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ABSTRACT 
A large research effort has been devoted to enrich 
mainstream languages as C, C++, Java, Python with 
simulation capabilities. The most common choice is to 
provide the additional simulation functionality through 
a software library. Independently of the architectural 
level at which they are provided (application, library, 
language), the simulation capabilities embody a world 
view for their users. In this paper we present the 
architecture and major components of an object-
oriented simulation library written in Java. The process-
interaction worldview adopted by the library is 
discussed.  A practical example is given in order to 
ascertain important features of the library. Further 
motivations are discussed and suggestions for 
improving our work are given. 

 
Keywords: Discrete-Event Simulation, Object-Oriented 
Simulation, Process-Interaction Worldview, Java-based 
modeling and simulation 

 
1. INTRODUCTION 
Today, Object Oriented Modeling (OOM) is largely 
recognized as an excellent approach that deals with 
large and complex systems through abstraction, 
modularity, encapsulation, layering and reuse. A 
conceptual model is obtained by decomposing a real 
system in a set of objects in interaction. Each object 
represents a real world entity that encapsulates state and 
behavior. A class is a template for creating objects that 
share common related characteristics.  Object Oriented 
Simulation (OOS) benefits from all the powerful 
features of the OOM especially model conceptualization 
which is one of the early steps in a simulation study. 

The formalism used by a simulation language to 
conceptualize a domain or system is called its 
“worldview”. Three worldviews are commonly used to 
model the dynamics of discrete-event systems: Event-
Scheduling, Process-Interaction and Activity Scanning. 
The process-interaction worldview is often convenient 
for describing the queuing nature of higher-level 
stochastic systems. From an external point of view, the 
principal component of simulation software is the 
simulation language (SL) which allows description of 

simulation models and their dynamic behavior (Korichi 
and Belattar 2008).  

A large research effort has been devoted to enrich 
mainstream languages as C, C++, Java, Python with 
simulation capabilities. The most common choice is to 
provide the additional simulation functionality through 
a software library. Independently of the architectural 
level at which they are provided (application, library, 
language), the simulation capabilities embody a world 
view for their users. The world view is essentially the 
set of concepts that constitute the basic elements 
available to the modeler to compose and to specify the 
simulation. The diverse world views are functionally 
equivalent, but differ in expressive power and in terms 
of computational efficiency. Native support for 
multithreaded execution is a fundamental aspect to the 
implementation of a natural process-oriented modeling 
worldview. This can be achieved using special 
programming languages that offer at least a SIMULA’s 
coroutine like mechanism, thus programming languages 
offering multithreading like Java are suitable.  

JAPROSIM is an object-oriented simulation 
library, free and open source that adopts the popular 
process-interaction worldview. It is written in Java and 
was deliberately kept simple, easy to use and extensible. 
The library is divided into packages to organize the 
collection of classes into important functional areas. It 
is easy to build discrete event simulation models using 
JAPROSIM, either for experimented programmers in 
Java or for simulation experts with elementary 
programming knowledge. JAPROSIM can also serve as 
a basis for the development of dedicated object-oriented 
simulation environments. 

The rest of the paper is organized as follows: In 
section 2, we present an overview of related work. In 
section 3 major components of the simulation library 
and its architecture are detailed. In section 4 we 
describe the process-interaction worldview adopted by 
JAPROSIM. An example is given in section 5 in order 
to ascertain important features of JAPROSIM. Section 6 
summaries the paper and provides suggestions for 
future improvements of our work. 
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2. RELATED WORK 
The idea of building process-oriented simulations using 
a general purpose object-oriented programming 
language is not original and several tools were 
developed in this way. For example, both of CSIM++ 
(Schwetman 1995) and YANSL (Joines  and Roberts 
1996) are based on C++, while PsimJ (Garrido 2001), 
JSIM (Miller et al. 1998) are based on Java. Discrete 
Event Simulation tools written in Java, like PsimJ and 
SSJ (L’ecuyer et al. 2002) are well designed and 
freeware libraries but not open source. Silk (Kilgore 
2000) is also well designed but is a commercial tool. 
There is also a large collection of free open source 
libraries, we may consider for instance: 

 
• JavaSim (Little 1999) is a set of Java packages 

for building discrete event process-based 
simulation, similar to that in Simula and 
C++SIM.   

• JSIM (Miller et al. 1998) is a Java-based 
simulation and animation environment 
supporting Web-Based Simulation. 

• Simjava (Howell and McNab 1998) is a 
process based discrete event simulation 
package for Java, similar to Jade's Sim++, with 
animation facilities. 

• jDisco (Helsgaun 2000) is a Java package for 
the simulation of systems that contains both 
continuous and discrete-event processes.  

• DESMO-J (Page and Wolfgang 2005) is a 
framework which supports both event and 
process worldviews.  

• SimKit (Buss 2002) is a component framework 
for discrete event simulation, influenced by 
MODSIM II and based on the event graph 
modelling. 

 
Many simulators aim at replicating the 

functionality and design of Simula in Java. For 
example, SSJ is designed for performance, flexibility 
and extensibility. It offers its users the possibility to 
choose between many alternatives for most of the 
internal algorithms and data structures of the simulator. 
SimJava and JSim are among the first implementations 
of the thread-based class of simulators. These early 
efforts pay particular attention to web-based simulation 
and to the Java Applet deployment model (Cuomo et al. 
2012). 

JAPROSIM is not a java version of any existing 
simulation language as Simjava or JavaSim. There are, 
however, unique aspects in JAPROSIM that lead to 
fundamental distinctions between our work and others. 
For example, JAPROSIM embeds a hidden mechanism 
for automatic collection of statistics. This approach 
enables a clean separation between implementing the 
dynamics of the model and gathering data, so traditional 
performance measurements are automatically 
computed. The model can thus be created without any 
concern over which statistics are to be estimated, and 
the model classes themselves will not contain any code 

involved with statistics. This leads in more code source 
clarity. Nevertheless, users could, if needed, implement 
specific statistics collection using different classes 
offered by the JAPROSIM statistics package. This 
feature makes the key difference between JAPROSIM 
and the other discrete event simulation libraries written 
in Java. Exception is made for SimKit which already 
offers this possibility, but which uses a different 
modeling approach based on event graphs.  
 
3. THE JAPROSIM LIBRARY 
The JAPROSIM library is part of an ongoing project 
that aims at providing an advanced visual interactive 
simulation and modeling environment for DES 
(Bourouis and Belattar 2008). The library is currently 
divided into six main packages: 

 
• kernel: a set of classes dealing with active 

entities, scheduler, queues and resources. 
• random: contains classes for uniform random 

stream generation. 
• distributions: contains a rich set of classes for 

useful probability distributions. 
• statistics: contains classes representing 

intelligent statistical variables. 
• gui: a set of graphical user interface classes to 

use for project parameterization, trace and 
simulation results presentation. 

• Utilities: a set of useful classes for express 
model development. 

 
We will focus on the simulation kernel, random, 

and statistics packages. 
 

3.1. The Kernel Package 
The kernel package is at the heart of JAPROSIM. A 
UML class diagram of the kernel is given below.  

 

 
Figure 1: The Kernel class diagram 

 
As we can see, the kernel package is made up of 

classes dealing with active entities, scheduler, queues 
and resources. The coroutine like mechanism is 
implemented trough SimProcess, Scheduler, 
StaticEntity and Entity classes. A coroutine program is 
a collection of coroutines which run in quasi-parallel 
with one another. Each coroutine is an object with its 
own execution state, so that it may be suspended and 
resumed. Our aim in the design of JAPROSIM was 
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putting a great emphasis into following the semantic of 
SIMULA but the design itself is not close to it. The 
advantage of this approach is that design is simpler 
without explicit coroutine class support and the 
semantics of facilities that are well-known and 
thoroughly tested through many years use of SIMULA 
are completely supported. Native support for 
multithreaded execution is a fundamental aspect to the 
implementation of a natural process-oriented modeling 
capability in Java. Every active entity’s life cycle is 
executed in a single separate thread. 

 
3.2. The Random and Statistics Packages 
Random number generators (RNGs) are the basic tools 
of stochastic modeling. The random package provides 
the RandomStream interface which represents a base 
reference for creating Random Number Generators. 
Each RNG must rewrite the RandU01() method which 
normally returns a uniformly distributed number (a Java 
double) in the interval [0, 1]. JAPROSIM provides a set 
of well known good RNGs see [[L’ecuyer (1998)]]13] 
and [14[L’ecuyer and Panneton (2005)], as Park-Miller, 
McLaren-Marsaglia and RandMrg in which the 
backbone generator is the combined multiple recursive 
generator (CMRG) proposed in [15[L’ecuyer (1999)]. 
The setSeed(long[] seed) method is used to specify 
seeds instead of default values. The user can define its 
own RNG by implementing the RandomStream 
interface. To be used with JAPROSIM, an instance of 
the user-defined RNG must be assigned to the 
Scheduler’s static public attribute rng. A prosperous set 
of discrete and continuous Random Variate Generators 
(RVGs) is offered by the distribution sub-package. This 
set covers typically most practical distributions to be 
used in discrete event simulation. However, the user 
could supply it with additional RVGs. 

The statistics package provides two useful classes. 
DoubleStatVar class dealing with time-independent 
statistical variables (having double values) as response 
time and waiting time in a queue. It implements the 
mechanisms for keeping track of observational-based 
statistics and must be updated every time its value 
change using the update() method. TimeIntStatVar class 
is used for time-dependent statistics (with integer 
values) such as a queue length or number of customers 
in a system. Typically, the user instantiates the desired 
class, then puts and updates it in the appropriate code 
locations. The placement of statistical variables and 
their update is a source of several pitfalls. For this 
reason we have enhanced automatic placement and 
update of those variables for the most known and useful 
performance measures. 

 
Figure 2: The distribution sub-package 

 
4. PROCESS-INTERACTION WORLDVIEW IN 

JAPROSIM 
The origins of the process-interaction worldview can be 
traced to the authors of SIMULA. It provides a way to 
represent a system's behavior from the active entities 
point of view. A system is modeled as a set of active 
entities in interaction. Interaction is a consequence of 
competition and/or cooperation for the acquisition of 
critical resources. A process-oriented model is a 
description of the sequence of processing steps these 
entities experience as they flow through the system. 
Each active entity’s life cycle consists of a sequence of 
events, activities and delays. A routine implementing an 
active entity requires special mechanisms for 
interrupting, suspending and resuming its execution at a 
later simulated time under the control of an internal 
event scheduler. This can be achieved using special 
programming languages that offer at least a SIMULA’s 
coroutine like mechanism, thus programming languages 
offering multithreading like Java are suitable. 

In JAPROSIM, active entities are transient entities 
moving through the system (dynamic entities). An 
entity’s life cycle is a sequence of active and passive 
phases. On one hand, an active phase is characterized 
by the execution of the relevant process. Normally this 
corresponds to the events during which system state 
changes without progression of simulation time. On the 
other hand, passive phases are characterized by 
activities and delays. So the relevant process is 
suspended while simulation time advances. Events are 
the criterion of scheduling which explain the use of a 
future event list (FEL). After a process is suspended, the 
scheduler resumes and decides of which is the next 
process to reactivate according to the system state and 
the FEL. The scheduler is a special process that 
coordinates the execution of a simulation model. 
Processes are executed in pseudo-parallel and only one 
(which has the imminent simulation time) is running at 
any instance of real time. Simulation processes may 
execute concurrently at any instance of simulation time. 
Hence the scheduler executes in alternation with other 
simulation processes.  
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In JAPROSIM, this shared behavior is modeled 
through the SimProcess abstract class which extends the 
Java Thread class. The method processResume(Entity 
e) is called by the scheduler to reactivate a simulation 
process and mainResume() is called by a simulation 
process to reactivate the scheduler. Each simulation 
process has its own lock object. Locks are used in 
combination with wait() and notify() to synchronize 
implementation threads instead of the Java deprecated 
methods suspend() and resume(). A thread which calls 
any of the previous methods will block on its own lock 
after notifying the appropriate one.  

Schedule(Entity e) is a synchronized method 
offered by the SimProcess class which could be called 
by the scheduler or by a newly created simulation 
process for an appropriate insertion into the FEL. At the 
end of its life cycle, a simulation process calls 
automatically the dispose() method to reactivate the 
scheduler without blocking itself. So the corresponding 
thread could be terminated. This leads to free occupied 
memory and improve simulation performance. 
Otherwise this may cause a Java runtime error as we 
experienced with an academic version of the 
commercial package Silk. 

Specific behavior of a simulation process is 
normally described using the dedicated abstract method 
body(). It must be rewritten to be an ordered sequence 
of method invocations terminated by an implicit 
automatic call to dispose(). The behavior of the 
scheduler is also described using this method. Since 
SimProcess is abstract, it is intended to be extended. A 
new class is created to model simulation processes. The 
Entity class provides the basis for defining classes that 
obey to the process-oriented simulation worldview. This 
class is declared to be abstract, so instances of Entity 
cannot be created directly. Instead, modelers define 
their own classes that extend Entity and describe the 
dynamic behavior of the corresponding system 
components in terms of the process-oriented methods 
inherited in particular from those classes. 

Each class derived from Entity runs in its own 
thread of execution, a capability inherited from 
SimProcess. The Entity class provides the 
implementation of the run() method which in turn 
invokes body(). The user is required to supply the 
body() method. Four remarkable methods are offered: 
insert(), remove(), seize(), hold() and release(). They 
could be used to model familiar queuing scenarios. The 
passivate() method is used to wait until a specific 
system state is reached (ex: waiting for a resource to be 
free). Since the thread will be suspended and inserted 
into the passive list (PL) after a call to passivate(), this 
call is typically used within a while() loop. Each time 
the scheduler takes control; it starts reactivating 
suspended threads in the PL first, then dealing with the 
FEL. So such a reactivated thread would have the 
opportunity to return back to the PL, if there is no 
expected evolution in the system state. 
The abstract class StaticEntity is used to model the 
behavior of active entities that have not the ability to 

move. Typical examples of those entities are “intelligent 
resources”. StaticEntity derives directly from 
SimProcess. Since The Entity class is used to model 
dynamic entities, it derives from StaticEntity and 
defines two new methods insert() and remove(). The 
other methods: seize(), hold(), release() and passivate() 
discussed previously are defined in the StaticEntity and 
hence inherited by Entity. 

The scheduler proceeds in two phases. First, it 
reactivates each thread in the PL. So the reactivated 
thread checks for expected changes in the system state 
and may return back to the PL as it may continue 
executing the rest of its operations. Secondly, the 
scheduler picks the imminent simulation process from 
the FEL and reactivates the corresponding thread. These 
two phases are repeated as long as the simulation 
experiment termination condition isn’t verified. The 
Scheduler class has an attribute rng which is an instance 
of a random number generator and could be customized 
by the user. The EntityCompare class implements the 
Java Comparator interface and is used to implement 
priority queuing mechanism. 

The Resource class represents a passive entity 
characterized by a capacity. Generally, a simulation 
process seizes some units of a resource to accomplish a 
service and releases them later.  The hold() method of 
the StaticEntity class is used to specify the service 
duration. The Queue class models a space for waiting 
which may be limited. It provides an ordered list where 
entities (or other user-defined types) can reside. 
Typically, an entity is inserted into a queue by having it 
activate the insert(Queue q) method of the Entity class. 
There is no implicit conditional status delay logic 
associated with queues, which means that the entity's 
thread of execution is not suspended pending some 
system status evolution. 

Modeling conditional status delays is the realm of 
the while() and passivate() constructs. As a 
consequence, an entity can reside simultaneously in any 
number of queues. This feature can be particularly 
convenient in collecting certain types of system 
statistics related to waiting times or queue lengths. 
Another important distinction is that the removal of an 
entity from a queue could be independent of the 
ordering of the queue at the time of removal. Users are 
required to explicitly identify the entity to be removed 
at the time of removal. Typically this is accomplished 
by having the corresponding entity activate the 
remove(Queue q) method of the Entity class. While 
entities are generally inserted and removed from queues 
using the insert(Queue q) and remove(Queue q) 
methods of the Entity class, the same tasks can be 
accomplished using the insert(Entity e) and 
remove(Entity e) methods defined in the Queue class. 

 
5. A MODELING EXAMPLE USING JAPROSIM 
5.1. Example Description 
The modeling example illustrates a simplified 
simulation model of a TVs inspection and adjustment 
process as described in (Pegden et al. 1990).  
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Figure 3: The TVs Inspection example 

 
In this model, an arriving TV is first inspected at 

an inspection station. If a TV is found to be functioning 
improperly, it is routed to an adjustment station. After 
adjustment, the TV is sent back to the inspection station 
where it is again inspected. TVs passing inspection, 
whether to the first time or after one or more routings 
through the adjustment station, are sent to a packing 
area. A probabilistic branching is used when a TV 
passes the inspection station. It specifies that 15% of the 
TVs inspected are sent to the adjustment station and 
85% are sent to the packing area. The inter-arrival time 
between TVs to the system, the inspection delay and the 
adjustment delay are all modeled as uniform variates. 
(See the source code in Figure. 5).  
 
5.2. The JAPROSIM Simulation Model 
In JAPROSIM we can model each active entity in a 
separate class derived from the Entity class. A class 
diagram of the JAPROSIM simulation model for this 
example is shown below: 

 

 
Figure 4: A class diagram of the simulation model 

 
From Figure 4, it appears that the JAPROSIM 

simulation model of the example uses two classes: 
TVInspection and TV1. The source code of each class is 
given below. 
 

 
Figure 5: Source code of The TV1 class 

 
We can easily distinguish four parts in the source 

code of The TV1 class. The first part (from line 4 to line 
11) serves to set the parameters of the model. We can 
see that the inspection delay, the adjustment delay and 
the inter-arrival time are defined as uniform variates 
with specific arguments. We have also to define the 
inspector and adjustor resources and their associated 
queues. The variable destination is defined as a uniform 
variate and is used when deciding if a TV just inspected 
is to be routed to the adjustment station or to exit the 
system. 

The second part (from line 12 to line 15) serves to 
route the active entity to the inspection station and to 
create next TVs arrivals with respect to the inter-arrival 
time between TVs. The third part (from line 16 to line 
28) represents the classical scheme of resource 
allocation. A TV arriving at the inspection station is 
inserted in the associated queue. When a resource unit is 
free, it is allocated to a waiting TV with respect to the 
queue priority.  An inspection delay associated to this 
TV is sampled, and the TV will hold the resource unit 
seized until the associated delay is elapsed. The 
resource unit is then released and can be allocated to 
other waiting TVs. Line 28 serves to decide if the TV 
just inspected is to be routed to the adjustment station or 
to exit the system.  

The fourth part (from line 29 to line 39) models the 
adjustor resource allocation scheme. A TV arriving at 
the adjustment station is inserted in the associated 
queue. When the adjustor resource is free, it is allocated 
to a waiting TV with respect to the queue priority.  An 
adjustment delay associated to this TV is sampled, and 
the TV will hold the adjustor resource seized until the 
associated delay is elapsed. The adjustor resource is 
then released and the TV is sent back to the inspection 
station. 
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To run a JAPROSIM simulation model, we need 
another class which constitutes a starting point for any 
Java program. This class contains the main() method for 
standalone programs or the init() method for browser-
based applets. It is where simulation model would be 
initialized, and the scheduler started. In our example, 
this class is called TVInspection. The source code is as 
follows: 

 

 
Figure 6: Source code of the TVInspection class 
 

5.3. Running the Simulation Model 
When running the simulation model, the JAPROSIM 
window is first displayed. It consists of an 
experimentation frame where simulation parameters are 
to be set. Parameters like the number of replications, the 
simulation duration, the RNG used must be specified 
here by the user. A button Run/Stop allows user to start 
simulation, stop and resume it at any time during 
execution. Two other buttons are used for presentation 
of simulation results and trace execution.  
 

 
Figure 7:  JAPROSIM Experimentation Frame 

 
At the end of each simulation run, the simulation 

results can be viewed in a textual form or in a graphical 
one. 

 

 
Figure 8: Textual Simulation Results 

 

As we can see, the textual simulation results are 
expressed as statistical quantities which resume 
resources and queues utilization during a run. On the 
other hand, the graphical form uses plots, bar charts or 
pie charts. For example, Figure 9 shows the utilization 
of the two resources used in the simulation model 
during each replication. 

 

 
Figure 9: Graphical Simulation Results 

 
5.4. Summary of JAPROSIM Important Features 
From the example presented we can draw many 
advantages of the object-orientation of JAPROSIM and 
the process-interaction worldview adopted. The 
relationship between the simulation model and the real 
system is more obvious and therefore easier to teach 
and to understand. The java source code of the 
simulation model is easy to understand and users can 
learn far more than if they have to experiment with 
sophisticated commercial simulation packages in which 
important details of the simulation implementation are 
hidden and thus never understood. 

Furthermore, we can observe in the source code of 
the classes used in the JAPROSIM simulation models, 
that no class of the statistics package is explicitly used. 
In addition, no Java constructs are clearly used to do so. 
This is the key feature of JAPROSIM that all well 
known and useful performance measures are implicitly 
and automatically handled. The user doesn’t worry 
about how many, or what kind of statistical variables to 
use, nor where to place and update them. This 
mechanism is embedded in the library.  

The SimProcess class declares a protected static 
entitiesList which is a Java HashMap to collect the 
residence time of each simulation entity class (a Java 
class that extends the JAPROSIM Entity class). The key 
for the HashMap is the class name and values are 
DoubleStatVar. In the Entity constructor, each time a 
new entity class is created, the above HashMap is 
updated. In the run() method of the Entity Class and 
after the call to the body() method, the residence time is 
updated using the simulation time and the arrivalTime 
attributes. 

Each Queue object possesses a statistical variable 
to hold waiting time in it. This variable is updated 
trough insert()/remove() methods. The number of 
entities in a queue is handled by a length time-
dependent statistical variable. The resource availability 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

181



is also a time-dependant variable. It is used to compute 
resource utilization. The Queue class has a static Java 
Vector to register all queues used in the simulation 
model. In the same way, the Resource class also has an 
analogous list to keep track of all used resources. Those 
lists have a package visibility; hence they could be 
accessed by all the simulation processes. They are 
updated each time a new resource or queue instance is 
created. 

 
6. CONCLUSION 
Our aim in the design of JAPROSIM was putting a 
great emphasis into following the semantic of SIMULA 
but the design itself is not close to it. The advantage of 
this approach is that design is simpler without explicit 
coroutine class support and the semantics of facilities 
that are well-known and thoroughly tested through 
many years use of SIMULA are completely supported. 
Advanced process-oriented modeling features supported 
by JAPROSIM include: capacity-constrained resources, 
conditional waiting and special process relationships. 
The later is supported through the utilities package 
which offers pre-specified entities with specific 
behavior. For example, the SimpleServiceStation entity 
is used to model intelligent servers which are able to 
take decisions like “batch servers”. The 
SymetricServiceStation entity models a service station 
with identical servers while AsymetricServiceStation 
models a service station with multiple heterogeneous 
servers.  

Furthermore, JAPROSIM embeds a hidden 
mechanism for automatic collection of statistics. This 
approach enables a clean separation between 
implementing the dynamics of the model and gathering 
data, so traditional performance measures are 
automatically computed. The model can thus be created 
without any concern over which statistics are to be 
estimated, and the model classes themselves will not 
contain any code involved with statistics. This leads in 
more code source clarity.  

JAPROSIM is distributed as an Open Source 
project (http://sourceforge.net/projects/japrosim/). The 
source code is available freely along with some 
documentation. Future improvements will focus on 
increasing the JAPROSIM performances, integrating a 
graphical model building facility, providing animations 
of simulation models and using xml standards for web-
based simulation. 
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