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ABSTRACT 

Many models and artificial intelligence methods work 

with the inputs in the form of time series. Generally, 

success of many of them strongly depends on ability to 

successfully manage input data, which often contains 

repeating similar episodes (patterns). If these patterns are 

recognized, they can be used for instance for indexing, 

prediction or compression. These operations can also be 

very useful for improving the already existing model 

performance and accuracy. Our effort is to provide a 

robust mechanism for retrieving these characteristic 

patterns from the collections that are subject of various 

distortions. The whole process of our pattern recognition 

consists of receiving the episodes, their clustering into 

the groups of similar episodes and deriving the 

representatives of each cluster. These representatives 

will be used for further indexing collections. This paper 

is focused on the last step of this process – receiving the 

representatives of concrete clusters using Dynamic Time 

Warping method. 

 

Keywords: dynamic time warping, clustering, pattern 

recognition, time series 

 

1. INTRODUCTION 

Processing and analyzing time series data is very 

important task in many domains, especially in modeling 

and simulations. In this domain, time series data is often 

used as one of simulation inputs, or can be produced as 

one of the simulation outputs. For this purpose, it is 

appropriate to be able to manage this type of data, 

e.g. describe the data nature, search in data in reasonable 

time, or to recognize characteristic patterns in collection. 

If such patterns are recognized, then they may be used 

for instance in data compression, for prediction or for 

indexing large collections. Time series analysis covers 

the methods for analysis of time series data with a focus 

on extraction of various types of information like 

statistics and other characteristics of the data. However, 

the problem arises for data collections that are a subject 

to different types of distortions, because the patterns can 

differ in time, shape or amplitude. In these cases, the 

classic methods for pattern recognition can fail.  

During time series processing, it is common that a 

time series is divided into a large amount of smaller parts 

named episodes, which are interconnected or partially 

overlapped (Keogh, Chu, Hart, and Pazzani 2004) and 

which are important for further processing. For example, 

interconnected outputs of hydrological models, data 

collections from traffic monitoring of selected stretches, 

or long time series divided by segmentation algorithm 

like Voting Experts (Kocyan, Martinovic, Podhorányi, 

and Vondrak 2012) can be mentioned. These obtained 

episodes exactly belong to a previously mentioned group 

of distorted collections, because there are no strictly 

defined rules for generating the data collection (time 

series). Our effort is to provide a robust mechanism for 

retrieving characteristic patterns just from such distorted 

time series. In our case, the obtained patterns will be used 

for further creation of an index file, which will allow 

much faster and more accurate searching for similar 

episodes in large data collections. This will be used for 

better and faster prediction in our Case-Based Reasoning 

(Aamodt and Plazza, 1994) system (Kocyan, Martinovic, 

Unucka, and Vondrak 2009). The structure of suggested 

index file is shown in Figure 1, where each of the found 

patterns will contain its own group of similar episodes in 

original data collection.   

 

  
Figure 1: Collection of Representatives Pointing to 

Locations in Time Series 

 

Then, once the most similar episodes in data collection 

will need to be found, a suitable pattern, which 

corresponds with the input sequence, will be searched 
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first. Thereafter, it is possible to search in depth in a 

group of the selected pattern or a set of patterns, which 

are similar to a found episode from the input. By this 

way, the process of searching similar episodes will be 

speed up. However, there is question how to receive the 

patterns from distorted data collection and make the 

index file. Research area aimed to finding patterns, 

pattern mining, has been studied in several fields. Pattern 

mining, or pattern recognition, is a scientific discipline 

focused on object classification into categories or classes 

(Koutroumbas and Theodoridis 2008; Hand, Smyth, and 

Mannila 2001).  

Our suggested approach is done in following 

manner. First of all, it is necessary to receive the 

particular episodes from data collection (i.e. cut the 

collection into the episodes). For instance, this can be 

done by the Voting Experts algorithm (Cohen, Adams, 

and Heeringa 2007) or by our unsupervised algorithm for 

retrieving characteristic patterns from time-warped data 

collections (Kocyan, Martinovic, Podhorányi, and 

Vondrak 2012). Once these episodes are obtained, they 

should be processed by a suitable clustering algorithm 

and divided into the clusters (Guojun, Chaoqun, and 

Jianhong 2007). Since each obtained cluster contains a 

concrete amount of similar episodes, it is suitable to 

select an appropriate representative, which would 

describe the whole cluster. Given selected representative 

is named pattern. Finding the representative of a cluster 

is defined as finding such set of representative patterns P, 

which describe episodes E inside these clusters by the 

most appropriate way. There are two basic generally 

known ways for finding representatives. The first 

approach is based on selecting one episode, which is the 

most accurate for a given cluster. The second approach is 

based on the creation of a new representative episode 

using the combination of episodes in the cluster.  

While searching the representative, it is important to 

define a mechanism for comparing two episodes. In 

common, the Euclidean distance and other common 

methods for measuring the similarity between the 

episodes can be used. However, it is possible only while 

working with the undistorted episodes of the identical 

length. In cases where we have distorted episodes of 

different lengths, we need a specific algorithm which 

respects this requirement or an algorithm which is 

immune to sequence distortions. In the paper, it is 

described the comparison of the both approaches, and the 

introduction of a new approach which combines the both 

ways for finding representatives using Dynamic time 

warping method (DTW) is presented in Section 2.  

The organization of the paper is following: DTW 

and the utilization of DTW for finding cluster 

representatives is described in Section 2 and in Section 3. 

Afterwards, in Section 4, a practical demonstration of 

proposed approach is presented. The paper is concluded 

by Section 5, in which obtained results of suggested 

approach are discussed and the future work is outlined. 

 

2. DYNAMIC TIME WARPING 

Recently, finding a signal similar to a signal generated by 

computers, which consists of accurate time cycles and 

which achieves a determined finite number of value 

levels, is a trivial problem. A main attention is focused 

more likely on the optimization of searching speed. 

A non-trivial task occurs while comparing or searching 

the signals, which are not strictly defined and which have 

various distortions in time and amplitude. As a typical 

example, we can mention measurement of functionality 

of human body (ECG, EEG) or the elements 

(precipitation, flow rates in riverbeds), in which does not 

exist an accurate timing for signal generation. Therefore, 

comparison of such episodes is significantly difficult, 

and almost excluded while using standard functions for 

similarity (distance) computation. Examples of such 

signals are presented in Figure 2. A problem of standard 

functions for similarity (distance) computation consists 

in sequential comparison of opposite elements in both 

episodes (comparison of elements with the identical 

indexes).  

DTW is a technique for finding the optimal 

matching of two warped episodes using pre-defined rules 

(Muller 2007). Essentially, it is a non-linear mapping of 

particular elements to match them in the most appropriate 

way. The output of such DTW mapping of episodes from 

Figure 2 can be seen in Figure 3. This approach was used 

for example for comparison of two voice patterns during 

an automatic recognition of voice commands (Rabiner 

1993). The main goal of DTW method is a comparison 

of two time dependent episodes X and Y, where 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛) of the length 𝑛 ∈ ℕ and 𝑌 =
(𝑦1, 𝑦2, … , 𝑦𝑚) of the length 𝑚 ∈ ℕ, and to find an 

optimal mapping of their elements. A detailed 

description of DTW including particular steps of the 

algorithm is presented in (Muller 2007). 

 

 

 

Figure 2: Standard Metrics Comparison 

 

 

Figure 3: DTW Comparison 
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3. USING DTW FOR FINDING CLUSTER 

REPRESENTATIVE 

In cases, where it is necessary to gain the most suitable 

representative of the set of similar episodes, we need to 

find an algorithm appropriate to a given domain. 

Sometimes it is possible to use simple average of 

episodes 𝑋 and 𝑌, which means that for a representative 

episode 𝑅 is valid, that: 

 

𝑅𝑖 =
𝑋𝑖+𝑌𝑖

2
, ∀𝑖 = 1, … , 𝑜, 𝑤ℎ𝑒𝑟𝑒 𝑜 = |𝑋| = |𝑌|. (1) 

 

However, this approach is not sufficient in cases, 

where we have data with distortion. Examples of such 

episodes are presented in Figure 4a and 4b. If only we 

used simple average presented in Equation 1, we would 

achieve an episode showed in Figure 4c. As we can see, 

this episode absolutely is not a representative and all the 

information about the episode course is loosed. 

As we can see from Figure 4, it is necessary to find 

a more appropriate algorithm for domains which yield to 

distortion. The algorithm should be immune to such 

distortions. This paper is focused on using DTW for 

finding a representative of set of similar, but distorted 

episodes. 

 

a) b)  

 

c) d)  

Figure 4: Sample Figure Caption 

 

3.1. Finding Representative for Episode Couples 

The approach for finding a representative of two episodes 

𝑋 and 𝑌 by finding the optimal mapping of two episodes 

using DTW was described in Section 2. In this method, 

the most important is obtained warping path 𝑝∗ =
(𝑝1, 𝑝2, … , 𝑝𝐿), which allows to find a representative. 

The approach for finding such representative is described 

in Algorithm 1. The output of presented algorithm 

applied on episodes in Figure 4 is presented in Figure 4d. 

 

Algorithm 1: Searching Representative of a Pair 

Input:  Episodes 𝑋 and 𝑌 

Output:  Representative episode 𝑅 

Steps: 

1. Compute 𝐷𝑇𝑊(𝑋, 𝑌) for episodes 𝑋 and 𝑌; obtain 

warping path 𝑝∗. 

2. Initialization: 𝑅 is a representative episode for 

episodes 𝑋 and 𝑌, 𝑞 = 1 gives a position in 𝑅,  
𝑙 = 2  gives a position in warping path 𝑝∗. 

3. Value in the first position in 𝑅 is determined as 

average of values in the first positions of episodes 𝑋 

and 𝑌, ie. 𝑟1 =
𝑥1+𝑦1

2
. 

4. if 𝑙 ≤ 𝐿 then for couple of the subsequent points of 

warping path 𝑝𝑙  and 𝑝𝑙−1 perform: 

if  (𝑝𝑙 − 𝑝𝑙−1) = (1,1) then: 

- 𝑞 = 𝑞 + 1; 

- A new 𝑟𝑞 =
𝑥𝑛𝑙

+𝑦𝑚𝑙

2
 is inserted into 𝑅;  

else if (𝑝𝑙 − 𝑝𝑙−1) = (0,1) or (1,0) then  

- no item is inserted into 𝑅; 

end if 

 𝑙 = 𝑙 + 1 

 Repeat Step 3. 

5. end if  

6. Output of the algorithm is representative episode 𝑅 

of length 𝑞. 

 

Algorithm 1 finds a representative common for two 

episodes, where both episodes have the same importance. 

It finds such episode, which is the most similar to the 

both two episodes. If it is necessary, a one of the episodes 

may be preferred by adding a weight 𝑤 ∈ (0, ∞) and by 

adjusting a computation of element 𝑟1 and 𝑟𝑞  by 

Equation 2: 

 

𝑟1 =
𝑥1∗𝑤+𝑦1

𝑤+1
, 𝑟𝑞 =

𝑥𝑛𝑙
∗𝑤+𝑦𝑚𝑙

𝑤+1
.  (2) 

 

The impact of adding a weight on achieved 

representative 𝑅 for episodes 𝑋 and 𝑌 is following: 

 𝑤 = 1: episodes are equal 

 𝑤 ∈ (1, ∞): episode 𝑋 is preferred 

 𝑤 ∈ (0,1): episode 𝑌 is preferred 

 

3.2. Finding Representative for Set of Episodes 

Algorithm 1 can be applied only on two episodes. 

However, this is often insufficient in common practice; 

we need to find a representative for the whole set of 

episodes in most cases. Given a collection 𝐶 with 

generally 𝑁 episodes 𝐶 = (𝑒1, 𝑒2, … , 𝑒𝑁). The question 

is, how the presented approach applies on generally 

𝑁 episodes. A first solution is based on an approach, in 

which a representative is found step by step by finding 

particular representatives for episode couples. More 

precisely, the first step consists of finding representative 

𝑅1−2 for the first two episodes 𝑒1 and 𝑒2. Then, 

representative 𝑅1−2−3 is found for a new obtained 

episode 𝑅1−2 and for episode 𝑒3. Then, such approach is 

used for the rest of episodes in the cluster.  

However, our experiments showed that this 

approach is not as much suitable as it could be. It is 

strongly dependent on the order of particular episodes in 

collection. The solution is to find an approach that would 

be immune to the order of elements in an episode. Our 

proposed approach which solves this problem is 

presented in Algorithm 2. 
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Algorithm 2: Searching Representative of a Set  

Input:  Collection 𝐶 of 𝑁 episodes 

Output:  Representative episode 𝑅 

Steps: 

1. Initialization: 𝑁 is count of input episodes, 𝑢=1 is 

level of collection; 𝐶1 = 𝐶 is the first level of 

collection; 𝑀 = 𝑁 − 𝑢 + 1 is count of processed 

episodes in level 𝑢. 

2. Create from collection 𝐶𝑈, which consists of 

episodes {𝑒1, 𝑒2, … , 𝑒𝑁} distance matrix 𝐷𝑈 ∈
ℝ𝑀×𝑀, where particular matrix elements are defined 

as 𝑑𝑖𝑗
𝑢 = 𝐷𝑇𝑊(𝑒𝑖

𝑢, 𝑒𝑗
𝑢), i.e. matrix elements are 

created by values of reciprocal mapping of particular 

episodes. 

Calculate sum for each row 𝑟𝑖
𝑢 in matrix 𝐷𝑈 and 

select a row with the lowest sum value. Find row 

𝑟𝑚𝑖𝑛
𝑢  where ∑ 𝑑𝑚𝑖𝑛,𝑗

𝑢 = 𝑚𝑖𝑛∀𝑖=1,…,𝑀(∑ 𝑑𝑖𝑗
𝑢𝑀

𝑗=1 )𝑀
𝑗=1 . 

The found row refers to the episode, which is 

selected as the most similar to the others in the 

current collection, and which could be declared as 

representative 𝑅𝑈 of the collection for 𝑢-th level. 

3. Remove representative 𝑅𝑈 from the current 

collection and create (𝑁 − 𝑢) new episodes by 

application of method for searching representative 

from couple (𝑅𝑈 , 𝑒𝑖
𝑢), described in Section  3.1. This 

algorithm can be modified by adding weight 

(preference) to one of the episodes, which can prefer 

(or discriminate) the importance of the 

representative 𝑅𝑈.  

 

if 𝑀 > 2 then: 

- 𝑢 = 𝑢 + 1; 

- 𝑀 = 𝑀 − 1; 

- Repeat from Step 2 for remaining 
(𝑁 − 𝑢) episodes; 

 else if 𝑀 = 2 then:  

- Select a representative from the two 

episodes as a representative of the 

whole original set of episodes 𝐶; 

 end if 

 

The presented approach is not restricted only to 

using DTW as a method for the expression of episode 

similarity. Of course, DTW could be replaced by any 

other indicator, for example Euclidean distance or 

statistical indicators for time series (Mean Absolute 

Error, Mean Percentage Error, Root Mean Square Error 

etc.). In such cases, it is necessary to adapt steps 2 and 4 

of Algorithm 2, where instead of finding a representative 

for the episodes couple by DTW is necessary to use 

(weighted) average of two compounded episodes. 

Section 4 describes both two approaches with a visual 

comparison of the impact to a found representative. 

 

4. EXPERIMENTS 

In this section, a practical demonstrations of previously 

introduced methods are presented. First of all, the step by 

step example for better understanding of proposed 

algorithm will be demonstrated. Then, several outputs of 

the algorithm will be showed.  

It must be noted that meaning and usage of DTW 

method is closer to a human judgment and perception of 

similarity than a machine definition of physical distance. 

For this reason, it is hard or almost impossible to perform 

a numerical evaluation for the following outputs (Berndt 

and Clifford, 1994), so the results will be presented only 

visually. 

 

4.1. Step by Step Example  

Consider we have two episodes 𝑋 = (1, 1, 4, 1, 10, 1), 

𝑌 = (1, 6, 1, 1, 10, 10, 1) and we want to find their 

mutual representative. First of all, a distance matrix (see 

Table 1), accumulated distance matrix (see Table 2) and 

warping path 𝑝∗ = {(1,1), (2,1), (3,2), (4,3), (4,4),
(5,5), (5,6), (6, 7)} have to be found according the 

steps listed in (Muller 2007). Visualization of found 

mutual episodes’ mapping can be seen in Figure 5. 

 

1 0 0 9 0 81 0 

10 81 81 36 81 0 81 

10 81 81 36 81 0 81 

1 0 0 9 0 81 0 

1 0 0 9 0 81 0 

6 25 25 4 25 16 25 

1 0 0 9 0 81 0 

X/Y 1 1 4 1 10 1 

Table 1: Distance Matrix 

 

1 187 146.5 75.5 66.5 83 2 

10 187 146.5 66.5 71 2 42.5 

10 106 65.5 30.5 57.5 2 83 

1 25 12.5 17 2 42.5 17 

1 25 12.5 11 2 62 17 

6 25 12.5 2 21.5 17 42 

1 0 0 9 9 90 90 

X/Y 1 1 4 1 10 1 

Table 2: Accumulated Distance Matrix 

 

 
Figure 5: Found Mapping of Episodes 

 

Now, the process of searching a representative can start. 

The first element of the representative is determined as 

𝑟1 =
𝑥1+𝑦1

2
=

1+1

2
= 1. Then, we move to the next pair in 

the warping path. Since (𝑝2 − 𝑝1) = (2,1) − (1,1) =
(1,0), no new element is added to the representative 

episode. However, the next step (𝑝3 − 𝑝2) = (3,2) −
(2,1) = (1,1) causes an addition of a new element 𝑟2, 

where 𝑟2 =
𝑥3+𝑦2

2
=

4+6

2
= 5. In the same way, the rest of 

the representative 𝑅 is constructed: 
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(𝑝4 − 𝑝3) = (4,3) − (3,2) = (1,1) → 𝑟3 =
1+1

2
= 1 

(𝑝5 − 𝑝4) = (4,4) − (4,3) = (0,1) → 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑎𝑑𝑑 

(𝑝5 − 𝑝4) = (5,5) − (4,4) = (1,1) → 𝑟4 =
10+10

2
= 10 

(𝑝6 − 𝑝5) = (5,6) − (5,5) = (0,1) → 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑜 𝑎𝑑𝑑 

(𝑝7 − 𝑝6) = (6,7) − (5,6) = (1,1) → 𝑟5 =
1+1

2
= 1 

 

The final found representative is then specified as 

𝑅 = (1, 5, 1, 10, 1). 

 

4.2. Demonstrations of Algorithm Outputs 

As it was mentioned earlier in Section 4, it is almost 

impossible to numerically evaluate the success of the 

algorithm. For this reason, the following samples of 

output will be demonstrated only graphically and each of 

the result will be visualized in the following manner: the 

first row contains episodes, which were used as the input 

to the algorithm, whereas the second row consists of 

outputs for the different approaches. The first output is 

always the average of input episodes (defined in 

Equation 1), the second output is obtained from the 

proposed approach described in Section 3.2, and in the 

third case the Euclidean distance instead of DTW is used. 

The first input dataset was a set of similar signals 

(see Figure 6), which shapes resemble ECG records. The 

signal is ended with tiny swings. As we can see from the 

second row of the episodes in Figure 6, the average of 

values from the both episodes absolutely degraded the 

signal information; the shift of signal peaks and drops 

was smoothed nearly to one level. Also usage 

of Euclidean distance did not provide sufficient results, 

which did not differ from averaged outputs much. On the 

other way, usage of DTW method for finding 

representative fully depicted a character of the signal and 

brought the most accurate results. 

The next set of episodes contains signals with the 

three peaks mutually shifted in time, while each of them 

had a variable duration (see Figure 7). It was supposed 

that the representative would have a curve with the three 

evident peaks. It is obvious from the results, that even 

though the Euclidean distance worked much better, the 

loss of information was still noticeable. 

The last input dataset represents the situation, in 

which the signal consists of two waves - one in a positive 

and one in a negative part (see Figure 8). These waves 

were deformed in time, while they were spread or shrunk 

in 𝑋 axis. Although the other methods achieved 

seemingly the best results, the distortion was evident 

again. The output representative did not contained as 

high amplitudes as the input waves, did not have 

smoothed waves and did not detect the constant 

segments, which were distorted. 

The most important advantage of the proposed 

solution is the fact that the Algorithm 1 in combination 

with DTW is able to process even episodes with different 

lengths. This is very difficult while using other methods. 

In these cases it is necessary to shrink the episodes into 

the identical length, which of course cause the loss of 

information. Using DTW, we are able to process such 

episodes with different lengths without any loss of 

information. In Figures 9 and 10, there are presented 

outputs from proposed algorithm applied on episodes 

with different lengths. 

 

 

Figure 6: First set of inputs and outputs 

 

 

Figure 7: Second set of inputs and outputs 

 

 

Figure 8: Third set of inputs and corresponding outputs 

 

 

Figure 9: First set of inputs with variable lengths 

 

 

Figure 10: Second set of inputs with variable lengths 

 

Observing the value of the weight parameter and its 

influence onto the resulting representative is also very 

interesting. If the weight parameter is not set 

(respectively if the weight is set to 1:1 – it means that the 

importance of the current level representative 𝑅𝑈 and 

other episodes is equal), searching representative looks 

like as in the Figure 10. If the weight is set to 10:1  
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(the 𝑅𝑈 is strongly preferred), the episodes in the next 

level will be strongly influenced by 𝑅𝑈 as it is shown in 

Figure 11. On the other hand, if the weight is set to 1:10, 

the influence of 𝑅𝑈 is minimal (in substance the 𝑅𝑈 

almost ignored) and the episodes in the next level are 

almost unchanged (see Figure 12). 

 

 
Figure 10: Weight parameter set to 1:1 

 

 
Figure 11: Weight parameter set to 10:1 

 

 
Figure 12: Weight parameter set to 1:10 

  

5. CONCLUSION AND FUTURE WORK 

The real application of proposed algorithm showed that 

it is able to find a representative not only from the set of 

typical episodes, but also from their distorted variants. 

The tested input datasets consisted of signals with 

changed amplitudes, and which were distorted by time 

shifting. The proposed solution was compared with 

conventional methods, in which much worse success was 

obvious. 

Further work will be focused on creation of index file, 

which structure was defined in Section 1, and which 

visual representation was presented in Figure 1. The aim 

is to create a sufficiently robust mechanism, which will 

be able to find all the similar episodes to the selected 

pattern in data collection during the shortest time. 

Furthermore, these found episodes will be used for a 

prediction using the Case-Based Reasoning method. This 

method requires a suitable mechanism that is able to 

extract the most similar patterns from the input. 
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