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ABSTRACT 
To solve the well-known Travelling Salesman Problem 
(TSP), many solutions based on combinatorial 
optimization, heuristic and meta-heuristic have been 
proposed. However, in managing business processes, a 
few times we attend to the real time optimization of 
picking routes either inside a warehouse or within 
materials or waste recovery distribution systems. This 
study proposes a new algorithm which is based on the 
analogy between TSP and conduction heat transfer; in 
particular, the application of the principle of minimum 
action to the heat transfer of a flat plate, which is 
coincident with the physical domain, over which the 
TSP points stress, helps identifying the order sought. 
The algorithm has been implemented in an Excel® 
spreadsheet; the quality of solutions which have been 
found is midway between the nearest neighbor 
algorithm and a genetic one; data processing time 
appears suitable for logistic processes management. 

 
Keywords: TSP, principle of minimum action, space 
filling curves, unsteady state conductivity heat transfer. 

 
1. INTRODUCTION 
Given a space and a set of points to visit, the Travelling 
Salesman Problem (TSP) consists in finding the shortest 
path that enables to visit only once all the points and to 
return to the starting point. The minimum path has a 
more general meaning that comprehends the path at the 
least cost. 

Formally, the TSP can be described as the search 
for the minimum of the function that represents the 
length of the route described above when varying the 
sequence in which the points are visited: 

 

   (0) 

 
where the elements of the matrix di, j (i, j = 1 .. N) 

are the mutual distances between N points to be visited 
and π(i) is the permutation of the sequence in which 
points are visited. 

The TSP has applications in many fields: material 
handling, order picking, vehicle routing related to 
materials distribution systems, both direct and reverse 
logistics (the latter case is of particular and current 
interest in the waste management); although the 
optimization of these activities should always take into 

account constraints that can greatly limit the search for 
the minimum of the cost function (0) (binding capacity), 
management or organizational improvement, often, can 
significantly lead to the reduction of such restrictions. 
Similarly job scheduling and machinery sequencing can 
be solved by using the TSP methods of solution. Further 
applications of the problem can be counted as part of 
communication networks, statistics, psychology and 
biostatistics. 

The extraordinary proliferation of studies on the 
TSP and its applications in science led to several 
methods of solution. Table 1 tries to summarize the 
most popular: 

 
Table 1: Main TSP methods of solution 

Method Algorithm 

Linear 
programming 
 
Linear and integer 
programming 

Cutting plane (Dantzig, Fulkerson, 
and Johnson 1954) 
 
Branch and bound (Land and Doig 
1960) 

Local research 
(tour construction) 

Sweep (Gillet and Miller 1974) 

Nearest neighbor (Rosenkrantz, 
Stearns, Philip and Lewis 1977) 

Nearest insertion 

Farthest insertion (Rosenkrantz, 
Stearns, Philip and Lewis 1977) 

Local research 
(tour 
improvement) 

K-opt (Rego and Glover 2002; Croes 
1958; Lin 1965) 
Lin-Kernighan (Lin and Kernighan 
1973) 

Meta-heuristics 
(local research) 

Simulated Annealing (Kirkpatrick, 
Gelatt and Vecchi 1983) 
Termodynamical Approach (Cerny 
1985) 
Tabu search (Glover 1989) Genetic 
Algorithms (Grefenstette, Gopal, 
Rosimaita, and Gucht 1985); 
Homaifar, Guan and Liepins 1993) 

Meta-heuristics 
(multi-agents) 

Ant colonies (Dorigo and Di Caro 
1999, Dorigo, Maniezzo and Colorni 
1996, Dorigo and Gambardella 1997) 

Approximated 
(graph based) 

Minimum Spanning Tree (Pizlo, 
Stefanov, Saalweachter, Li, 
Haxhimusa and Kropatsch 2005) 
Spacefilling Curves (Platzman 
and Bartholdi 1989) 
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Such methods, however, are usually dedicated to 
solve large dimension TSP or very complicated 
problems that we can consider as belonging to the 
project management knowledge; some methods of 
resolution approach the TSP with hundreds of 
thousands of points. On the other hand, the same 
methods are often more difficult to apply in the 
management of business processes; for example picking 
from storage or vehicle routing in local distribution 
usually show routes whit a smaller number of points to 
visit (N<100) but with a high frequency of evaluation. 

A set of techniques that makes constraint 
programming a technique of choice for solving small 
(up to 30 nodes) traveling salesman problems has been 
presented in literature for TSPs transportation problems 
that either come from “real” transportation problems 
(e.g., with trucks) or from moving mechanical parts 
(Caseau and Laburthe 1997). 

We can assert that TSP is so fascinating that, in 
some cases, has become a game and a challenge rather 
than solving a real problem. Indeed much research 
focuses on finding most suitable operators for 
applications or on solving large-scale problems. 
However, rarely research addresses the performance of 
different operators in small- or medium-scale problems. 
In addition, the differences between small- and 
medium-scale TSPs on suitable GA design are studied 
(Liu and Kroll 2012). 

This paper proposes, therefore, to implement a new 
method to solve the TSP in order to make it flexible 
when a change of boundary conditions is requested (i.e. 
the geometric domain, the number of points of the 
routes, the types of routes) and easy to use in 
management of logistics processes. 

In the first part of the paper a brief literature 
review is reported; then the proposed model is 
described; it is based on the principle of the minimum 
action which is applied to heat transfer in unsteady state 
conditions. In the second part of the paper the model is 
applied to solve the TSP having to visit randomly 
generated points in the range [10 ... 30]; the results are 
finally compared with those obtained by the application 
of algorithms which are, at least in perspective, easily 
implementable in the same simulating environment 
(nearest neighbor algorithm and a genetic algorithm). 
 
2. METHODOLOGY 
The first principle of thermodynamics is applied to an 
elementary control volume under the following 
assumptions: 
• the medium is composed of a fixed solid whose 

thermo-physical properties aren’t time dependent; 
• changes in volume, due to changes in temperature, 

are negligible if compared to the same volume; 
• internal heat sources, described by (x,y,z) 

function,  represent the energy generated per unit of 
volume and time. 
Given the limited variation in volume, mechanics 

work exchanged by the elementary volume is negligible 
and the change of the internal energy is equal to the heat 

which is exchanged with the nearest neighbors in the 
unit of time: dU = dQ. 

So the internal energy variation is only a function 
of temperature and internal sources: 

 
dU = (ρc (x,y,z) dxdydzdt   (1) 

 
As regards the heat exchange, it is assumed to be 

only conductive; so the balance of heat flows along 
each direction allows writing the equation (Fig.1): 

 
dQ=(qx–qx+dx)dydzdt+(qy–qy+dy)dxdzdt+(qz–qz+dz)dxdydt (2) 
 
qx = - k       (3) 

 

qx+dx = - [k  + ]    (4) 
 
where dx, dy and dz are the elementary volume 

sizes, ρ is the density of the material, c the specific heat, 
T is the temperature, k is the thermal conductivity and t 
is the time. 

 

 
Figure 1: Balance of heat conduction flow inside the 
elementary volume 

 
Assuming thermal conductivity k as a constant, the 

above mentioned heat balance, which is the application 
of the first principle of thermodynamics, allows 
deriving the general conduction equation (Ozisikin 
1980): 

 
a      (5) 

 
where: a = k/(ρc) is the so-called heat diffusivity of 

the material. 
Let us consider, now, the thermodynamic system 

showed by figure 2; it is indefinitely along the z 
dimension, so it may be considered as a flat, square 
plate whose side measurers are both L. 

Boundary conditions for the figure 2 system are 
now defined: temperature is fixed and equal to Ta along 
border edges; temperature is fixed and equal to Tfix for 
a given set S of points Pi(xi, yi), which belong to that 
flat-square plate; the constancy of temperature at a point 
is equivalent to assume that heat exchanging from the 
same point to the outside world can happen with infinite 
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intensity; finally if there are no internal heat sources, the 
general conduction equation applied to the 
thermodynamic system and its boundary conditions are 
the following: 

 
;  

T(0,y) =Ta; 
T(L,y) = Ta;      (6) 
T(x,0) = Ta; 
T(x,L) = Ta; 
T(Pi) = Tfix Pi ∊ S. 

 

 
Figure 2: Boundary conditions of the flat-square plate 
system 

 
If Tfix≠Ta, the above thermodynamic system, after 

a thermal transient condition, reaches a state of thermal 
equilibrium; this occurs because heat flow which is 
transmitted through the border edges is virtually equal 
to that exchanged with the outside environment through 
points Pi S.  

So the equation (5), after the thermal transient 
condition, turns into the Laplace equation.  

The system of equations (6) can be numerically 
integrated by using the finite differences method.  

The flat plate system can be discretized by using 
the finite element method; likewise heat conduction 
system of equation (6), which is composed of a partial 
differential equation, can be integrated by using finite 
differences formulae as below reported: 

 

     (7) 
 

    (8) 
 

    (9) 
 
Putting equations (7), (8) and (9) in (5), together 

with the ∆x=∆y condition, leads to the finite differences 
equation of conduction for the each finite control 
volume: 

 

                (10) 

 
The equation (10) is recursive; the calculation 

process is stable if and only if it satisfies the following 
criterion (Ozisikin 1980): 

 
0     (11) 

 
The criterion (11) defines the maximum value to 

the time bucket which can be used to simulate the 
thermal transient condition once upon thermo-physic 
properties of the material are chosen. 

Figure 3 shows the geometry of the finite element 
discretization in order to highlight the relevant 
measures. 

The system of equations (6), numerically integrated 
by using the finite differences formulae, can be encoded 
within an Excel® spreadsheet. 

Figure 4 shows the temperature distribution T(x, y) 
which the software application can perform for the 
thermodynamic system at the end of thermal transient 
condition; the mathematics model takes into account a 
set S that counts 10 points; the temperature of each Pi 
points is Tfix= 0 °C. The temperature of the border 
edges is Ta = 20 °C. The thermo-physical properties of 
the pseudo material are imposed to unit values 
(∆x=∆y=1 m; c=1 J/kg°C; ρ=1 kg/m3). The size of the 
flat plate was set to L = 20 ∆x.  
 

 
Figure 3: Finite element discretization of the flat plate 

 
The system of Figure 2, is now seen under the light 

principle of the minimum action (Landau and Lifshitz, 
1971). It guarantees that any dynamic or 
thermodynamic system evolves by minimizing a 
functional: we can call it energy (or action). The 
temperature distribution of figure 4 is the result of a 
thermal transition that leads to the configuration of 
minimum internal energy. The temperature distribution 
on the flat plate (the shape of the isotherm curves) 
shows how the heat is flows. 

The latter thermodynamic system exchanges 
energy and organizes its temperature distribution as a 
function of its shape, of the temperature imposed along 
its border edges, of the one imposed in the points Pi ∈ S 
and, in particular, of points allocation. The 
thermodynamic system must bring energy from its 
border edges to the points Pi which may dissipate 
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outside this heat flow; this last process happens in a 
manner which adheres to the second principle of 
thermodynamics; the above mentioned flat plate has to 
solve a problem that is similar to the TSP. The analogy 
is therefore established among points to be visited and 
the sources of internal heat of the system and between 
the cost of the travelling salesman path and the internal 
energy level. 

Let us consider now the isotherm curve Tiso=14 °C 
(Fig. 3); this is the first closed curve which encircles the 
set of points Pi; after projecting the points Pi on the 
isotherm curve Tiso the sequence in which they appear 
on the isotherm (Fig. 5) gives the solution of the 
problem. We can think about the isotherm Tiso = 14 °C 
as a spacefilling curve which is drawn by the 
thermodynamic system. 

The solution to the TSP may, therefore, be 
obtained by calculating the steady state thermal 
condition of a flat plate whose sizes are that of the 
logistic domain of the TS problem, having a border 
edges at a constant temperature and heat sources placed 
on the points to be visited. Once the calculation of the 
thermal transient condition is performed, which has no 
computational difficulties, the problem turns in the 
research of Tiso curve and in the projection of points Pi 
on such curve. The existence of this isotherm is 
guaranteed by the nature of heat conduction (equation 
6), which is in fact an equation of Laplace. 

The system of thermal loads and the position of the 
points Pi in the simulated domain alter the temperature 
distribution at the thermal balance; so the choice of Tiso 
curve must be tuned in order to solve the problem.  

This behavior seems a drawback of the novel 
methodology, which has, anyway, the possibility of 
increasing the number of points to be visited without 
having to modify the thermodynamic model, but only 
having to increase the above mentioned projection 
process according to a directly proportional law. 

 

 
Figure 4: Temperature distribution on the flat plate. 
P1(2;2), P2(6;7), P3(7;11), P4(12;13), P5(14;13), 

P6(17;12), P7(11;8), P8(12;5), P9(10;5), P10(9;3) 
(tsim=120 s; ∆t=0,2 s) 

 
Figure 6 shows the end of the thermal transient 

condition which follows on from a different system of 
boundary conditions: internal heat sources are 
continuously placed in the flat plate ( (x,y) = cost) and 
the points Pi are kept at fixed temperature Tfix. Also in 
this scenario, the N points Pi have to be regarded as a 
target of heat generation; the system reaches again a 
thermal equilibrium because of the equivalence between 
heat generated and dispersed. The equations of heat 
conduction once were integrated numerically by using 
the finite differences method. 

 

 
Figure 5: Pi projection process along isotherm curve 
Tiso=14°C 

 
This time the Tiso isotherm curve encircles points 

Pi only if also the edge of the plate is taken into 
account; this also shows an approximation whose 
solution passes through an expansion of the domain in 
which the conduction thermal transient is calculated; 
under the above mentioned boundary conditions, the 
value of isotherm curve is Tiso=16 °C (Figure 6). The 
process of projection of the points Pi along the isotherm 
curve gives the same final result of the previous one. 
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Figure 6: Flat plate temperature distribution with 
continuous heat source and Pi points projection along 
Tiso=16°C. P1(2;2), P2(6;7), P3(7;11), P4(12;13), 
P5(14;13), P6(17;12), P7(11;8), P8(12;5), P9(10;5), 
P10(9;3) (tsim = 120 s; ∆t = 0,2 s) 

 
3. RESULTS 
The thermodynamic model, previously showed, has 
been coded in an Excel® spreadsheet; the simulating 
model can be easily switched from one set of boundary 
conditions, such as fixed temperature on the border 
edges and at the points Pi, to another. The software 
environment allows the circular calculation that enables 
time driven simulating processes. Once calculated the 
temperature distribution at thermal equilibrium (a 
period of simulation tsim=120 s was more than enough), 
the identification of the Tiso curve, on which to project 
the points of TSP, has been simply obtained by the 
following relationship: Tiso = 3/2 Tm; where Tm is the 
average temperature of the thermal field. 

Although the latter relationship is rough and a 
more sophisticated check can be encoded in order to 
find the first closed isotherm around the Pi points to 
visit, the tests were in most cases fulfilled at the first 
iteration. The projection of the points Pi on the first 
closed isotherm consists in calculating for each Pi 
which is the nearest point belonging to the isotherm 
curve. To this aim it was codified a routine, by using 
standard Excel® function; it allows to split the thermal 
domain of figure 5 in a region warmer than Tiso and, 
consequently, the remaining one; once this partition is 
performed the elements (cells) of the border are serially 
numbered in order to establish the rule by which a point 
is before or after another. Table 2 shows the summary 
of tests performed for growing number of points to 
visit. The tests, as many as a hundred for each value of 
number N, were performed by choosing randomly N-1 
points; the first point, that has coordinates P(2,2), has 
been imposed as a point of departure and arrival of the 
routes. The results have been compared with those 
obtained by a genetic algorithm and the nearest 

neighbor one. The quality of solutions found is midway 
between that of the solutions found by the two latter; 
the data processing time appears suitable for business 
process managing. The implemented algorithm seems 
open to many improvements particularly as regards the 
projection of the points Pi on the Tiso curve; its 
computational simplicity and the principle on which it 
is based ensures positive developments in the next 
research. 

It has to be noted that the coding environment 
(Excel®) enjoys the favorable property WYSIWYG that 
allows easier modification when the boundary 
conditions change; there is evidence also that the same 
environment on one hand can be integrated with the 
interfaces of information systems, through barcode and 
RFID technology; on the other hand, it appears 
increasingly shared with powerful software applications 
such as Matlab®; all of the above features are 
considered of great value in order to support operations 
management (i.e. order picking; vehicle routing). 

 
Table 2: Results summary (∆x=∆y=1m; L=20 m); the 
novel algorithm is called thermal space filling curve 
(Thermal SFC). (*Genetic algorithm is performed by 
Matlab®) 
 Algorithm N=10 N=20 N=30 
TSP point 
density (N/L2) 

 2,5% 5,0% 7,5% 

Average value of 
specific tour 
lenght, Lm 
=Ltour/N 

Nearest 
neighbor 

6,03 3,01 3,29 

Thermal SFC 
Genetic 

5,70 
5,50 

2,85 
2,75 

3,02 
2,78 

Standard 
deviation of 
specific length 
tour (Lm) 

Nearest 
neighbor 

0,70 0,35 0,36 

Thermal SFC 
Genetic 

0,68 
0,50 

0,34 
0,25 

0,23 
0,14 

Data processing 
time (s) 

Nearest 
neighbor 

≈ 1 ≈ 1 ≈ 1 

 Thermal SFC 
Genetic 

≈ 20 
≈ 15 

≈ 25 
≈ 30 

≈ 30 
≈ 360 

Software size 
(kB) 

Nearest 
neighbor 
Thermal SFC 
Genetic* 

100 
500 
1,11 

100 
500 
1,11  

100 
500 
1,11 

 
4. CONCLUSIONS 
The TSP is one of the lines of research most frequently 
beaten and, despite the passage of time, it is yet very 
fascinating. The numerous methods of resolution of 
TSP are usually dedicated to solving the problem in a 
large scale and with the highest number of points to 
visit; the complication of these methodologies has the 
consequence of their difficult implementation in 
business processes. 

A novel algorithm for solving the TSP of 
symmetric kind, therefore, it has been proposed; the 
algorithm is based on the analogy with conduction heat 
transfer and, in particular, it is the result of the 
application of the principle of minimum action to the 
thermal transient of a flat plate; this plate coincides with 
the logistic domain in which the TSP is defined; within 
this domain Pi points to visit have to be considered as 
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sources of heat. When the thermal transient condition is 
elapsed, the resulting temperature distribution contains 
some closed isotherm curves which can be taken in to 
account as spacefilling curves; projecting Pi point along 
one of these isotherm enables to determine the solution 
sequence of the problem. 

Tests carried out on routes with increasing number 
of point to visit [10, 20, 30] show a quality of solution 
which is a midway between that of the solutions found 
by genetic algorithm and by nearest neighbor one. Data 
processing time appears useful to business process 
managing (order/batch picking, vehicle routing, 
machinery sequencing). 

The novel model has the advantage of being 
encoded in a widely distributed electronic environment 
(Excel®), with ergonomic features useful for the easy 
correction or amendment; it doesn’t suffer, if not in a 
linear manner, the combinatorial complexity of the 
problem when the number of points to be visited 
increases. 
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