
CREATING SORTED LIST FOR SIMULINK MODELS WITH GRAPH

TRANSFORMATION

Péter Fehér
(a)

, Tamás Mészáros
(a)

, Pieter J. Mosterman
(b)

 and László Lengyel
(a)

(a)

 Department of Automation and Applied Informatics

Budapest University of Technology and Economics

Budapest, Hungary
(b)

 Research and Development

MathWorks

Natick, MA, USA

(a)

{feher.peter, mesztam, lengyel}@aut.bme.hu,
(b)

pieter.mosterman@mathworks.com

ABSTRACT

Embedded systems are usually modeled to simulate

their behavior and facilitate design space exploration.

Nowadays, this modeling is often implemented in the

Simulink® environment, which offers strong support

for modeling complex systems. As design progresses,

models are increasingly elaborated by gradually adding

implementation detail. An important elaboration is the

execution order of the elements in a model. This

execution order is based on a sorted list of all

semantically relevant model elements. Thus, to create

an implementation or to execute a model, Simulink

generates the dependency list of the model entities,

which is referred to as the Sorted List. The work

presented in this paper raises the level of abstraction of

the model elaboration by modeling the Sorted List

generation in order to unlock the potential for reuse,

platform independence, etc. The transformation is

implemented by applying graph transformation

methods. Moreover, an analysis of the transformation is

also provided.

Keywords: embedded systems, model-based design,

model transformation, Simulink

1. INTRODUCTION

Nowadays a growing amount of software is modeled

during the development phase. This is especially true

with respect to the embedded systems. By modeling

these systems, they can be examined based on, for

example, their functionality, performance or robustness.

Selecting the most appropriate framework for

modeling systems requires a remarkable amount of

attention. Recently, domain-specific modeling has

become a popular approach to describe complex

systems. It is a powerful, but still understandable

technique, the main strength of which lies in the

application of domain-specific languages. Since

domain-specific languages are specialized for a certain

application domain, their application is more efficient

than that of general purpose languages (Fowler 2010,

Kelly and Tolvanen 2008).

MATLAB® (Matlab 2012) and Simulink®

(Simulink 2012a) have undoubtedly become some of

the leading tools for model-based system design and

synthesis in the past years (Mosterman, Prabhu, and

Erkkinen 2004, Mosterman and Vangheluwe 2002,

Nicolescu and Mosterman 2010). As many other

modeling tools, Simulink also offers the possibility to

simulate the modeled system enabling thus to examine

the behavior of the system before realizing it.

In order to simulate the system under design,

Simulink must perform numerous preprocessing steps

on the model. An important step of this preprocessing

phase is inferring the execution order of the entities

used in the model. This execution order is referred to as

the Execution List. To establish the Execution List,

Simulink must determine the relationships between the

blocks. This is the aim of generating the so called

Sorted List that constitutes a dependency list (Fehér et

al. 2012, Simulink 2012b). That is, the Sorted List

contains the elements of the modeled system in a

specific order based on the control and data

dependencies that determine how the different blocks

can follow each other in the overall execution.

At present, generating the Sorted List is

implemented in the Simulink code base. Though

efficient, this makes difficult or even prevents

unlocking value for which a higher level of abstraction

is more appropriate (e.g., reasoning about the

implementation and modularization of operations).

Therefore, by implementing the Sorted List generation

procedure at a higher level of abstraction, the

advantageous properties of domain-specific modeling

can be utilized. This is a fundamental premise of

Computer Automated Multiparadigm Modeling; to use

the most appropriate formalism for representing a

problem at the most appropriate level of abstraction

(Mosterman and Vangheluwe 2004, Mosterman,

Sztipanovits, and Engell 2004).

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

142

mailto:%7Bfeher.peter,%20mesztam,%20lengyel%7D@aut.bme.hu
mailto:pieter.mosterman@mathworks.com

This paper focuses on a novel solution to generate

the Sorted List for Simulink models. This approach is

based on a model transformation created in the Visual

Modeling and Transformation System (VMTS)

framework. VMTS has been prepared to communicate

with the Simulink environment; therefore the model

transformations designed in VMTS can be directly

applied to the various Simulink models. Using model

transformation to solve the Sorted List generation issue

helps to raise the abstraction level from the API

programming to the level of software modeling. The

solution possesses all advantageous characteristics of

model transformations, such as transparency, reusability

and platform independence.

The rest of the paper is organized as follows.

Section 2 presents the algorithm used for generating the

Sorted List. Next, Section 3 introduces the implemented

transformation. In Section 4, the properties of the

transformation are examined. A simple example for the

transformation is presented in Section 5. Finally,

concluding remarks are elaborated.

2. CREATING A SORTED LIST

As it was previously described, Simulink creates the

Sorted List based on the dependency of the elements.

Previous work has captured in detail the dependencies

that Simulink accounts for (Han and Mosterman 2010).

A block b depends on the block a if the direct

feedthrough (DF) property (Simulink 2012c) on its

inport block obtaining the signal from a is set to true. In

this case block a must appear before block b in the

Sorted List. Else, there is no dependency, that is, the

output of the block b with the input port can be

computed without knowing the value on the input port.

In this manner, there generally are many lists that

satisfy the dependencies and it does not make any

difference in semantics which list is selected.

At this phase of the processing, Simulink has

already flattened the virtual subsystems of the model,

therefore only nonvirtual subsystems left. Nonvirtual

subsystems are, for example, the Enabled Subsystem,

Triggered Subsystem, Atomic Subsystem, Function-call

Subsystem, etc. These nonvirtual subsystems have their

own Sorted List with the same principle discussed

above.

The nonvirtual subsystems are treated as opaque

blocks (in terms of execution) at the hierarchical level

where they are used and so the input ports of a

nonvirtual subsystem also have the DF attribute. The

setting of this attribute is inferred from the content of

the nonvirtual subsystem. Generally, for each input port

of the nonvirtual subsystem the DF is set to be same as

the DF attribute of the first block that the input connects

to internally (to the nonvirtual subsystem). Note that a

more sophisticated analysis may be applied to resolve

some DF issues, as presented in other work (Mosterman

and Ciolfi 2004, Denckla and Mosterman 2004).

Figure 1: An example Sorted List

The Sorted Lists have hierarchical layering, as

Figure 1 depicts. The 0 : x says that x is the position of

the block in the Sorted List for the 0 hierarchical layer

(with 0 being the top). Similarly, 2 : y says that y is the

position of the block in the Sorted List for the 2

hierarchical layer, which is chosen the same as the

position of the block with the hierarchical layering in its

parent’s Sorted List. For example, 2 : 0 Constant says

that the Constant block is at the first position for the 2

hierarchical layer, which relates to the Subsystem

element.

In this section the algorithms for creating a Sorted

List are presented as well as the complexity of the entire

process.

2.1. The Algorithms

The main part of the Sorted List generation algorithm is

shown in Algorithm 1. The SL algorithm contains a

simple Repeat-Until block with only three algorithms.

These three algorithms are responsible for processing

the blocks.

The three algorithms differ from each other in the

type of block that they processing. First, the

PROCESSFIRSTBLOCKS algorithm processes only blocks

without any incoming edge. Since without incoming

edges a block cannot depend on any other block, the

processing of these blocks does not need the

examination of the DF properties. The

PROCESSFIRSTBLOCKS algorithm is presented in

Algorithm 2.

The PROCESSFIRSTBLOCKS algorithm obtains a

parameter, which sets the actual subsystem the blocks

are being processed within. In case the current

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

143

hierarchical level is the root of the model, then the

parameter is null. The PROCESSFIRSTBLOCKS algorithm

contains a while block. The condition of this loop is the

return value of the PROCESSBLOCK algorithm, which is

responsible for the processing itself. In case there was at

least one block without incoming edges, the

PROCESSBLOCK returns true and the

DELETEBLOCKSANDEDGES algorithm is called. Since

the DELETEBLOCKSANDEDGES deletes the processed

blocks and their edges, the next time the

PROCESSBLOCK algorithm is called, there may be new

blocks without incoming edges. If there is no such a

block, the algorithm terminates.

The PROCESSBLOCK algorithm is shown in

Algorithm 3. It has two parameters: the sub sets the

actual subsystem, while the onlyFirsts parameter

determines whether only the blocks without incoming

edges should be processed. Since each nonvirtual

subsystem is basically an opaque block for execution

purposes, it has its own Sorted List. Therefore, if this

parameter is set to a subsystem, then only those blocks

should be processed that are contained by this

subsystem. This containment can be checked by the

examination of the Parent property of the block to be

processed. The algorithm only processes “simple”

blocks, it is referred to blocks that are not composite

elements. Moreover, the Inport and Outport blocks of

the subsystems should not be processed, therefore, they

are not part of the SimpleBlock set.

If the onlyFirsts parameter is set to true, the

algorithm processes only the blocks without any

incoming edge, that is, the Sources property is empty.

Otherwise, if the onlyFirsts parameter is false, the

algorithm must check if the DF properties on the port of

the incoming edges are set to false.

The actual processing of a block is straightforward.

The CALCULATEINDENT method determines the actual

indent and position of the block. These values depend

on the hierarchical level and the number of previously

processed blocks. The name of the block is appended to

the calculated value. After the list is maintained the

algorithm depicts the block as “Processed”. If the

algorithm processed at least one block, then it returns

true.

As it was mentioned before, the

DELETEBLOCKSANDEDGES algorithm deletes the

processed blocks and its edges. It is depicted in

Algorithm 4.

After there are no “simple” blocks left in the model

without incoming edges, the SL algorithm moves on to

process possible subsystems. This is achieved by the

PROCESSSUBSYSTEM algorithm shown in Algorithm 5.

Since it is possible in Simulink that a subsystem

contains another subsystem, the algorithm obtains the

current subsystem as a parameter. If it is set to null then

the algorithm looks for a subsystem on the root level.

The return value of the CHECKFORSUBSYSTEM

algorithm determines if there is any processable

subsystem on the given hierarchical level. If there is

any, then it is stored in the newSub variable, and

processed in a repeat-until loop.

This loop is the same as the one in the SL

algorithm but it has three additional commands. First,

this algorithm sets the processedAny variable to true,

which will be the return value. Next, it calls the

DELETEBLOCKSANDEDGES to delete the already

processed elements if there are any. After this, the

PROCESSINOUTPORTS algorithm deletes the Inport and

Outport blocks and the edges connecting to them. This

is necessary, since the Sorted Lists do not contain these

blocks. After these steps, the PROCESSSUBSYSTEM

algorithm processes the blocks in the same manner as

the SL algorithm. As it can be seen in the Algorithm 5,

the PROCESSSUBSYSTEM algorithm can be called

recursively, in case the subsystem contains another

subsystem. The algorithms are called with the newSub

parameter as the current hierarchical level.

In order to determine if there is any processable

Subsystem on the current hierarchical level, the

CHECKFORSUBSYSTEM algorithm is used. The

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

144

algorithm is shown in Algorithm 6. A Subsystem is

processable, if it is contained by the appropriate parent

element and does not have any input port with the DF

property set to true. In case the algorithm finds such a

Subsystem, then it assigns the Subsystem to the newSub

variable and returns true. Otherwise, the return value is

false.

As it was mentioned before, the Inport and Outport

blocks of the Subsystem are not part of the Subsystem.

Therefore, their outgoing edges should be deleted

without processing the blocks, as it is depicted in

Algorithm 7. Note, that a nonvirtual Subsystem is only

processable if none of its In ports has its DF property

set to true. In case of virtual Subsystems this restriction

does not hold, but the virtual Subsystems must be

flattened before the processing of the Sorted List

begins. This makes it possible to delete all edges

connected to the Inport blocks.

The PROCESSNORMALS algorithm (Algorithm 8) is

called from both repeat-until blocks. This algorithm is

responsible for processing those blocks that have an

arbitrary number of incoming edges but none of its

input ports has a DF property with a value of true. It is

similar to the PROCESSFIRSTBLOCKS algorithm but calls

the PROCESSBLOCK algorithm with different parameter.

Note that both until blocks (in SL and

PROCESSSUBSYSTEM) have the same condition. That is,

the algorithm stays in the loop if either the

PROCESSSUBSYSTEM or the PROCESSNORMALS

algorithm returns true. In other words this means that

either of these two algorithms processes at least one

element. In this case, after the deletion of the related

edges, there may be new, processable blocks.

Otherwise, if there are no Subsystems and no “simple”

blocks to process, then either all elements have been

processed or there is an algebraic loop in the current

hierarchical level. The SL algorithm terminates if this

condition is met in the root level, that is, no elements

are left in the model or there is an algebraic loop.

This section has presented the SL algorithm, which

was designed to create a Sorted List from the input

model. Next, the complexity of the algorithm will be

determined.

2.2. Complexity Analysis

In order to use an algorithm in production applications

its complexity must be established. In this section the

algorithms are examined based on their execution time.

Therefore, the attributes that determine their

computational complexity must be determined.

To determine the complexity of the SL algorithm,

the following algorithms must be examined (the rest of

the algorithms call these ones):

 PROCESSBLOCK

 DELETEBLOCKSANDEDGES

 CHECKFORSUBSYSTEM

 PROCESSINOUTPORTS

The PROCESSBLOCK algorithm is called from the

PROCESSFIRSTBLOCKS and the PROCESSNORMALS

algorithms. This is the one and only algorithm that

processes “simple” blocks. On the one hand, since the

Sorted List must contain all of these blocks, the body of

the PROCESSBLOCK algorithm is executed at least nsb

times, where nsb means the number of “simple” block

on the current hierarchical level. On the other hand,

since each processed block is deleted by the

DELETEBLOCKSANDEDGES algorithm, the

PROCESSBLOCK algorithm is executed at most nsb times.

Assume, that the complexity of the CALCULATEINDENT

method is O(1). In this manner, the complexity of the

PROCESSBLOCK algorithm is O(nsb).

The DELETEBLOCKSANDEDGES algorithm deletes

all processed elements and their edges. Based on the

previous reasoning, all “simple” blocks are processed,

therefore the for loop in the algorithm is executed at

least sb times. However, the algorithm is also called

after a Subsystem is processed. Let n denote the sum of

the “simple” blocks and the Subsystem blocks. In this

case the aforementioned for loop is run exactly n times.

At each iteration the algorithm deletes the related edges

as well. Assume, that the complexity of a deletion is

O(1). In this manner, the complexity of the algorithm is

O(n*(ei+eo)/2), where ei represents the average number

of incoming edges to a processed element and eo

represents the average number of outgoing edges from a

processed element. Let es denote all edges connected to

either a “simple” block or a Subsystem. In this manner,

the complexity of the DELETEBLOCKSANDEDGES

algorithm is O(n+es), every element and edge is deleted

exactly once.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

145

The CHECKFORSUBSYSTEM algorithm simply

examines whether there is a processable Subsystem. If

there is, then the algorithm assigns it to the newSub

variable, and adds it to the Sorted List with the help of

the CALCULATEINDENT method. Therefore, the

complexity of the algorithm is O(ns), where ns means

the number of Subsystems in the model.

Finally, the PROCESSINOUTPORTS algorithm

deletes all edges connected to the Inport or Outport

blocks. In this case the complexity of the algorithm is

O(eio), where eio represents the edges connected to the

Inport or Outport blocks.

To summarize, the complexity of the SL algorithm

is O(nsb+n+es+ns+eio), which is equal to

O(2*n+es+eio). Let e denote all edges in the model, that

is, the sum of es and eio. In this manner, the complexity

of the algorithm is O(2*n+e), that is, each block

(“simple” or Subsystem) is processed exactly once and

all edges with the processed blocks are deleted.

3. IMPLEMENTING THE ALGORITHM

The previous section presented an algorithm that creates

a Sorted List from a Simulink model. This section

provides a novel approach to realize this algorithm: the

algorithm is implemented via graph transformation.

With this approach, the solution utilizes the strong

mathematical background of the graph rewriting-based

model transformation. Moreover, the result possesses

all the advantageous properties of the model

transformation, for example, it is reusable, transparent

and platform independent.

3.1. The Modeling Environment

To create transformations of a Simulink model, the

Visual Modeling and Transformation System (VMTS)

(Angyal, et al. 2009, VMTS 2012) was used. The

VMTS is a general purpose metamodeling environment

supporting an arbitrary number of metamodel levels.

Models in VMTS are represented as directed, attributed

graphs. The edges of the graphs are also attributed.

VMTS is also a transformation system. It utilizes a

graph rewriting-based model transformation approach

or a template-based text generation. Whereas templates

are used mainly to produce textual output from model

definitions in an efficient way, graph transformation can

describe transformations in a visual and formal way.

In VMTS the Left-Hand Side (LHS) and the Right-

Hand Side (RHS) of the transformation are depicted

together. In this manner, the process of the

transformation is more expressive. VMTS applies

different colors to distinguish the LHS from the RHS in

the presentation layer. Imperative constraints can also

be applied.

In VMTS a control flow determines the order of

the transformation rules. Each controls flow has exactly

one start state and one or more end states. The

applicable rules are defined in the rule containers. This

means that exactly one rule belongs to each rule

container. The application number of the rule can be

defined here as well. By default, the VMTS attempts to

locate just one match for the LHS of the transformation

rule. However, if the IsExhaustive attribute of the rule

container is set to true, then the rule will be applied

repeatedly as long as its LHS pattern exists within the

model.

The edges are used to determine the sequence of

the rule containers. The control flow follows an edge,

which corresponds to the result of the rule application.

In VMTS, the edge to be followed in case of a

successful rule application is depicted with a solid gray

flow edge, in case of a failed rule application with a

dashed gray flow edge. Solid black flow edges represent

the edges that can be followed in both cases.

3.2. The Transformation

As it was mentioned, a control flow determines the

application order of the rules. The control flow of the

TRANS_SL transformation is shown in Figure 2.

Figure 2: The control flow of the TRANS_SL transformation

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

146

At first, the transformation attempts to apply the

RW_MATLAB_PROCESSFIRSTBLOCKS rule. This

transformation rule matches for “simple” blocks, which

have no incoming edges, therefore they do not depend

on any other block. If a match is found, then the

imperative code part of the rule writes out the name of

the block with the necessary indentation, hierarchical

level, and positioning. In this manner, the

CALCULATEINDENT method of the PROCESSBLOCK

algorithm is implemented via imperative code.

The rule is applied exhaustively, that is, as long the

transformation finds an unprocessed “simple” block

without incoming edges, and each processed block is

tagged as “Processed”. In case there was at least one

successful match, the transformation moves to

PROCESSOUTGOINGEDGES_1 rule container, which

applies the RW_MATLAB_PROCESSEDGES rule

(depicted in Figure 3). This rule attempts to find

matches of the outgoing edges from the already

processed elements and deletes them.

Figure 3: The transformation rule RW_MATLAB_-

PROCESSEDGES

After there are no edges left to delete, the

RW_MATLAB_DELETEPROCESSED transformation rule

(shown in Figure 4), which is contained by the

DELETEPROCESSEDBLOCK_1 rule container, deletes the

appropriate elements.

Figure 4: The transformation rule RW_Matlab_-

DeleteProcessed

These three transformation rules are applied

exhaustively, this way imitating the behavior of a

foreach or while loop. The

RW_MATLAB_PROCESSFIRSTBLOCKS implements the

PROCESSBLOCK algorithm with the parameter list of

(null, true); and the RW_MATLAB_PROCESSEDGES with

the RW_MATLAB_DELETEPROCESSED correspond to

the DELETEBLOCKSANDEDGES algorithm. Although the

transformation does not delete any incoming edges

related to the processed elements unlike the

DELETEBLOCKSANDEDGES algorithm, this is not

necessary here, since these blocks do not have any

incoming edges. Moreover, since the transformation

moves to the RW_MATLAB_PROCESSFIRSTBLOCKS

after deleting the already processed elements, the while

loop of the PROCESSFIRSTBLOCKS algorithm is

implemented as well.

When the application of the

RW_MATLAB_PROCESSFIRSTBLOCKS transformation

rule was unsuccessful, the transformation moves along

the dashed grey line of the control flow, which leads to

the RW_MATLAB_CHECKFORSUBSYSTEM rule. As it is

shown in Figure 5, the rule attempts to find a match for

a Subsystem, an Inport block and an ordinary Block. In

Simulink, the DF property is an attribute of the In port

of the blocks. However, in VMTS, this property is

moved, and is a characteristic of the edges. In this

manner, a Subsystem is processable, if the DF property

of the FirstEdge edge (the edge starting from the Inport

block) is set to false. In case such a Subsystem is found,

it is written out with the help of the imperative code,

and the transformation starts processing its elements.

Figure 5: The transformation rule RW_MATLAB_-

CHECKFORSUBSYSTEM

This processing starts with deleting the edges

connected to the Inport and Outport blocks. These

deletions are accomplished in the

RW_MATLAB_TAGTHEINBLOCKS (depicted in Figure

6) and RW_MATLAB_TAGTHEOUTBLOCKS,

respectively. The first rule may create blocks without

any incoming edge, which means they are independent

from any other block. The latter is only necessary to

avoid any dangling edges after the transformation

terminates.

Figure 6: The transformation rule RW_MATLAB_-

TAGTHEINBLOCKS

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

147

The next three transformations are similar to the

first three. The RW_MATLAB_PROCESSFIRST-

INSUBSYSTEM rule (contained by the PROCESS-

FIRSTINSUBSYSTEM rule container), which is shown in

Figure 7, processes the blocks without incoming edges.

These blocks must be contained by the found

Subsystem element, which is the only difference

between this rule and the RW_MATLAB_PROCESS-

FIRSTBLOCKS. In case the RW_MATLAB_PROCESS-

FIRSTSINSUBSYSTEM rule is applied at least once, the

transformation executes the same rules to delete the

edges and blocks as in the beginning of the process. The

application of a new rule container is necessary though,

since the transformation now must move to the

RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM instead of

the RW_MATLAB_PROCESSFIRSTBLOCKS.

Figure 7: The transformation rule RW_MATLAB_-

PROCESSFIRSTSINSUBSYSTEM

When there is no other processable block without

incoming edges, the transformation attempts to find a

match for the RW_MATLAB_CHECKFOR-

SUBSUBSYSTEM (presented in Figure 8) transformation

rule. This rule basically attempts to find a Subsystem

element inside the current one. Therefore, the applied

rule is very similar to the already described one, the

only difference is the presence of a parent Subsystem,

which needs to be the current one.

Figure 8: The transformation rule RW_MATLAB_-

CHECKFORSUBSUBSYSTEM

In case the transformation found a processable

inner Subsystem, the transformation then starts to

process with the already presented

RW_MATLAB_TAGTHEINBLOCKS rule. This is

essentially the implementation of the recursive

CHECKFORSUBSYSTEM algorithms in a model

transformation environment.

However, if there is no processable inner

Subsystem, the transformation attempts to process the

remaining blocks with the help of the

RW_MATLAB_PROCESSNORMALINSUBSYSTEM rule.

This rule is exactly the same as the

RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM but it

allows the matched blocks to have incoming edges, if

their DF properties are set to false. In case the

transformation processed any block here, then it moves

to the RW_MATLAB_PROCESSINCOMINGEDGES rule,

which deletes the incoming edges of the processed

elements. Next, the transformation returns to the

RW_MATLAB_PROCESSEDGES rule. This structure

corresponds to the repeat-until block of the

CHECKFORSUBSYSTEM algorithm.

In case there are no blocks to process in the actual

Subsystem, the transformation applies the

RW_MATLAB_FINISHSUBSUBSYSTEM (shown in Figure

9) and RW_MATLAB_FINISHSUBSYSTEM rules. These

are the exit points of the recursion and tag the found

Subsystem as “Processed”. If the first rule can be

matched, then it means that there was an inner

Subsystem and the current Subsystem must be set back

to its parent. After this, the edges connected to this

processed Subsystem and then the Subsystem itself is

deleted. The transformation continues with the

processing of the parent Subsystem. In case the second

rule is matched, then it means the transformation returns

to the root level again. The applied transformation rules

are the same, but the transformation returns to the

RW_MATLAB_PROCESSFIRSTBLOCKS instead of its

equivalent rule in the Subsystem level.

Figure 9: The transformation rule RW_MATLAB_-

FINISHSUBSUBSYSTEM

The transformation terminates when there is no

processable element in the root level. This means that

the RW_MATLAB_PROCESSNORMALBLOCK

transformation rule does not find any match.

In this section the VMTS framework was briefly

introduced. Moreover, a model transformation, which

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

148

implements the algorithms defined in Section 2.1, was

also presented. During the presentation, the mechanisms

of defining foreach, while loops, repeat-until blocks and

recursion were introduced. The transformation is also a

good example of how well the declarative and

imperative approaches can complement and extend each

other.

4. THE ANALYSIS OF THE

TRANSFORMATION

As complexity analysis is essential for applying a new

algorithm, the analysis of a model transformation is

necessary before the transformation is included in a

robust engine, which is the subject of this section. First,

the functionality of the transformation is examined and

then its further attributes, such as termination and

correctness, are verified.

Definition 1. The simple elements of a Simulink

model are all elements, that are neither a composite

element (e.g. Subsystems) nor a mandatory element of a

composite element (e.g. Inport and Outport block of a

Subsystem).

Before the transformation is examined in detail,

note, that the transformation rules can be divided into

two parts. The first part consists of the following:

 RW_MATLAB_PROCESSFIRSTBLOCKS

 RW_MATLAB_PROCESSEDGES

 RW_MATLAB_DELETEPROCESSED

 RW_MATLAB_PROCESSINCOMINGEDGES

 RW_MATLAB_CHECKFORSUBSYSTEM

 RW_MATLAB_FINISHSUBSYSTEM

 RW_MATLAB_PROCESSNORMALBLOCK

These transformation rules process the simple

elements and find Subsystems on the root level. The

second group contains the following:

 RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM

 RW_MATLAB_PROCESSEDGES

 RW_MATLAB_DELETEPROCESSED

 RW_MATLAB_PROCESSINCOMINGEDGES

 RW_MATLAB_CHECKFORSUBSUBSYSTEM

 RW_MATLAB_FINISHSUBSUBSYSTEM

 RW_MATLAB_PROCESSNORMALIN-

SUBSYSTEM

The rules contained by the second group behave

exactly the same way as the ones in the first, but they

processes the elements in deeper levels. The

transformation rules match the same pattern with the

exception of matching a parent Subsystem as well. So

the reason behind the existence of the rules in the

second group is the need of parent matching.

By the examination of the transformation we

assume there is no algebraic loop in the model.

Proposition 1. After the transformation TRANS_SL,

all simple elements and Subsystems of the Simulink

model are processed, therefore they are contained by

the Sorted List. These elements are processed exactly

once.

Proof: The RW_MATLAB_PROCESSFIRSTBLOCKS

transformation rule processes all simple elements

without incoming edges. Throughout the process, its

imperative code implements the CALCULATEINDENT

method, which inserts the block into the Sorted List in

the appropriate format. Each processed element is

marked as “Processed”. Both the

RW_MATLAB_PROCESSEDGES and RW_MATLAB_-

DELETEPROCESSED rules match these marked blocks

and delete their outgoing edges, moreover, the rules

delete the blocks themselves. This may results in other

blocks without incoming edges, therefore the

RW_MATLAB_PROCESSFIRSTBLOCKS may be

applicable again.

When these rules cannot be applied anymore, it

means, that a nonvirtual Subsystem is in the way (which

require special treatment) or there is a directed cycle in

the model. If a Subsystem is found, the

RW_MATLAB_CHECKFORSUBSYSTEM rule puts the

element into the list and the transformation starts

processing the elements of the Subsystem. This is

achieved by the rules corresponding to the ones on the

root level, therefore they are not discussed in more

detail. After a Subsystem is processed, the

transformation marks it as “Processed” and moves on to

delete their edges, and finally the marked Subsystem as

well. The processing of the model continues with the

RW_MATLAB_PROCESSFIRSTBLOCKS again.

In case there is a directed cycle, the

RW_MATLAB_PROCESSNORMALBLOCK looks for

blocks which have none of their incoming edges marked

with a DF property set to true. If the application of the

rules was successful, then the rule inserts the found

elements into the Sorted List and marks them as

“Processed”. In this case, the transformation moves on

to the rules responsible for deleting the related edges. In

case, however, the application of the rule is

unsuccessful, then the transformation terminates. This

means that either there are no elements left in the

model, or there are no elements left without having at

least one incoming edges with the DF property set to

true. The first case means that the transformation

successfully processed all simple elements of the model.

However, the latter case means that there is an algebraic

loop in the Simulink model. Since it was assumed, there

is no algebraic loop in the source model, the

transformation cannot come to this result. In this

manner, the transformation terminates if and only if

there is no element left to process. ∎

Proposition 2. The transformation TRANS_SL

processes the elements of the Simulink model in an

appropriate order, that is, a block a is always processed

later, than a block b, on which a is depend.

Proof: There are three rules on the root level,

which insert elements into the Sorted List:

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

149

 RW_MATLAB_PROCESSFIRSTBLOCKS, which

processes only simple blocks without any

incoming edges. A block without incoming

edges does not depend on any other blocks,

therefore it can be placed into the Sorted List.

If a block a had an incoming edge e with the

DF property set to true, but this edge e has

been deleted after processing its source block

b, then it means, a is now processable, since its

dependency has been processed already. In this

manner, this rule cannot insert any block into

the Sorted List, that has any unprocessed

dependency.

 RW_MATLAB_CHECKFORSUBSYSTEM, which

processes Subsystem elements without

incoming edges, or Subsystem elements with

incoming edges with DF property set to false.

These conditions ensure that the Subsystem is

processable at the moment, it has no

unprocessed dependency.

 RW_MATLAB_PROCESSNORMALBLOCK,

which has the same conditions:

1. The processed block has no incoming edges,

2. The processed block has incoming edges, but

none of them has its DF property set to true.

In this manner, these rules never insert any block

into the Sorted List, that has any unprocessed

dependency. These rules have their pairs in the

Subsystem level, which behave the same in this regard.

This means, the transformation TRANS_SL processes

the elements of the Simulink model in an appropriate

order. ∎

Proposition 3. The Sorted List created by the

transformation TRANS_SL is a valid Sorted List for the

input Simulink model.

Proof: Proposition 1 states that every simple

element is processed by the transformation, and

Proposition 2 state that the elements are processed in

the right order. This means that the Sorted List created

by the transformation TRANS_SL is a valid Sorted List

of the model, since it contains all relevant elements in

an appropriate order. ∎

Proposition 4. The transformation TRANS_SL

always terminates.

Proof: In order to prove the transformation always

terminates, the following two statements have to be

proved:

1. Each transformation rule is applied only a

bounded number of times,

2. The transformation does not contain any

infinite loop.

In VMTS the application mode of a transformation

rule is set to either “Once” or “IsExhaustive”. In case

the rule is applied “Once” then after the transformation

attempts to apply the rule, it moves on to the next rule.

The result of the application defines only the direction

of the movement. Therefore, these rules are only

applied a bounded number of times.

However, this is not the case when the application

mode is set to “IsExhaustive”. In this case the

transformation attempts to apply the LHS of the rule as

long as there is a corresponding pattern in the host

graph. In this manner, it has to be checked whether the

rules applied in this way terminates. These rules are the

following:

 RW_MATLAB_PROCESSFIRSTBLOCKS, where

the rule attempts to match unprocessed simple

elements. Since it marks the elements as

“Processed” after each application, the rule is

applied at most n times, where n means the

number of simple elements in the Simulink

model. The Simulink models contain only a

bounded number of blocks, therefore the

number of application of the rule is always

bounded.

 The RW_MATLAB_PROCESSEDGES rule

attempts to match processed simple elements

with at least one outgoing edge, and deletes the

matched edge. A block must have a bounded

number of edges, therefore the rule cannot be

applied indefinitely.

 The RW_MATLAB_DELETEPROCESSED rule is

applied to process simple elements. Since the

rule deletes the matched block, and a Simulink

model has a bounded number of blocks, the

rule is applied only bounded number of times.

 The RW_MATLAB_PROCESSINCOMINGEDGES

rule attempts to match processed elements with

at least one incoming edge. Since the rule is

the same as the RW_MATLAB_PROCESS-

EDGES, but with incoming edges, the reasoning

is analogous.

 The RW_MATLAB_TAGTHEINBLOCKS, where

the rule attempts to match Inport blocks and

deletes their outgoing edges. A Subsystem

must have a bounded number of Inport blocks

and an Inport block must have a bounded

number of outgoing edges, the rule is applied a

bounded number of times.

 The RW_MATLAB_TAGTHEOUTBLOCKS is

similar to the RW_MATLAB_TAGTHEIN-

BLOCKS, but it attempts to match Outport

blocks with incoming edges. The same

reasoning can be applied here as well, that is,

the Subsystem must have a bounded number of

Outport blocks and an Outport block must

have a bounded number of incoming edges.

Therefore, the rule is applied a bounded

number of times.

 The RW_MATLAB_PROCESSFIRSTSIN-

SUBSYSTEM rule is the pair of the

RW_MATLAB_PROCESSFIRSTBLOCKS rule at a

deeper level. Since it looks for the same

pattern with the extension of a parent element,

the same reasoning can be applied here as well.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

150

Figure 10: The example Simulink model

Based on the previous, none of the rules in the

TRANS_SL can be applied an indefinite number of

times.

Now, it has to be checked, that the transformation

does not contain infinite loops. It can be stated, that

none of the transformation rules create any new

element, that is no new edges or blocks are created

throughout the process. However, every processed

element (and its edges) is deleted by the appropriate

rule. Since the Simulink model contains a bounded

number of elements, the processing rules, and the

related rules deleting elements, can be applied only a

bounded number of types.

Furthermore, in Simulink models the number of

Subsystems that can be used is limited and hierarchies

of Subsystems cannot be created in a recursive manner.

Moreover, it is not possible to create a hierarchy, where

Subsystem SA contains Subsystem SB and SB also

contains SA. With these restrictions it is ensured that the

application of the RW_MATLAB_CHECKFOR-

SUBSYSTEM transformation rule cannot lead to an

infinite loop because each found Subsystem will be

processed and deleted.

In this manner, since none of the transformation

rules can be applied indefinitely and the transformation

does not contain an infinite loop, it is proven that the

transformation always terminates. ∎

5. EXPERIMENTAL RESULTS

After introducing and analyzing the transformation, this

section presents a simple example to demonstrate its

functionality.

Figure 10 shows an example Simulink model. The

top level of the model is depicted in Figure 10a, and the

elements contained by the nonvirtual Subsystem are

shown in Figure 10b. It is a simple example, which

contains only one nonvirtual Subsystem, and a couple

of simple elements. The transformation was examined

on more complex models as well, and produced the

expected results.

After the transformation for Figure 10b finished its

execution, it resulted in the Sorted List depicted in

Figure 11.

Figure 11: The resulting Sorted List

6. CONCLUSIONS

Nowadays Simulink is a popular tool for modeling

embedded system. Simulink, in order to precisely model

the functionality of the modeled system, can

automatically elaborate a source model. Such

elaboration is a form of model transformation process

that is currently implemented in software as part of the

Simulink code base.

Part of the elaboration is creating a Sorted List,

which represents the dependency between the elements

in the source model. In this paper, an algorithm is

presented in detail, which is suitable for creating such a

list. This algorithm is examined in terms of complexity.

Moreover, a detailed model transformation-based

solution is also presented for creating Sorted Lists. This

approach enables taking advantage of the benefits of

model transformation such as reusability and platform

independence. In this manner, the abstraction level of

the model transformation problem can be raised.

Besides the transformation details, the analysis of the

transformation is also discussed and a simple example

is given to presents its applicability.

Future work intends to study whether with the help

of this transformation, the execution list can also be

implemented via model transformation. In this manner,

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

151

the abstraction level could be raised even further and

more benefits unlocked.

ACKNOWLEDGEMENTS

This work was partially supported by the European

Union and the European Social Fund through project

FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-

2012-0013) organized by VIKING Zrt. Balatonfüred.

This work was partially supported by the Hungarian

Government, managed by the National Development

Agency, and financed by the Research and Technology

Innovation Fund (grant no.: KMR_12-1-2012-0441).

REFERENCES

Angyal, L., Asztalos, M., Lengyel, L., Levendovszky,

T., Madari, I., Mezei, G., Mészáros, T., Siroki, L.,

and Vajk, T., 2009, Towards a fast, efficient and

customizable domain-specific modeling

framework, Software Engineering.

Denckla, B. and Mosterman, P. J., 2004, An

intermediate representation and its application to

the analysis of block diagram execution,

Proceedings of the 2004 Summer Computer

Simulation Conference (SCSC’04), pp. 167–172,

July 2004.

Fehér, P., Mosterman, P. J., Mészáros, T., and Lengyel,

L., 2012, Processing Simulink models with graph

rewriting-based model transformation, Model

Driven Engineering Languages and Systems

(MODELS ‘12) – Tutorials.

Fowler, M., 2010, Domain Specific Languages,

Addison-Wesley.

Han, Z. and Mosterman, P. J., 2010, Detecting data

store access conflict in Simulink by solving

boolean satisfiability problems, Proceedings of the

2010 American Control Conference (ACC’10), pp.

5702–5707, June 2010.

Kelly, S. and Tolvanen, J.-P., 2008, Domain-Specific

Modeling: Enabling Full Code Generation, Wiley.

Matlab® 2012b, http://www.mathworks.com/, 2012.

Mosterman, P. J. and Ciolfi, J. E., 2004, Using

interleaved execution to resolve cyclic

dependencies in time-based block diagrams,

Proceedings of 43rd IEEE Conference on

Decision and Control (CDC’04), pp. 4057–4062,

December 2004.

Mosterman, P. J., Prabhu, S., and Erkkinen, T., 2004,

An industrial embedded control system design

process, Proceedings of The Inaugural CDEN

Design Conference (CDEN’04), pp. 02B6–1–

02B6–11, 2004.

Mosterman, P. J. and Vangheluwe, H., 2002, Computer

automated multi-paradigm modeling, ACM

Transactions on Modeling and Computer

Simulation, vol. 12, no. 4, pp. 249–255.

Mosterman, P. J. and Vangheluwe, 2004, H., Computer

automated multi-paradigm modeling: An

introduction, SIMULATION: Transactions of The

Society for Modeling and Simulation

International, vol. 80, no. 9, pp. 433–450.

Mosterman, P. J., Sztipanovits, J., and Engell, S., 2004,

Computer automated multi-paradigm modeling in

control systems technology, IEEE Transactions on

Control Systems Technology, vol. 12, no. 2, pp.

223–234.

Nicolescu, G. and Mosterman, P. J., 2010, Model-Based

Design for Embedded Systems, Computational

Analysis, Synthesis, and Design of Dynamic

Models Series. CRC Press.

Simulink® 2012b,

http://www.mathworks.com/simulink/, 2012.

Simulink® 2012b user’s manual,

http://www.mathworks.com/help/simulink/index.h

tml, 2012.

Simulink® 2012b - direct feedthrough,

http://www.mathworks.com/help/simulink/sfg/s-

functionconcepts.html, 2012.

VMTS website, http://vmts.aut.bme.hu/, 2012.

Proceedings of the European Modeling and Simulation Symposium, 2013
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds.

152

