simplicity to 

be implemented; nonetheless, it could be any other 

algorithm as long as it is non-cooperative-based. 

The third type of agent, AC, uses the methodology 

presented in this paper, whose performance we want to 

compare with the former two.  

At each simulation step (‘tick’ in REPAST 

framework), the order of execution of each agent was 

random. In order to compare all agents, we measured 

the number of explored positions on the map over time 

(ticks) for each agent type.  

We did seven tests, with 10, 15, 20, 25, 30, 35 and 

40 agents of each type. For statistical significance, we 

run each experiment 160 times; the average of the 

ending time was calculated, and the less (lower values) 

the better. 

 

3.2. Results and Discussion 

In some of our tests, our AR (random) got results over 

7000 ticks in all rounds, so it will not be considered in 

the analysis. This happens because this map size is too 

big for this number of agents, so they need more time to 

explore everything. 

Table 1 and Table 2 show the results obtained in 

the experiments. 

 

Table 1: Execution ticks averages 

Nr. of Agents AR ANC AC 

10 N/A 878.98 484.16 

15 N/A 665.64 408.56 

20 5733.76 537.66 412.18 

25 4132.44 440.61 413.36 

30 3948.95 479.74 371.99 

35 3306.01 425.40 388.91 

40 3038.31 425.30 386.26 

 

In Table 1 we present the ticks average of 

complete exploration for all the algorithms. As 

expected, AR gets better as there are more agents to 

explore this network. However, those results are much 

higher than those corresponding to ANC and AC. AC got 

in all tests always a better result than ANC.  
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Figure 3: Execution ticks average for ANC (blue line) 

and AC (green line), with confidence range level of 

95%. 

 

Table 1 also shows that the performance obtained 

in the AC method has a low variance. In other words, 

the difference between the best and worst value for ANC 

was 453.68 ticks and for AC was just 112.6 ticks. 

Table 2 shows the precision of the mean obtained 

in Table 1, with a confidence level of 95%, calculated 

with equation 1 for experimental results (JCGM 2008, 

Carvalho, et al. 2012, Simões 2008). Figure 3 shows the 

execution tick average for ANC and AC, for all 

experiments, with precision range indicated on Table 2. 

 

𝜎𝑚(95%) = 2𝜎𝑚 = 2
𝜎

√𝑁
≈ 2√

∑(𝑥𝑖−�̅�)
2

𝑛(𝑛−1)
  (1) 

 

 

Table 2: Standard Deviation of the Mean (confidence 

level of 95%) in ticks and corresponding percentages. 

Nr. of Agents AR ANC AC 

10 N/A 
9.92 

(1.1%) 

15.97 

(3.3%) 

15 N/A 
12.61 

(1.9%) 

16.76 

(4.1%) 

20 
604.01 

(10.5%) 

10.01 

(1.9%) 

18.07 

(4.4%) 

25 
304.80 

(7.4%) 

5.23 

(1.2%) 

17.87 

(4.3%) 

30 
382.79 

(9.7%) 

13.07 

(2.7%) 

13.55 

(3.6%) 

35 
289.04 

(8.7%) 

5.61 

(1.3%) 

15.96 

(4.1%) 

40 
364.30 

(12.0%) 

7.12 

(1.7%) 

17.09 

(4.4%) 

 

As shown in Table 2, the confidence level for the 

mean of the AC method is around 4%, which represents 

a good precision value. Applying the range of �̅� ±
𝜎𝑚(95%) for all results, we can prove that AC is still 

always better (lower) than ANC. 

Figure 4 and Figure 5 show two simulation 

executions, indicating the number of explored positions 

vs. tick time, for each type of agent. We can see that the 

evolution of the methods are different. AC proves to be 

linear through time, dealing well with the obstacles 

found. 

 

 
Figure 4: Execution example with 10 agents. Explored 

nodes vs. ticks. Blue line - ANC; green line - AC. 

 

 
Figure 5: Execution example for 20 agents. Explored 

nodes vs. ticks. Red line - AR; blue line - ANC; green 

line - AC. 

 

These results shows that our proposed method is 

always better than the other two used for comparison. 

This happens in result for the existence of dark nodes 

inside the network, which oblige agents to cope with 

them. In these experiments, our network has a lot of 

combinations of dark nodes (horizontal, vertical and 

diagonal walls, “S-shapped” walls and isolated 

obstacles). Although we can use some simple and 

reactive obstacle avoidance algorithm such as Bug1 or 

Bug2 (Ribeiro 2005, Stepanov 1990, V. a. Lumelsky 

1990, Choset 2005), they still have to cope with them, 

so agents will have to overcome these obstacles. In our 

experiment, ANC had predefined areas to explore; 

sometimes, agents needed to abandon their “working 

area” to avoid some obstacles, which proves to be a 

high cost to the overall exploration process. 

Figure 6 shows the states evolution of our AC in a 

simulation with 40 agents, as defined in Figure 1. In the 

initial phase there are more agents exploring than 

moving. In the middle of the execution, search and 

moving states are equal and then, when the network 

starts to be fully explored (approximately 90% at 100 

ticks), all agents start to move and request points. That 

means only approximately 10% of the network is still 

not explored and it consumes almost the same time to 

explore it as in the first 90%. This difference is a result 

of the traveling time of agents to explore some missing 

points across the network. Figure 7 can be used to check 

the evolution of this experience. 

 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

336



 
Figure 6: Collaborative agents’ state for an execution 

example with 40 agents. IDLE - red line; SEARCH - 

blue line; MOVE - green line; REQUEST POINTS - 

dark line. 

 

 
Figure 7: Execution time with 40 AC (green line) 

 

The fact that agents AC do not need to negotiate 

between them has the consequence that there is no need 

for a synchronizing phase. Even without sharing 

information about the network, all agents proved 

effective when coping (on their own only) with 

unpredictable obstacles during exploration.  

 

4. RELATED WORK 

Network exploration and network search in computer 

science and mathematics is not a recent topic. There are 

many algorithms that try to optimize the searching 

mechanism on a network, to find the best path between 

two nodes or even to explore its metadata (Leiserson 

2001). There are also other approaches based on the Ant 

Colony concept that use the environment as a 

communication medium, to perform a cooperative 

exploration. Furthermore, some authors have used 

parallel processing in their algorithms, as well as MAS 

architectures to perform their tasks using different 

approaches such as decentralized search (Zhang 2005). 

However, to the best of the authors’ knowledge 

there are no such methods or algorithms that meet all 

constraints for the type of networks here presented. 

Consequently, this work was not based on any 

previously published works.  

 

5. CONCLUSIONS 

In this paper, we presented a novel method that 

performs a cooperative exploration of an unknown 

network with obstacles using a MAS-based approach, in 

order to explore it as quickly as possible. Our concept 

relied on isolated and altruist agents that communicate 

through simple messages in order to exchange some 

information.  

We performed a basis for comparison with other 

two non-cooperative methods through simulation.  Our 

method always outperformed the non-cooperative ones 

whenever dark nodes were present on the network. The 

precision of our results was about 4%, for a confidence 

level of 95%. Thus, results show that our agents have a 

higher performance when there are a few agents running 

the exploration algorithm for a given network, 

compared with the other methods. That means 

cooperative agents can produce better results when 

dealing with large networks. This is also true even 

though a dark node is an articulation point in the 

network, for instance, when the associated graph 

representing the network will be disconnected.  

As our agents will explore the whole bunch of 

nodes within range, we only need to ensure that the 

entering points are normally distributed over the 

network to guarantee total coverage. Moreover, our 

agents are kept isolated, with no resource sharing, and 

there is no need of negotiation, so there is no fault point 

in the whole process. Also, they do not try to foresee the 

future, so they are very reactive according to the 

environment. Their behavior relies on the information 

that they have at that very moment. 

Further improvements may include, for instance, 

developing better communication and path calculation 

algorithms, to optimize and minimize the length of the 

path traveled by the agent when it finds a dark node or 

needs to travel between nodes. Thus, the future goal is 

to minimize the wasting time in any journey and use it 

for discovery purposes. 

Depending on the scenarios, other improvements 

or modifications can be made, such as the existence of a 

“refresh” time of the nodes or the need for a specific 

agent to analyze a nodes’ set. Our method is flexible in 

many aspects in order to adapt to existing constraints. 

The knowledge of each agent is relatively 

exclusive to its execution but, as a whole, agents learn 

and behave in an implicit way. This method guarantees 

that the entire network is explored to the end, despite 

the network size or characteristics. Thus, this method 

can be applied either to extract nodes metadata or to 

analyze their connections using a cooperative MAS 

approach. 
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