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ABSTRACT 

Embedded systems are usually modeled to simulate 

their behavior and facilitate design space exploration. 

Nowadays, this modeling is often implemented in the 

Simulink® environment, which offers strong support 

for modeling complex systems. As design progresses, 

models are increasingly elaborated by gradually adding 

implementation detail. An important elaboration is the 

execution order of the elements in a model. This 

execution order is based on a sorted list of all 

semantically relevant model elements. Thus, to create 

an implementation or to execute a model, Simulink 

generates the dependency list of the model entities, 

which is referred to as the Sorted List. The work 

presented in this paper raises the level of abstraction of 

the model elaboration by modeling the Sorted List 

generation in order to unlock the potential for reuse, 

platform independence, etc. The transformation is 

implemented by applying graph transformation 

methods. Moreover, an analysis of the transformation is 

also provided. 

 

Keywords: embedded systems, model-based design, 

model transformation, Simulink 

 

1. INTRODUCTION 

Nowadays a growing amount of software is modeled 

during the development phase. This is especially true 

with respect to the embedded systems. By modeling 

these systems, they can be examined based on, for 

example, their functionality, performance or robustness. 

Selecting the most appropriate framework for 

modeling systems requires a remarkable amount of 

attention. Recently, domain-specific modeling has 

become a popular approach to describe complex 

systems. It is a powerful, but still understandable 

technique, the main strength of which lies in the 

application of domain-specific languages. Since 

domain-specific languages are specialized for a certain 

application domain, their application is more efficient 

than that of general purpose languages (Fowler 2010, 

Kelly and Tolvanen 2008). 

MATLAB® (Matlab 2012) and Simulink® 

(Simulink 2012a) have undoubtedly become some of 

the leading tools for model-based system design and 

synthesis in the past years (Mosterman, Prabhu, and 

Erkkinen 2004, Mosterman and Vangheluwe 2002, 

Nicolescu and Mosterman 2010). As many other 

modeling tools, Simulink also offers the possibility to 

simulate the modeled system enabling thus to examine 

the behavior of the system before realizing it. 

In order to simulate the system under design, 

Simulink must perform numerous preprocessing steps 

on the model. An important step of this preprocessing 

phase is inferring the execution order of the entities 

used in the model. This execution order is referred to as 

the Execution List. To establish the Execution List, 

Simulink must determine the relationships between the 

blocks. This is the aim of generating the so called 

Sorted List that constitutes a dependency list (Fehér et 

al. 2012, Simulink 2012b). That is, the Sorted List 

contains the elements of the modeled system in a 

specific order based on the control and data 

dependencies that determine how the different blocks 

can follow each other in the overall execution. 

At present, generating the Sorted List is 

implemented in the Simulink code base. Though 

efficient, this makes difficult or even prevents 

unlocking value for which a higher level of abstraction 

is more appropriate (e.g., reasoning about the 

implementation and modularization of operations). 

Therefore, by implementing the Sorted List generation 

procedure at a higher level of abstraction, the 

advantageous properties of domain-specific modeling 

can be utilized. This is a fundamental premise of 

Computer Automated Multiparadigm Modeling; to use 

the most appropriate formalism for representing a 

problem at the most appropriate level of abstraction 

(Mosterman and Vangheluwe 2004, Mosterman, 

Sztipanovits, and Engell 2004). 
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This paper focuses on a novel solution to generate 

the Sorted List for Simulink models. This approach is 

based on a model transformation created in the Visual 

Modeling and Transformation System (VMTS) 

framework. VMTS has been prepared to communicate 

with the Simulink environment; therefore the model 

transformations designed in VMTS can be directly 

applied to the various Simulink models. Using model 

transformation to solve the Sorted List generation issue 

helps to raise the abstraction level from the API 

programming to the level of software modeling. The 

solution possesses all advantageous characteristics of 

model transformations, such as transparency, reusability 

and platform independence. 

The rest of the paper is organized as follows. 

Section 2 presents the algorithm used for generating the 

Sorted List. Next, Section 3 introduces the implemented 

transformation. In Section 4, the properties of the 

transformation are examined. A simple example for the 

transformation is presented in Section 5. Finally, 

concluding remarks are elaborated. 

 

2. CREATING A SORTED LIST 

As it was previously described, Simulink creates the 

Sorted List based on the dependency of the elements. 

Previous work has captured in detail the dependencies 

that Simulink accounts for (Han and Mosterman 2010). 

A block b depends on the block a if the direct 

feedthrough (DF) property (Simulink 2012c) on its 

inport block obtaining the signal from a is set to true. In 

this case block a must appear before block b in the 

Sorted List. Else, there is no dependency, that is, the 

output of the block b with the input port can be 

computed without knowing the value on the input port. 

In this manner, there generally are many lists that 

satisfy the dependencies and it does not make any 

difference in semantics which list is selected. 

At this phase of the processing, Simulink has 

already flattened the virtual subsystems of the model, 

therefore only nonvirtual subsystems left. Nonvirtual 

subsystems are, for example, the Enabled Subsystem, 

Triggered Subsystem, Atomic Subsystem, Function-call 

Subsystem, etc. These nonvirtual subsystems have their 

own Sorted List with the same principle discussed 

above. 

The nonvirtual subsystems are treated as opaque 

blocks (in terms of execution) at the hierarchical level 

where they are used and so the input ports of a 

nonvirtual subsystem also have the DF attribute. The 

setting of this attribute is inferred from the content of 

the nonvirtual subsystem. Generally, for each input port 

of the nonvirtual subsystem the DF is set to be same as 

the DF attribute of the first block that the input connects 

to internally (to the nonvirtual subsystem). Note that a 

more sophisticated analysis may be applied to resolve 

some DF issues, as presented in other work (Mosterman 

and Ciolfi 2004, Denckla and Mosterman 2004). 

 
Figure 1: An example Sorted List 

 

The Sorted Lists have hierarchical layering, as 

Figure 1 depicts. The 0 : x says that x is the position of 

the block in the Sorted List for the 0 hierarchical layer 

(with 0 being the top). Similarly, 2 : y says that y is the 

position of the block in the Sorted List for the 2 

hierarchical layer, which is chosen the same as the 

position of the block with the hierarchical layering in its 

parent’s Sorted List. For example, 2 : 0 Constant says 

that the Constant block is at the first position for the 2 

hierarchical layer, which relates to the Subsystem 

element. 

In this section the algorithms for creating a Sorted 

List are presented as well as the complexity of the entire 

process. 

 

2.1. The Algorithms 

The main part of the Sorted List generation algorithm is 

shown in Algorithm 1. The SL algorithm contains a 

simple Repeat-Until block with only three algorithms. 

These three algorithms are responsible for processing 

the blocks. 

 
The three algorithms differ from each other in the 

type of block that they processing. First, the 

PROCESSFIRSTBLOCKS algorithm processes only blocks 

without any incoming edge. Since without incoming 

edges a block cannot depend on any other block, the 

processing of these blocks does not need the 

examination of the DF properties. The 

PROCESSFIRSTBLOCKS algorithm is presented in 

Algorithm 2. 

 
The PROCESSFIRSTBLOCKS algorithm obtains a 

parameter, which sets the actual subsystem the blocks 

are being processed within. In case the current 
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hierarchical level is the root of the model, then the 

parameter is null. The PROCESSFIRSTBLOCKS algorithm 

contains a while block. The condition of this loop is the 

return value of the PROCESSBLOCK algorithm, which is 

responsible for the processing itself. In case there was at 

least one block without incoming edges, the 

PROCESSBLOCK returns true and the 

DELETEBLOCKSANDEDGES algorithm is called. Since 

the DELETEBLOCKSANDEDGES deletes the processed 

blocks and their edges, the next time the 

PROCESSBLOCK algorithm is called, there may be new 

blocks without incoming edges. If there is no such a 

block, the algorithm terminates. 

The PROCESSBLOCK algorithm is shown in 

Algorithm 3. It has two parameters: the sub sets the 

actual subsystem, while the onlyFirsts parameter 

determines whether only the blocks without incoming 

edges should be processed. Since each nonvirtual 

subsystem is basically an opaque block for execution 

purposes, it has its own Sorted List. Therefore, if this 

parameter is set to a subsystem, then only those blocks 

should be processed that are contained by this 

subsystem. This containment can be checked by the 

examination of the Parent property of the block to be 

processed. The algorithm only processes “simple” 

blocks, it is referred to blocks that are not composite 

elements. Moreover, the Inport and Outport blocks of 

the subsystems should not be processed, therefore, they 

are not part of the SimpleBlock set. 

 
If the onlyFirsts parameter is set to true, the 

algorithm processes only the blocks without any 

incoming edge, that is, the Sources property is empty. 

Otherwise, if the onlyFirsts parameter is false, the 

algorithm must check if the DF properties on the port of 

the incoming edges are set to false. 

The actual processing of a block is straightforward. 

The CALCULATEINDENT method determines the actual 

indent and position of the block. These values depend 

on the hierarchical level and the number of previously 

processed blocks. The name of the block is appended to 

the calculated value. After the list is maintained the 

algorithm depicts the block as “Processed”. If the 

algorithm processed at least one block, then it returns 

true. 

As it was mentioned before, the 

DELETEBLOCKSANDEDGES algorithm deletes the 

processed blocks and its edges. It is depicted in 

Algorithm 4. 

 
After there are no “simple” blocks left in the model 

without incoming edges, the SL algorithm moves on to 

process possible subsystems. This is achieved by the 

PROCESSSUBSYSTEM algorithm shown in Algorithm 5. 

Since it is possible in Simulink that a subsystem 

contains another subsystem, the algorithm obtains the 

current subsystem as a parameter. If it is set to null then 

the algorithm looks for a subsystem on the root level. 

The return value of the CHECKFORSUBSYSTEM 

algorithm determines if there is any processable 

subsystem on the given hierarchical level. If there is 

any, then it is stored in the newSub variable, and 

processed in a repeat-until loop. 

 
This loop is the same as the one in the SL 

algorithm but it has three additional commands. First, 

this algorithm sets the processedAny variable to true, 

which will be the return value. Next, it calls the 

DELETEBLOCKSANDEDGES to delete the already 

processed elements if there are any. After this, the 

PROCESSINOUTPORTS algorithm deletes the Inport and 

Outport blocks and the edges connecting to them. This 

is necessary, since the Sorted Lists do not contain these 

blocks. After these steps, the PROCESSSUBSYSTEM 

algorithm processes the blocks in the same manner as 

the SL algorithm. As it can be seen in the Algorithm 5, 

the PROCESSSUBSYSTEM algorithm can be called 

recursively, in case the subsystem contains another 

subsystem. The algorithms are called with the newSub 

parameter as the current hierarchical level. 

In order to determine if there is any processable 

Subsystem on the current hierarchical level, the 

CHECKFORSUBSYSTEM algorithm is used. The 

Proceedings of the European Modeling and Simulation Symposium, 2013 
978-88-97999-22-5; Bruzzone, Jimenez, Longo, Merkuryev Eds. 

144



algorithm is shown in Algorithm 6. A Subsystem is 

processable, if it is contained by the appropriate parent 

element and does not have any input port with the DF 

property set to true. In case the algorithm finds such a 

Subsystem, then it assigns the Subsystem to the newSub 

variable and returns true. Otherwise, the return value is 

false. 

 
As it was mentioned before, the Inport and Outport 

blocks of the Subsystem are not part of the Subsystem. 

Therefore, their outgoing edges should be deleted 

without processing the blocks, as it is depicted in 

Algorithm 7. Note, that a nonvirtual Subsystem is only 

processable if none of its In ports has its DF property 

set to true. In case of virtual Subsystems this restriction 

does not hold, but the virtual Subsystems must be 

flattened before the processing of the Sorted List 

begins. This makes it possible to delete all edges 

connected to the Inport blocks. 

 
The PROCESSNORMALS algorithm (Algorithm 8) is 

called from both repeat-until blocks. This algorithm is 

responsible for processing those blocks that have an 

arbitrary number of incoming edges but none of its 

input ports has a DF property with a value of true. It is 

similar to the PROCESSFIRSTBLOCKS algorithm but calls 

the PROCESSBLOCK algorithm with different parameter. 

 
Note that both until blocks (in SL and 

PROCESSSUBSYSTEM) have the same condition. That is, 

the algorithm stays in the loop if either the 

PROCESSSUBSYSTEM or the PROCESSNORMALS 

algorithm returns true. In other words this means that 

either of these two algorithms processes at least one 

element. In this case, after the deletion of the related 

edges, there may be new, processable blocks. 

Otherwise, if there are no Subsystems and no “simple” 

blocks to process, then either all elements have been 

processed or there is an algebraic loop in the current 

hierarchical level. The SL algorithm terminates if this 

condition is met in the root level, that is, no elements 

are left in the model or there is an algebraic loop. 

This section has presented the SL algorithm, which 

was designed to create a Sorted List from the input 

model. Next, the complexity of the algorithm will be 

determined. 

 

2.2. Complexity Analysis 

In order to use an algorithm in production applications 

its complexity must be established. In this section the 

algorithms are examined based on their execution time. 

Therefore, the attributes that determine their 

computational complexity must be determined. 

To determine the complexity of the SL algorithm, 

the following algorithms must be examined (the rest of 

the algorithms call these ones): 

 

 PROCESSBLOCK 

 DELETEBLOCKSANDEDGES 

 CHECKFORSUBSYSTEM 

 PROCESSINOUTPORTS 

 

The PROCESSBLOCK algorithm is called from the 

PROCESSFIRSTBLOCKS and the PROCESSNORMALS 

algorithms. This is the one and only algorithm that 

processes “simple” blocks. On the one hand, since the 

Sorted List must contain all of these blocks, the body of 

the PROCESSBLOCK algorithm is executed at least nsb 

times, where nsb means the number of “simple” block 

on the current hierarchical level. On the other hand, 

since each processed block is deleted by the 

DELETEBLOCKSANDEDGES algorithm, the 

PROCESSBLOCK algorithm is executed at most nsb times. 

Assume, that the complexity of the CALCULATEINDENT 

method is O(1). In this manner, the complexity of the 

PROCESSBLOCK algorithm is O(nsb). 

The DELETEBLOCKSANDEDGES algorithm deletes 

all processed elements and their edges. Based on the 

previous reasoning, all “simple” blocks are processed, 

therefore the for loop in the algorithm is executed at 

least sb times. However, the algorithm is also called 

after a Subsystem is processed. Let n denote the sum of 

the “simple” blocks and the Subsystem blocks. In this 

case the aforementioned for loop is run exactly n times. 

At each iteration the algorithm deletes the related edges 

as well. Assume, that the complexity of a deletion is 

O(1). In this manner, the complexity of the algorithm is 

O(n*(ei+eo)/2), where ei represents the average number 

of incoming edges to a processed element and eo 

represents the average number of outgoing edges from a 

processed element. Let es denote all edges connected to 

either a “simple” block or a Subsystem. In this manner, 

the complexity of the DELETEBLOCKSANDEDGES 

algorithm is O(n+es), every element and edge is deleted 

exactly once. 
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The CHECKFORSUBSYSTEM algorithm simply 

examines whether there is a processable Subsystem. If 

there is, then the algorithm assigns it to the newSub 

variable, and adds it to the Sorted List with the help of 

the CALCULATEINDENT method. Therefore, the 

complexity of the algorithm is O(ns), where ns means 

the number of Subsystems in the model. 

Finally, the PROCESSINOUTPORTS algorithm 

deletes all edges connected to the Inport or Outport 

blocks. In this case the complexity of the algorithm is 

O(eio), where eio represents the edges connected to the 

Inport or Outport blocks. 

To summarize, the complexity of the SL algorithm 

is O(nsb+n+es+ns+eio), which is equal to 

O(2*n+es+eio). Let e denote all edges in the model, that 

is, the sum of es and eio. In this manner, the complexity 

of the algorithm is O(2*n+e), that is, each block 

(“simple” or Subsystem) is processed exactly once and 

all edges with the processed blocks are deleted. 

 

3. IMPLEMENTING THE ALGORITHM 

The previous section presented an algorithm that creates 

a Sorted List from a Simulink model. This section 

provides a novel approach to realize this algorithm: the 

algorithm is implemented via graph transformation. 

With this approach, the solution utilizes the strong 

mathematical background of the graph rewriting-based 

model transformation. Moreover, the result possesses 

all the advantageous properties of the model 

transformation, for example, it is reusable, transparent 

and platform independent. 

 

3.1. The Modeling Environment 

To create transformations of a Simulink model, the 

Visual Modeling and Transformation System (VMTS) 

(Angyal, et al. 2009, VMTS 2012) was used. The 

VMTS is a general purpose metamodeling environment 

supporting an arbitrary number of metamodel levels. 

Models in VMTS are represented as directed, attributed 

graphs. The edges of the graphs are also attributed. 

VMTS is also a transformation system. It utilizes a 

graph rewriting-based model transformation approach 

or a template-based text generation. Whereas templates 

are used mainly to produce textual output from model 

definitions in an efficient way, graph transformation can 

describe transformations in a visual and formal way. 

In VMTS the Left-Hand Side (LHS) and the Right-

Hand Side (RHS) of the transformation are depicted 

together. In this manner, the process of the 

transformation is more expressive. VMTS applies 

different colors to distinguish the LHS from the RHS in 

the presentation layer. Imperative constraints can also 

be applied. 

In VMTS a control flow determines the order of 

the transformation rules. Each controls flow has exactly 

one start state and one or more end states. The 

applicable rules are defined in the rule containers. This 

means that exactly one rule belongs to each rule 

container. The application number of the rule can be 

defined here as well. By default, the VMTS attempts to 

locate just one match for the LHS of the transformation 

rule. However, if the IsExhaustive attribute of the rule 

container is set to true, then the rule will be applied 

repeatedly as long as its LHS pattern exists within the 

model. 

The edges are used to determine the sequence of 

the rule containers. The control flow follows an edge, 

which corresponds to the result of the rule application. 

In VMTS, the edge to be followed in case of a 

successful rule application is depicted with a solid gray 

flow edge, in case of a failed rule application with a 

dashed gray flow edge. Solid black flow edges represent 

the edges that can be followed in both cases. 

 

3.2. The Transformation 

As it was mentioned, a control flow determines the 

application order of the rules. The control flow of the 

TRANS_SL transformation is shown in Figure 2. 

 

 
 

Figure 2: The control flow of the TRANS_SL transformation
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At first, the transformation attempts to apply the 

RW_MATLAB_PROCESSFIRSTBLOCKS rule. This 

transformation rule matches for “simple” blocks, which 

have no incoming edges, therefore they do not depend 

on any other block. If a match is found, then the 

imperative code part of the rule writes out the name of 

the block with the necessary indentation, hierarchical 

level, and positioning. In this manner, the 

CALCULATEINDENT method of the PROCESSBLOCK 

algorithm is implemented via imperative code. 

The rule is applied exhaustively, that is, as long the 

transformation finds an unprocessed “simple” block 

without incoming edges, and each processed block is 

tagged as “Processed”. In case there was at least one 

successful match, the transformation moves to 

PROCESSOUTGOINGEDGES_1 rule container, which 

applies the RW_MATLAB_PROCESSEDGES rule 

(depicted in Figure 3). This rule attempts to find 

matches of the outgoing edges from the already 

processed elements and deletes them. 

 

 
Figure 3: The transformation rule RW_MATLAB_-

PROCESSEDGES 

 

After there are no edges left to delete, the 

RW_MATLAB_DELETEPROCESSED transformation rule 

(shown in Figure 4), which is contained by the 

DELETEPROCESSEDBLOCK_1 rule container, deletes the 

appropriate elements. 

 

 
Figure 4: The transformation rule RW_Matlab_-

DeleteProcessed 

 

These three transformation rules are applied 

exhaustively, this way imitating the behavior of a 

foreach or while loop. The 

RW_MATLAB_PROCESSFIRSTBLOCKS implements the 

PROCESSBLOCK algorithm with the parameter list of 

(null, true); and the RW_MATLAB_PROCESSEDGES with 

the RW_MATLAB_DELETEPROCESSED correspond to 

the DELETEBLOCKSANDEDGES algorithm. Although the 

transformation does not delete any incoming edges 

related to the processed elements unlike the 

DELETEBLOCKSANDEDGES algorithm, this is not 

necessary here, since these blocks do not have any 

incoming edges. Moreover, since the transformation 

moves to the RW_MATLAB_PROCESSFIRSTBLOCKS 

after deleting the already processed elements, the while 

loop of the PROCESSFIRSTBLOCKS algorithm is 

implemented as well. 

When the application of the 

RW_MATLAB_PROCESSFIRSTBLOCKS transformation 

rule was unsuccessful, the transformation moves along 

the dashed grey line of the control flow, which leads to 

the RW_MATLAB_CHECKFORSUBSYSTEM rule. As it is 

shown in Figure 5, the rule attempts to find a match for 

a Subsystem, an Inport block and an ordinary Block. In 

Simulink, the DF property is an attribute of the In port 

of the blocks. However, in VMTS, this property is 

moved, and is a characteristic of the edges. In this 

manner, a Subsystem is processable, if the DF property 

of the FirstEdge edge (the edge starting from the Inport 

block) is set to false. In case such a Subsystem is found, 

it is written out with the help of the imperative code, 

and the transformation starts processing its elements. 

 

 
Figure 5: The transformation rule RW_MATLAB_-

CHECKFORSUBSYSTEM 

 

This processing starts with deleting the edges 

connected to the Inport and Outport blocks. These 

deletions are accomplished in the 

RW_MATLAB_TAGTHEINBLOCKS (depicted in Figure 

6) and RW_MATLAB_TAGTHEOUTBLOCKS, 

respectively. The first rule may create blocks without 

any incoming edge, which means they are independent 

from any other block. The latter is only necessary to 

avoid any dangling edges after the transformation 

terminates. 

 

 
Figure 6: The transformation rule RW_MATLAB_-

TAGTHEINBLOCKS 
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The next three transformations are similar to the 

first three. The RW_MATLAB_PROCESSFIRST-

INSUBSYSTEM rule (contained by the PROCESS-

FIRSTINSUBSYSTEM rule container), which is shown in 

Figure 7, processes the blocks without incoming edges. 

These blocks must be contained by the found 

Subsystem element, which is the only difference 

between this rule and the RW_MATLAB_PROCESS-

FIRSTBLOCKS. In case the RW_MATLAB_PROCESS-

FIRSTSINSUBSYSTEM rule is applied at least once, the 

transformation executes the same rules to delete the 

edges and blocks as in the beginning of the process. The 

application of a new rule container is necessary though, 

since the transformation now must move to the 

RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM instead of 

the RW_MATLAB_PROCESSFIRSTBLOCKS. 

 

 
Figure 7: The transformation rule RW_MATLAB_-

PROCESSFIRSTSINSUBSYSTEM 

 

When there is no other processable block without 

incoming edges, the transformation attempts to find a 

match for the RW_MATLAB_CHECKFOR-

SUBSUBSYSTEM (presented in Figure 8) transformation 

rule. This rule basically attempts to find a Subsystem 

element inside the current one. Therefore, the applied 

rule is very similar to the already described one, the 

only difference is the presence of a parent Subsystem, 

which needs to be the current one. 

 

 
Figure 8: The transformation rule RW_MATLAB_-

CHECKFORSUBSUBSYSTEM 

In case the transformation found a processable 

inner Subsystem, the transformation then starts to 

process with the already presented 

RW_MATLAB_TAGTHEINBLOCKS rule. This is 

essentially the implementation of the recursive 

CHECKFORSUBSYSTEM algorithms in a model 

transformation environment. 

However, if there is no processable inner 

Subsystem, the transformation attempts to process the 

remaining blocks with the help of the 

RW_MATLAB_PROCESSNORMALINSUBSYSTEM rule. 

This rule is exactly the same as the 

RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM but it 

allows the matched blocks to have incoming edges, if 

their DF properties are set to false. In case the 

transformation processed any block here, then it moves 

to the RW_MATLAB_PROCESSINCOMINGEDGES rule, 

which deletes the incoming edges of the processed 

elements. Next, the transformation returns to the 

RW_MATLAB_PROCESSEDGES rule. This structure 

corresponds to the repeat-until block of the 

CHECKFORSUBSYSTEM algorithm. 

In case there are no blocks to process in the actual 

Subsystem, the transformation applies the 

RW_MATLAB_FINISHSUBSUBSYSTEM (shown in Figure 

9) and RW_MATLAB_FINISHSUBSYSTEM rules. These 

are the exit points of the recursion and tag the found 

Subsystem as “Processed”. If the first rule can be 

matched, then it means that there was an inner 

Subsystem and the current Subsystem must be set back 

to its parent. After this, the edges connected to this 

processed Subsystem and then the Subsystem itself is 

deleted. The transformation continues with the 

processing of the parent Subsystem. In case the second 

rule is matched, then it means the transformation returns 

to the root level again. The applied transformation rules 

are the same, but the transformation returns to the 

RW_MATLAB_PROCESSFIRSTBLOCKS instead of its 

equivalent rule in the Subsystem level. 

 

 
Figure 9: The transformation rule RW_MATLAB_-

FINISHSUBSUBSYSTEM 

 

The transformation terminates when there is no 

processable element in the root level. This means that 

the RW_MATLAB_PROCESSNORMALBLOCK 

transformation rule does not find any match. 

In this section the VMTS framework was briefly 

introduced. Moreover, a model transformation, which 
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implements the algorithms defined in Section 2.1, was 

also presented. During the presentation, the mechanisms 

of defining foreach, while loops, repeat-until blocks and 

recursion were introduced. The transformation is also a 

good example of how well the declarative and 

imperative approaches can complement and extend each 

other. 

 

4. THE ANALYSIS OF THE 

TRANSFORMATION 

As complexity analysis is essential for applying a new 

algorithm, the analysis of a model transformation is 

necessary before the transformation is included in a 

robust engine, which is the subject of this section. First, 

the functionality of the transformation is examined and 

then its further attributes, such as termination and 

correctness, are verified. 

Definition 1. The simple elements of a Simulink 

model are all elements, that are neither a composite 

element (e.g. Subsystems) nor a mandatory element of a 

composite element (e.g. Inport and Outport block of a 

Subsystem). 

Before the transformation is examined in detail, 

note, that the transformation rules can be divided into 

two parts. The first part consists of the following: 

 

 RW_MATLAB_PROCESSFIRSTBLOCKS 

 RW_MATLAB_PROCESSEDGES 

 RW_MATLAB_DELETEPROCESSED 

 RW_MATLAB_PROCESSINCOMINGEDGES 

 RW_MATLAB_CHECKFORSUBSYSTEM 

 RW_MATLAB_FINISHSUBSYSTEM 

 RW_MATLAB_PROCESSNORMALBLOCK 

 

These transformation rules process the simple 

elements and find Subsystems on the root level. The 

second group contains the following: 

 

 RW_MATLAB_PROCESSFIRSTSINSUBSYSTEM  

 RW_MATLAB_PROCESSEDGES 

 RW_MATLAB_DELETEPROCESSED 

 RW_MATLAB_PROCESSINCOMINGEDGES 

 RW_MATLAB_CHECKFORSUBSUBSYSTEM 

 RW_MATLAB_FINISHSUBSUBSYSTEM 

 RW_MATLAB_PROCESSNORMALIN-

SUBSYSTEM 

 

The rules contained by the second group behave 

exactly the same way as the ones in the first, but they 

processes the elements in deeper levels. The 

transformation rules match the same pattern with the 

exception of matching a parent Subsystem as well. So 

the reason behind the existence of the rules in the 

second group is the need of parent matching. 

By the examination of the transformation we 

assume there is no algebraic loop in the model. 

 

Proposition 1. After the transformation TRANS_SL, 

all simple elements and Subsystems of the Simulink 

model are processed, therefore they are contained by 

the Sorted List. These elements are processed exactly 

once. 

Proof: The RW_MATLAB_PROCESSFIRSTBLOCKS 

transformation rule processes all simple elements 

without incoming edges. Throughout the process, its 

imperative code implements the CALCULATEINDENT 

method, which inserts the block into the Sorted List in 

the appropriate format. Each processed element is 

marked as “Processed”. Both the 

RW_MATLAB_PROCESSEDGES and RW_MATLAB_-

DELETEPROCESSED rules match these marked blocks 

and delete their outgoing edges, moreover, the rules 

delete the blocks themselves. This may results in other 

blocks without incoming edges, therefore the 

RW_MATLAB_PROCESSFIRSTBLOCKS may be 

applicable again. 

When these rules cannot be applied anymore, it 

means, that a nonvirtual Subsystem is in the way (which 

require special treatment) or there is a directed cycle in 

the model. If a Subsystem is found, the 

RW_MATLAB_CHECKFORSUBSYSTEM rule puts the 

element into the list and the transformation starts 

processing the elements of the Subsystem. This is 

achieved by the rules corresponding to the ones on the 

root level, therefore they are not discussed in more 

detail. After a Subsystem is processed, the 

transformation marks it as “Processed” and moves on to 

delete their edges, and finally the marked Subsystem as 

well. The processing of the model continues with the 

RW_MATLAB_PROCESSFIRSTBLOCKS again. 

In case there is a directed cycle, the 

RW_MATLAB_PROCESSNORMALBLOCK looks for 

blocks which have none of their incoming edges marked 

with a DF property set to true. If the application of the 

rules was successful, then the rule inserts the found 

elements into the Sorted List and marks them as 

“Processed”. In this case, the transformation moves on 

to the rules responsible for deleting the related edges. In 

case, however, the application of the rule is 

unsuccessful, then the transformation terminates. This 

means that either there are no elements left in the 

model, or there are no elements left without having at 

least one incoming edges with the DF property set to 

true. The first case means that the transformation 

successfully processed all simple elements of the model. 

However, the latter case means that there is an algebraic 

loop in the Simulink model. Since it was assumed, there 

is no algebraic loop in the source model, the 

transformation cannot come to this result. In this 

manner, the transformation terminates if and only if 

there is no element left to process. ∎ 

 

Proposition 2. The transformation TRANS_SL 

processes the elements of the Simulink model in an 

appropriate order, that is, a block a is always processed 

later, than a block b, on which a is depend. 

Proof: There are three rules on the root level, 

which insert elements into the Sorted List: 
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 RW_MATLAB_PROCESSFIRSTBLOCKS, which 

processes only simple blocks without any 

incoming edges. A block without incoming 

edges does not depend on any other blocks, 

therefore it can be placed into the Sorted List. 

If a block a had an incoming edge e with the 

DF property set to true, but this edge e has 

been deleted after processing its source block 

b, then it means, a is now processable, since its 

dependency has been processed already. In this 

manner, this rule cannot insert any block into 

the Sorted List, that has any unprocessed 

dependency. 

 RW_MATLAB_CHECKFORSUBSYSTEM, which 

processes Subsystem elements without 

incoming edges, or Subsystem elements with 

incoming edges with DF property set to false. 

These conditions ensure that the Subsystem is 

processable at the moment, it has no 

unprocessed dependency. 

 RW_MATLAB_PROCESSNORMALBLOCK, 

which has the same conditions: 

1. The processed block has no incoming edges, 

2. The processed block has incoming edges, but 

none of them has its DF property set to true. 

 

In this manner, these rules never insert any block 

into the Sorted List, that has any unprocessed 

dependency. These rules have their pairs in the 

Subsystem level, which behave the same in this regard. 

This means, the transformation TRANS_SL processes 

the elements of the Simulink model in an appropriate 

order. ∎ 

 

Proposition 3. The Sorted List created by the 

transformation TRANS_SL is a valid Sorted List for the 

input Simulink model. 

Proof: Proposition 1 states that every simple 

element is processed by the transformation, and 

Proposition 2 state that the elements are processed in 

the right order. This means that the Sorted List created 

by the transformation TRANS_SL is a valid Sorted List 

of the model, since it contains all relevant elements in 

an appropriate order. ∎ 
 
Proposition 4. The transformation TRANS_SL 

always terminates. 

Proof: In order to prove the transformation always 

terminates, the following two statements have to be 

proved: 

 

1. Each transformation rule is applied only a 

bounded number of times, 

2. The transformation does not contain any 

infinite loop. 

 

In VMTS the application mode of a transformation 

rule is set to either “Once” or “IsExhaustive”. In case 

the rule is applied “Once” then after the transformation 

attempts to apply the rule, it moves on to the next rule. 

The result of the application defines only the direction 

of the movement. Therefore, these rules are only 

applied a bounded number of times. 

However, this is not the case when the application 

mode is set to “IsExhaustive”. In this case the 

transformation attempts to apply the LHS of the rule as 

long as there is a corresponding pattern in the host 

graph. In this manner, it has to be checked whether the 

rules applied in this way terminates. These rules are the 

following: 

 RW_MATLAB_PROCESSFIRSTBLOCKS, where 

the rule attempts to match unprocessed simple 

elements. Since it marks the elements as 

“Processed” after each application, the rule is 

applied at most n times, where n means the 

number of simple elements in the Simulink 

model. The Simulink models contain only a 

bounded number of blocks, therefore the 

number of application of the rule is always 

bounded. 

 The RW_MATLAB_PROCESSEDGES rule 

attempts to match processed simple elements 

with at least one outgoing edge, and deletes the 

matched edge. A block must have a bounded 

number of edges, therefore the rule cannot be 

applied indefinitely. 

 The RW_MATLAB_DELETEPROCESSED rule is 

applied to process simple elements. Since the 

rule deletes the matched block, and a Simulink 

model has a bounded number of blocks, the 

rule is applied only bounded number of times. 

 The RW_MATLAB_PROCESSINCOMINGEDGES 

rule attempts to match processed elements with 

at least one incoming edge. Since the rule is 

the same as the RW_MATLAB_PROCESS-

EDGES, but with incoming edges, the reasoning 

is analogous. 

 The RW_MATLAB_TAGTHEINBLOCKS, where 

the rule attempts to match Inport blocks and 

deletes their outgoing edges. A Subsystem 

must have a bounded number of Inport blocks 

and an Inport block must have a bounded 

number of outgoing edges, the rule is applied a 

bounded number of times. 

 The RW_MATLAB_TAGTHEOUTBLOCKS is 

similar to the RW_MATLAB_TAGTHEIN-

BLOCKS, but it attempts to match Outport 

blocks with incoming edges. The same 

reasoning can be applied here as well, that is, 

the Subsystem must have a bounded number of 

Outport blocks and an Outport block must 

have a bounded number of incoming edges. 

Therefore, the rule is applied a bounded 

number of times. 

 The RW_MATLAB_PROCESSFIRSTSIN-

SUBSYSTEM rule is the pair of the 

RW_MATLAB_PROCESSFIRSTBLOCKS rule at a 

deeper level. Since it looks for the same 

pattern with the extension of a parent element, 

the same reasoning can be applied here as well. 
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Figure 10: The example Simulink model

 

Based on the previous, none of the rules in the 

TRANS_SL can be applied an indefinite number of 

times. 

Now, it has to be checked, that the transformation 

does not contain infinite loops. It can be stated, that 

none of the transformation rules create any new 

element, that is no new edges or blocks are created 

throughout the process. However, every processed 

element (and its edges) is deleted by the appropriate 

rule. Since the Simulink model contains a bounded 

number of elements, the processing rules, and the 

related rules deleting elements, can be applied only a 

bounded number of types. 

Furthermore, in Simulink models the number of 

Subsystems that can be used is limited and hierarchies 

of Subsystems cannot be created in a recursive manner. 

Moreover, it is not possible to create a hierarchy, where 

Subsystem SA contains Subsystem SB and SB also 

contains SA. With these restrictions it is ensured that the 

application of the RW_MATLAB_CHECKFOR-

SUBSYSTEM transformation rule cannot lead to an 

infinite loop because each found Subsystem will be 

processed and deleted. 

In this manner, since none of the transformation 

rules can be applied indefinitely and the transformation 

does not contain an infinite loop, it is proven that the 

transformation always terminates. ∎ 
 

5. EXPERIMENTAL RESULTS 

After introducing and analyzing the transformation, this 

section presents a simple example to demonstrate its 

functionality. 

Figure 10 shows an example Simulink model. The 

top level of the model is depicted in Figure 10a, and the 

elements contained by the nonvirtual Subsystem are 

shown in Figure 10b. It is a simple example, which 

contains only one nonvirtual Subsystem, and a couple 

of simple elements. The transformation was examined 

on more complex models as well, and produced the 

expected results. 

After the transformation for Figure 10b finished its 

execution, it resulted in the Sorted List depicted in 

Figure 11. 

 

 
Figure 11: The resulting Sorted List 

 

6. CONCLUSIONS 

Nowadays Simulink is a popular tool for modeling 

embedded system. Simulink, in order to precisely model 

the functionality of the modeled system, can 

automatically elaborate a source model. Such 

elaboration is a form of model transformation process 

that is currently implemented in software as part of the 

Simulink code base. 

Part of the elaboration is creating a Sorted List, 

which represents the dependency between the elements 

in the source model. In this paper, an algorithm is 

presented in detail, which is suitable for creating such a 

list. This algorithm is examined in terms of complexity. 

Moreover, a detailed model transformation-based 

solution is also presented for creating Sorted Lists. This 

approach enables taking advantage of the benefits of 

model transformation such as reusability and platform 

independence. In this manner, the abstraction level of 

the model transformation problem can be raised. 

Besides the transformation details, the analysis of the 

transformation is also discussed and a simple example 

is given to presents its applicability. 

Future work intends to study whether with the help 

of this transformation, the execution list can also be 

implemented via model transformation. In this manner, 
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the abstraction level could be raised even further and 

more benefits unlocked. 
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