
PROCESS-INTERACTION MODELING AND SIMULATION: A JAVA-BASED
APPROACH

Brahim Belattar (a), Abdelhabib Bourouis (b)

(a) Department of computer Science, University Colonel El Hadj Lakhdar, Batna 05000, Algeria
(b) Department of computer Science, University Larbi Ben M’Hidi, Oum El Bouaghi 04000, Algeria

(a)brahim.belattar@univ-batna.dz, (b)a.bourouis@univ-oeb.dz

ABSTRACT
A large research effort has been devoted to enrich
mainstream languages as C, C++, Java, Python with
simulation capabilities. The most common choice is to
provide the additional simulation functionality through
a software library. Independently of the architectural
level at which they are provided (application, library,
language), the simulation capabilities embody a world
view for their users. In this paper we present the
architecture and major components of an object-
oriented simulation library written in Java. The process-
interaction worldview adopted by the library is
discussed. A practical example is given in order to
ascertain important features of the library. Further
motivations are discussed and suggestions for
improving our work are given.

Keywords: Discrete-Event Simulation, Object-Oriented
Simulation, Process-Interaction Worldview, Java-based
modeling and simulation

1. INTRODUCTION
Today, Object Oriented Modeling (OOM) is largely
recognized as an excellent approach that deals with
large and complex systems through abstraction,
modularity, encapsulation, layering and reuse. A
conceptual model is obtained by decomposing a real
system in a set of objects in interaction. Each object
represents a real world entity that encapsulates state and
behavior. A class is a template for creating objects that
share common related characteristics. Object Oriented
Simulation (OOS) benefits from all the powerful
features of the OOM especially model conceptualization
which is one of the early steps in a simulation study.

The formalism used by a simulation language to
conceptualize a domain or system is called its
“worldview”. Three worldviews are commonly used to
model the dynamics of discrete-event systems: Event-
Scheduling, Process-Interaction and Activity Scanning.
The process-interaction worldview is often convenient
for describing the queuing nature of higher-level
stochastic systems. From an external point of view, the
principal component of simulation software is the
simulation language (SL) which allows description of

simulation models and their dynamic behavior (Korichi
and Belattar 2008).

A large research effort has been devoted to enrich
mainstream languages as C, C++, Java, Python with
simulation capabilities. The most common choice is to
provide the additional simulation functionality through
a software library. Independently of the architectural
level at which they are provided (application, library,
language), the simulation capabilities embody a world
view for their users. The world view is essentially the
set of concepts that constitute the basic elements
available to the modeler to compose and to specify the
simulation. The diverse world views are functionally
equivalent, but differ in expressive power and in terms
of computational efficiency. Native support for
multithreaded execution is a fundamental aspect to the
implementation of a natural process-oriented modeling
worldview. This can be achieved using special
programming languages that offer at least a SIMULA’s
coroutine like mechanism, thus programming languages
offering multithreading like Java are suitable.

JAPROSIM is an object-oriented simulation
library, free and open source that adopts the popular
process-interaction worldview. It is written in Java and
was deliberately kept simple, easy to use and extensible.
The library is divided into packages to organize the
collection of classes into important functional areas. It
is easy to build discrete event simulation models using
JAPROSIM, either for experimented programmers in
Java or for simulation experts with elementary
programming knowledge. JAPROSIM can also serve as
a basis for the development of dedicated object-oriented
simulation environments.

The rest of the paper is organized as follows: In
section 2, we present an overview of related work. In
section 3 major components of the simulation library
and its architecture are detailed. In section 4 we
describe the process-interaction worldview adopted by
JAPROSIM. An example is given in section 5 in order
to ascertain important features of JAPROSIM. Section 6
summaries the paper and provides suggestions for
future improvements of our work.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

176

mailto:brahim.belattar@univ-batna.dz
mailto:a.bourouis@univ-oeb.dz

2. RELATED WORK
The idea of building process-oriented simulations using
a general purpose object-oriented programming
language is not original and several tools were
developed in this way. For example, both of CSIM++
(Schwetman 1995) and YANSL (Joines and Roberts
1996) are based on C++, while PsimJ (Garrido 2001),
JSIM (Miller et al. 1998) are based on Java. Discrete
Event Simulation tools written in Java, like PsimJ and
SSJ (L’ecuyer et al. 2002) are well designed and
freeware libraries but not open source. Silk (Kilgore
2000) is also well designed but is a commercial tool.
There is also a large collection of free open source
libraries, we may consider for instance:

• JavaSim (Little 1999) is a set of Java packages

for building discrete event process-based
simulation, similar to that in Simula and
C++SIM.

• JSIM (Miller et al. 1998) is a Java-based
simulation and animation environment
supporting Web-Based Simulation.

• Simjava (Howell and McNab 1998) is a
process based discrete event simulation
package for Java, similar to Jade's Sim++, with
animation facilities.

• jDisco (Helsgaun 2000) is a Java package for
the simulation of systems that contains both
continuous and discrete-event processes.

• DESMO-J (Page and Wolfgang 2005) is a
framework which supports both event and
process worldviews.

• SimKit (Buss 2002) is a component framework
for discrete event simulation, influenced by
MODSIM II and based on the event graph
modelling.

Many simulators aim at replicating the

functionality and design of Simula in Java. For
example, SSJ is designed for performance, flexibility
and extensibility. It offers its users the possibility to
choose between many alternatives for most of the
internal algorithms and data structures of the simulator.
SimJava and JSim are among the first implementations
of the thread-based class of simulators. These early
efforts pay particular attention to web-based simulation
and to the Java Applet deployment model (Cuomo et al.
2012).

JAPROSIM is not a java version of any existing
simulation language as Simjava or JavaSim. There are,
however, unique aspects in JAPROSIM that lead to
fundamental distinctions between our work and others.
For example, JAPROSIM embeds a hidden mechanism
for automatic collection of statistics. This approach
enables a clean separation between implementing the
dynamics of the model and gathering data, so traditional
performance measurements are automatically
computed. The model can thus be created without any
concern over which statistics are to be estimated, and
the model classes themselves will not contain any code

involved with statistics. This leads in more code source
clarity. Nevertheless, users could, if needed, implement
specific statistics collection using different classes
offered by the JAPROSIM statistics package. This
feature makes the key difference between JAPROSIM
and the other discrete event simulation libraries written
in Java. Exception is made for SimKit which already
offers this possibility, but which uses a different
modeling approach based on event graphs.

3. THE JAPROSIM LIBRARY
The JAPROSIM library is part of an ongoing project
that aims at providing an advanced visual interactive
simulation and modeling environment for DES
(Bourouis and Belattar 2008). The library is currently
divided into six main packages:

• kernel: a set of classes dealing with active

entities, scheduler, queues and resources.
• random: contains classes for uniform random

stream generation.
• distributions: contains a rich set of classes for

useful probability distributions.
• statistics: contains classes representing

intelligent statistical variables.
• gui: a set of graphical user interface classes to

use for project parameterization, trace and
simulation results presentation.

• Utilities: a set of useful classes for express
model development.

We will focus on the simulation kernel, random,

and statistics packages.

3.1. The Kernel Package
The kernel package is at the heart of JAPROSIM. A
UML class diagram of the kernel is given below.

Figure 1: The Kernel class diagram

As we can see, the kernel package is made up of

classes dealing with active entities, scheduler, queues
and resources. The coroutine like mechanism is
implemented trough SimProcess, Scheduler,
StaticEntity and Entity classes. A coroutine program is
a collection of coroutines which run in quasi-parallel
with one another. Each coroutine is an object with its
own execution state, so that it may be suspended and
resumed. Our aim in the design of JAPROSIM was

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

177

putting a great emphasis into following the semantic of
SIMULA but the design itself is not close to it. The
advantage of this approach is that design is simpler
without explicit coroutine class support and the
semantics of facilities that are well-known and
thoroughly tested through many years use of SIMULA
are completely supported. Native support for
multithreaded execution is a fundamental aspect to the
implementation of a natural process-oriented modeling
capability in Java. Every active entity’s life cycle is
executed in a single separate thread.

3.2. The Random and Statistics Packages
Random number generators (RNGs) are the basic tools
of stochastic modeling. The random package provides
the RandomStream interface which represents a base
reference for creating Random Number Generators.
Each RNG must rewrite the RandU01() method which
normally returns a uniformly distributed number (a Java
double) in the interval [0, 1]. JAPROSIM provides a set
of well known good RNGs see [[L’ecuyer (1998)]]13]
and [14[L’ecuyer and Panneton (2005)], as Park-Miller,
McLaren-Marsaglia and RandMrg in which the
backbone generator is the combined multiple recursive
generator (CMRG) proposed in [15[L’ecuyer (1999)].
The setSeed(long[] seed) method is used to specify
seeds instead of default values. The user can define its
own RNG by implementing the RandomStream
interface. To be used with JAPROSIM, an instance of
the user-defined RNG must be assigned to the
Scheduler’s static public attribute rng. A prosperous set
of discrete and continuous Random Variate Generators
(RVGs) is offered by the distribution sub-package. This
set covers typically most practical distributions to be
used in discrete event simulation. However, the user
could supply it with additional RVGs.

The statistics package provides two useful classes.
DoubleStatVar class dealing with time-independent
statistical variables (having double values) as response
time and waiting time in a queue. It implements the
mechanisms for keeping track of observational-based
statistics and must be updated every time its value
change using the update() method. TimeIntStatVar class
is used for time-dependent statistics (with integer
values) such as a queue length or number of customers
in a system. Typically, the user instantiates the desired
class, then puts and updates it in the appropriate code
locations. The placement of statistical variables and
their update is a source of several pitfalls. For this
reason we have enhanced automatic placement and
update of those variables for the most known and useful
performance measures.

Figure 2: The distribution sub-package

4. PROCESS-INTERACTION WORLDVIEW IN

JAPROSIM
The origins of the process-interaction worldview can be
traced to the authors of SIMULA. It provides a way to
represent a system's behavior from the active entities
point of view. A system is modeled as a set of active
entities in interaction. Interaction is a consequence of
competition and/or cooperation for the acquisition of
critical resources. A process-oriented model is a
description of the sequence of processing steps these
entities experience as they flow through the system.
Each active entity’s life cycle consists of a sequence of
events, activities and delays. A routine implementing an
active entity requires special mechanisms for
interrupting, suspending and resuming its execution at a
later simulated time under the control of an internal
event scheduler. This can be achieved using special
programming languages that offer at least a SIMULA’s
coroutine like mechanism, thus programming languages
offering multithreading like Java are suitable.

In JAPROSIM, active entities are transient entities
moving through the system (dynamic entities). An
entity’s life cycle is a sequence of active and passive
phases. On one hand, an active phase is characterized
by the execution of the relevant process. Normally this
corresponds to the events during which system state
changes without progression of simulation time. On the
other hand, passive phases are characterized by
activities and delays. So the relevant process is
suspended while simulation time advances. Events are
the criterion of scheduling which explain the use of a
future event list (FEL). After a process is suspended, the
scheduler resumes and decides of which is the next
process to reactivate according to the system state and
the FEL. The scheduler is a special process that
coordinates the execution of a simulation model.
Processes are executed in pseudo-parallel and only one
(which has the imminent simulation time) is running at
any instance of real time. Simulation processes may
execute concurrently at any instance of simulation time.
Hence the scheduler executes in alternation with other
simulation processes.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

178

In JAPROSIM, this shared behavior is modeled
through the SimProcess abstract class which extends the
Java Thread class. The method processResume(Entity
e) is called by the scheduler to reactivate a simulation
process and mainResume() is called by a simulation
process to reactivate the scheduler. Each simulation
process has its own lock object. Locks are used in
combination with wait() and notify() to synchronize
implementation threads instead of the Java deprecated
methods suspend() and resume(). A thread which calls
any of the previous methods will block on its own lock
after notifying the appropriate one.

Schedule(Entity e) is a synchronized method
offered by the SimProcess class which could be called
by the scheduler or by a newly created simulation
process for an appropriate insertion into the FEL. At the
end of its life cycle, a simulation process calls
automatically the dispose() method to reactivate the
scheduler without blocking itself. So the corresponding
thread could be terminated. This leads to free occupied
memory and improve simulation performance.
Otherwise this may cause a Java runtime error as we
experienced with an academic version of the
commercial package Silk.

Specific behavior of a simulation process is
normally described using the dedicated abstract method
body(). It must be rewritten to be an ordered sequence
of method invocations terminated by an implicit
automatic call to dispose(). The behavior of the
scheduler is also described using this method. Since
SimProcess is abstract, it is intended to be extended. A
new class is created to model simulation processes. The
Entity class provides the basis for defining classes that
obey to the process-oriented simulation worldview. This
class is declared to be abstract, so instances of Entity
cannot be created directly. Instead, modelers define
their own classes that extend Entity and describe the
dynamic behavior of the corresponding system
components in terms of the process-oriented methods
inherited in particular from those classes.

Each class derived from Entity runs in its own
thread of execution, a capability inherited from
SimProcess. The Entity class provides the
implementation of the run() method which in turn
invokes body(). The user is required to supply the
body() method. Four remarkable methods are offered:
insert(), remove(), seize(), hold() and release(). They
could be used to model familiar queuing scenarios. The
passivate() method is used to wait until a specific
system state is reached (ex: waiting for a resource to be
free). Since the thread will be suspended and inserted
into the passive list (PL) after a call to passivate(), this
call is typically used within a while() loop. Each time
the scheduler takes control; it starts reactivating
suspended threads in the PL first, then dealing with the
FEL. So such a reactivated thread would have the
opportunity to return back to the PL, if there is no
expected evolution in the system state.
The abstract class StaticEntity is used to model the
behavior of active entities that have not the ability to

move. Typical examples of those entities are “intelligent
resources”. StaticEntity derives directly from
SimProcess. Since The Entity class is used to model
dynamic entities, it derives from StaticEntity and
defines two new methods insert() and remove(). The
other methods: seize(), hold(), release() and passivate()
discussed previously are defined in the StaticEntity and
hence inherited by Entity.

The scheduler proceeds in two phases. First, it
reactivates each thread in the PL. So the reactivated
thread checks for expected changes in the system state
and may return back to the PL as it may continue
executing the rest of its operations. Secondly, the
scheduler picks the imminent simulation process from
the FEL and reactivates the corresponding thread. These
two phases are repeated as long as the simulation
experiment termination condition isn’t verified. The
Scheduler class has an attribute rng which is an instance
of a random number generator and could be customized
by the user. The EntityCompare class implements the
Java Comparator interface and is used to implement
priority queuing mechanism.

The Resource class represents a passive entity
characterized by a capacity. Generally, a simulation
process seizes some units of a resource to accomplish a
service and releases them later. The hold() method of
the StaticEntity class is used to specify the service
duration. The Queue class models a space for waiting
which may be limited. It provides an ordered list where
entities (or other user-defined types) can reside.
Typically, an entity is inserted into a queue by having it
activate the insert(Queue q) method of the Entity class.
There is no implicit conditional status delay logic
associated with queues, which means that the entity's
thread of execution is not suspended pending some
system status evolution.

Modeling conditional status delays is the realm of
the while() and passivate() constructs. As a
consequence, an entity can reside simultaneously in any
number of queues. This feature can be particularly
convenient in collecting certain types of system
statistics related to waiting times or queue lengths.
Another important distinction is that the removal of an
entity from a queue could be independent of the
ordering of the queue at the time of removal. Users are
required to explicitly identify the entity to be removed
at the time of removal. Typically this is accomplished
by having the corresponding entity activate the
remove(Queue q) method of the Entity class. While
entities are generally inserted and removed from queues
using the insert(Queue q) and remove(Queue q)
methods of the Entity class, the same tasks can be
accomplished using the insert(Entity e) and
remove(Entity e) methods defined in the Queue class.

5. A MODELING EXAMPLE USING JAPROSIM
5.1. Example Description
The modeling example illustrates a simplified
simulation model of a TVs inspection and adjustment
process as described in (Pegden et al. 1990).

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

179

Figure 3: The TVs Inspection example

In this model, an arriving TV is first inspected at

an inspection station. If a TV is found to be functioning
improperly, it is routed to an adjustment station. After
adjustment, the TV is sent back to the inspection station
where it is again inspected. TVs passing inspection,
whether to the first time or after one or more routings
through the adjustment station, are sent to a packing
area. A probabilistic branching is used when a TV
passes the inspection station. It specifies that 15% of the
TVs inspected are sent to the adjustment station and
85% are sent to the packing area. The inter-arrival time
between TVs to the system, the inspection delay and the
adjustment delay are all modeled as uniform variates.
(See the source code in Figure. 5).

5.2. The JAPROSIM Simulation Model
In JAPROSIM we can model each active entity in a
separate class derived from the Entity class. A class
diagram of the JAPROSIM simulation model for this
example is shown below:

Figure 4: A class diagram of the simulation model

From Figure 4, it appears that the JAPROSIM

simulation model of the example uses two classes:
TVInspection and TV1. The source code of each class is
given below.

Figure 5: Source code of The TV1 class

We can easily distinguish four parts in the source

code of The TV1 class. The first part (from line 4 to line
11) serves to set the parameters of the model. We can
see that the inspection delay, the adjustment delay and
the inter-arrival time are defined as uniform variates
with specific arguments. We have also to define the
inspector and adjustor resources and their associated
queues. The variable destination is defined as a uniform
variate and is used when deciding if a TV just inspected
is to be routed to the adjustment station or to exit the
system.

The second part (from line 12 to line 15) serves to
route the active entity to the inspection station and to
create next TVs arrivals with respect to the inter-arrival
time between TVs. The third part (from line 16 to line
28) represents the classical scheme of resource
allocation. A TV arriving at the inspection station is
inserted in the associated queue. When a resource unit is
free, it is allocated to a waiting TV with respect to the
queue priority. An inspection delay associated to this
TV is sampled, and the TV will hold the resource unit
seized until the associated delay is elapsed. The
resource unit is then released and can be allocated to
other waiting TVs. Line 28 serves to decide if the TV
just inspected is to be routed to the adjustment station or
to exit the system.

The fourth part (from line 29 to line 39) models the
adjustor resource allocation scheme. A TV arriving at
the adjustment station is inserted in the associated
queue. When the adjustor resource is free, it is allocated
to a waiting TV with respect to the queue priority. An
adjustment delay associated to this TV is sampled, and
the TV will hold the adjustor resource seized until the
associated delay is elapsed. The adjustor resource is
then released and the TV is sent back to the inspection
station.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

180

To run a JAPROSIM simulation model, we need
another class which constitutes a starting point for any
Java program. This class contains the main() method for
standalone programs or the init() method for browser-
based applets. It is where simulation model would be
initialized, and the scheduler started. In our example,
this class is called TVInspection. The source code is as
follows:

Figure 6: Source code of the TVInspection class

5.3. Running the Simulation Model
When running the simulation model, the JAPROSIM
window is first displayed. It consists of an
experimentation frame where simulation parameters are
to be set. Parameters like the number of replications, the
simulation duration, the RNG used must be specified
here by the user. A button Run/Stop allows user to start
simulation, stop and resume it at any time during
execution. Two other buttons are used for presentation
of simulation results and trace execution.

Figure 7: JAPROSIM Experimentation Frame

At the end of each simulation run, the simulation

results can be viewed in a textual form or in a graphical
one.

Figure 8: Textual Simulation Results

As we can see, the textual simulation results are
expressed as statistical quantities which resume
resources and queues utilization during a run. On the
other hand, the graphical form uses plots, bar charts or
pie charts. For example, Figure 9 shows the utilization
of the two resources used in the simulation model
during each replication.

Figure 9: Graphical Simulation Results

5.4. Summary of JAPROSIM Important Features
From the example presented we can draw many
advantages of the object-orientation of JAPROSIM and
the process-interaction worldview adopted. The
relationship between the simulation model and the real
system is more obvious and therefore easier to teach
and to understand. The java source code of the
simulation model is easy to understand and users can
learn far more than if they have to experiment with
sophisticated commercial simulation packages in which
important details of the simulation implementation are
hidden and thus never understood.

Furthermore, we can observe in the source code of
the classes used in the JAPROSIM simulation models,
that no class of the statistics package is explicitly used.
In addition, no Java constructs are clearly used to do so.
This is the key feature of JAPROSIM that all well
known and useful performance measures are implicitly
and automatically handled. The user doesn’t worry
about how many, or what kind of statistical variables to
use, nor where to place and update them. This
mechanism is embedded in the library.

The SimProcess class declares a protected static
entitiesList which is a Java HashMap to collect the
residence time of each simulation entity class (a Java
class that extends the JAPROSIM Entity class). The key
for the HashMap is the class name and values are
DoubleStatVar. In the Entity constructor, each time a
new entity class is created, the above HashMap is
updated. In the run() method of the Entity Class and
after the call to the body() method, the residence time is
updated using the simulation time and the arrivalTime
attributes.

Each Queue object possesses a statistical variable
to hold waiting time in it. This variable is updated
trough insert()/remove() methods. The number of
entities in a queue is handled by a length time-
dependent statistical variable. The resource availability

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

181

is also a time-dependant variable. It is used to compute
resource utilization. The Queue class has a static Java
Vector to register all queues used in the simulation
model. In the same way, the Resource class also has an
analogous list to keep track of all used resources. Those
lists have a package visibility; hence they could be
accessed by all the simulation processes. They are
updated each time a new resource or queue instance is
created.

6. CONCLUSION
Our aim in the design of JAPROSIM was putting a
great emphasis into following the semantic of SIMULA
but the design itself is not close to it. The advantage of
this approach is that design is simpler without explicit
coroutine class support and the semantics of facilities
that are well-known and thoroughly tested through
many years use of SIMULA are completely supported.
Advanced process-oriented modeling features supported
by JAPROSIM include: capacity-constrained resources,
conditional waiting and special process relationships.
The later is supported through the utilities package
which offers pre-specified entities with specific
behavior. For example, the SimpleServiceStation entity
is used to model intelligent servers which are able to
take decisions like “batch servers”. The
SymetricServiceStation entity models a service station
with identical servers while AsymetricServiceStation
models a service station with multiple heterogeneous
servers.

Furthermore, JAPROSIM embeds a hidden
mechanism for automatic collection of statistics. This
approach enables a clean separation between
implementing the dynamics of the model and gathering
data, so traditional performance measures are
automatically computed. The model can thus be created
without any concern over which statistics are to be
estimated, and the model classes themselves will not
contain any code involved with statistics. This leads in
more code source clarity.

JAPROSIM is distributed as an Open Source
project (http://sourceforge.net/projects/japrosim/). The
source code is available freely along with some
documentation. Future improvements will focus on
increasing the JAPROSIM performances, integrating a
graphical model building facility, providing animations
of simulation models and using xml standards for web-
based simulation.

REFERENCES
Bourouis. A, Belattar. B, 2008. JAPROSIM: A Java

Framework for Discrete Event Simulation, in
Journal of Object Technology, vol. 7, no. 1,
January-February 2008, pp. 103-119, Available
from:<http//www.jot.fm/> [accessed June 16,
2013].

Buss, A., 2002. Component Based Simulation Modeling
with SimKit. Proceedings of the 2002 Winter

Simulation Conference, pp. 243-249, 2002,
Piscataway, New Jersey.

Cuomo, A., Rak, M., Villano, U., 2012. Process-
oriented Discrete-event Simulation in Java with
Continuations - Quantitative Performance
Evaluation, Proceedings of the 2nd International
Conference on Simulation and Modeling
Methodologies, Technologies and Applications,
pp. 87-96, 2012, Rome, Italy.

Garrido, J.M., 2001. Object-oriented Discrete Event
Simulation with Java: a practical introduction.
New York, Kluwer Academic/Plenum Publishers.

Helsgaun, K., 2004. Discrete Event Simulation in Java.
DATALOGISK SKRIFTER (writings on
computer science), Roskilde University, Denmark.

Howell, F., McNab, R., 1998. simjava: a discrete event
simulation package for Java with applications in
computer systems modelling. First International
Conference on Web-based Modelling and
Simulation, San Diego CA.

Joines, J.A.; Roberts, S.D. 1996. Design of object
oriented simulations in C++. Proceedings of the
1996 Winter Simulation Conference, pp. 65-72,
1996, Piscataway, New Jersey.

Kilgore, R.A., 2000. Silk, Java and Object-Oriented
simulation. Proceedings of the 2000 Winter
Simulation Conference, pp. 246-252, 2000,
Piscataway, New Jersey.

Korichi Ahmed, Belattar Brahim, 2008. Towards a
Web Based Simulation Groupware: Experiment
with BSCW, WSEAS transactions on Business and
Economics, Issue 1, Volume 5, pp. 9-15, January
2008.

L’Ecuyer, P., 1998. Uniform Random Number
Generator. Proceedings of the 1998 Winter
Simulation Conference, pp. 97-104, 1998,
Piscataway, New Jersey.

L’Ecuyer, P., 1999. Good parameters and
implementations for combined multiple recursive
random number generators”, Operations Research,
vol. 47(1), 159–164.

L’Ecuyer, P.,, Melian, L., Vaucher, J., 2002. SSJ: A
framework for stochastic simulation in Java.
Proceedings of the 2002 Winter Simulation
Conference, pp. 234–242, 2002, Piscataway, New
Jersey.

L’Ecuyer, P., Panneton, F., 2005. Fast Random
Number Generators Based on Linear Recurrences
Modulo 2: Overview and Comparison.
Proceedings of the 2005 Winter Simulation
Conference, pp. 110-119, 2005, Piscataway, New
Jersey.

Little, M. C., 1999. The JavaSim User's Manual.
Department of Computing Science, University of
Newcastle upon Tyne.

Miller, J.A., Ge, Y., Tao, J., 1998. Component Based
Simulation Environments: JSIM as a Case Study
Using Java Beans. Proceedings of the 1998 Winter
Simulation Conference, pp. 373-381, 1998,
Piscataway, New Jersey.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

182

http://sourceforge.net/projects/japrosim/

Page, B., Wolfgang, K., 2005. The Java Simulation
Handbook - Simulating Discrete Event Systems
with UML and Java. Aachen, Shaker Verlag.

Pegden, C.D., Shannon, R.E. and Sadowski, R.P., 1990.
Introduction to Simulation Using SIMAN. New
York, McGraw-Hill Inc.

Schwetman, H. 1995. Object-Oriented simulation
modeling with C++/CSIM17. Proceedings of the
1995 Winter Simulation Conference, pp. 529-533,
1995, Piscataway, New Jersey.

AUTHORS BIOGRAPHY
B. Belattar is a professor at the University of Batna
since 1992. He has also taught at the University of
Constantine from 1982 to 1985. He received his BS
degree in Computer science from the University of
Constantine in 1981 and his MS and PhD degrees from
the University Claude Bernard of Lyon (French)
respectively in 1986 and 1991. His research interests
include simulation, databases, semantic web and AI.

A. Bourouis is a lecturer at the University of Oum el
Bouaghi since 2003. He received his BS degree in
Computer science from the University of Constantine in
1999 and his MS and PhD degrees from the University
of Batna respectively in 2003 and 2009. His research
interests include Artificial intelligence, performance
evaluation, parallel and distributed simulation.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

183

