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ABSTRACT
This paper deals with amperometric biosensors acting
in the flow injection mode when the biosensor contacts
with an analyte for a short time. A biosensor-based an-
alytical system is mathematically modeled by reaction-
diffusion equations containing a non-linear term related
to the Michaelis-Menten kinetics of an enzymatic reac-
tion. The model involves four regions: the enzyme layer
where enzymatic reaction as well as the mass transport
by diffusion take place, a dialysis membrane and a diffu-
sion limiting region where only the diffusion take place,
and a convective region where the analyte concentration
is maintained constant. The system of equations was
solved numerically by using the finite difference tech-
nique. The biosensor operation is analyzed with a spe-
cial emphasis to the effect of the dialysis membrane on
the biosensor response. The biosensor sensitivity is in-
vestigated by altering the model parameters influencing
the thickness of the dialysis membrane and the catalytic
activity of the enzyme. The half maximal effective con-
centration of the analyte is used as a main characteristic
of the sensitivity and the calibration curve of the biosen-
sor.

Keywords: modeling, reaction-diffusion, biosensor, flow
injection analysis.

1. INTRODUCTION
Biosensors are analytical devices mainly used for mea-
suring concentrations of analytes (substrates). Main
parts composing a biosensor, a biologically active sub-
stance, usually an enzyme, and a physicochemical trans-
ducer are combined to convert a biochemical reaction re-
sult to a measurable quantity (Gutfreund 1995; Turner
et al. 1990; Scheller and Schubert 1992). Amperometric
biosensors measure changes in the current on the work-
ing electrode due to the direct oxidation or reduction
of chemical reaction products. The measured current is
usually proportional to the concentration of the analyte
(substrate). The amperometric biosensors are relatively
cheap, sensitive and reliable devices for clinical diag-
nostics, drug detection, food analysis and environment
monitoring (Wollenberger et al. 1997; Gruhl et al. 2011;
Viswanathan et al. 2009).

Amperometric biosensors are rather often combined
with the flow injection analysis (FIA) for on-line moni-

toring of raw materials, product quality and the manu-
facturing process (Ruzicka and Hansen 1988; Mello and
Kubota 2002; Nenkova et al. 2010). In the FIA a biosen-
sor contacts with the substrate for short time (seconds to
tens of seconds) whereas in the batch analysis the biosen-
sor remains immersed in the substrate solution for a
long time (Ruzicka and Hansen 1988). Compared to the
batch systems, the FIA systems present the advantages
of the reduction in analysis time allowing a high sam-
ple throughput, and the possibility to work with small
volumes of the substrate (Prieto-Simon et al. 2006; Her-
nandez et al. 2013). The FIA arrangement also presents
a wide response range and high sensitivity (Prieto-Simon
et al. 2006).

To improve the efficiency of the development of
a novel biosensor as well as to optimize its configura-
tion it is of crucial important to model the biosensor
action (Bartlett and Whitaker 1987; Schulmeister 1990;
Amatore et al. 2006; Lyons 2009). Biosensors acting in
the FIA mode have been already modeled usually at in-
ternal diffusion limitations by ignoring the external dif-
fusion (Zhang et al. 2001; Baronas et al. 2002). How-
ever, in practical biosensing systems, the mass trans-
port outside the enzyme region is of crucial importance,
and it has to be taken into consideration when model-
ing the biosensor action (Lyons 2009). Recently, the
mechanisms controlling the sensitivity of amperometric
biosensors acting in FIA mode were numerically mod-
eled taking into consideration the external mass trans-
port (Baronas et al. 2011). The mass transport by dif-
fusion is especially important when dialysis membranes
are applied for development of highly stable and sensi-
tive biosensors (Baronas et al. 2010).

The goal of this investigation was to develop a com-
putational model for an effective simulation of the ac-
tion of an amperometric biosensor containing a dialysis
membranes and utilizing FIA as well as to investigate the
influence of the physical and kinetic parameters on the
biosensor response. The biosensing system was math-
ematically modeled by reaction-diffusion equations con-
taining a non-linear term related to the Michaelis-Menten
kinetics of an enzymatic reaction (Bartlett and Whitaker
1987; Schulmeister 1990). The system of equations was
solved numerically by using the finite difference tech-
nique (Baronas et al. 2010; Britz 2005). The biosensor
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operation was analyzed with a special emphasis to the ef-
fect of the dialysis membrane on the biosensor response.
The biosensor sensitivity was investigated by altering the
model parameters influencing the thickness of the dialy-
sis membrane and the catalytic activity of the enzyme.
The half maximal effective concentration of the analyte
was used as a main characteristic of the sensitivity and
the calibration curve of the biosensor (Bisswanger 2008).

2. BIOSENSOR STRUCTURE
The biosensor to be modeled has a layered struc-
ture (Simelevicius et al. 2012). Figure 1 shows a prin-
cipal structure of the biosensor. The biosensor is con-
sidered as an electrode with a relatively thin layer of an
enzyme (enzyme membrane) entrapped on the surface
of the electrode by applying a dialysis membrane. The
biosensor model involves four regions: the enzyme layer
where the enzyme reaction as well as the mass transport
by diffusion take place, a dialysis membrane and a dif-
fusion limiting region where only the mass transport by
diffusion take place, and a convective region where the
analyte concentration is maintained constant.

Figure 1: Structural Scheme of the Biosensor

In the enzyme layer we consider the enzyme-
catalyzed reaction

E + S
k1

GGGGGGBFGGGGGG

k−1
ES

k2
GGGAE + P, (1)

where the substrate (S) combines reversibly with an en-
zyme (E) to form a complex (ES). The complex then dis-
sociates into the product (P) and the enzyme is regener-
ated (Gutfreund 1995; Scheller and Schubert 1992).

Assuming the quasi steady-state approximation, the
concentration of the intermediate complex (ES) does not
change and may be neglected when modeling the bio-
chemical behavior of biosensors (Turner et al. 1990;
Scheller and Schubert 1992; Segel and Slemrod 1989).
In the resulting scheme, the substrate (S) is enzymati-
cally converted to the product (P),

S
E−→ P (2)

It was assumed that x = 0 represents the surface of
the electrode, a1, a2 and a3 denote the distances from the
electrode surface, while d1, d2 and d3 are the thicknesses

of the enzyme, the dialysis membrane and the diffusion
layers, respectively, ai = ai−1 + di, i = 1, 2, 3, and
a0 = 0. The outer diffusion layer ( a2 < x < a3) may
be treated as the Nernst diffusion layer (Britz 2005). Ac-
cording to the Nernst approach a layer of thickness d3 =
a3 − a2 remains unchanged with time. It was assumed
that away from it the buffer solution is uniform in con-
centration.

3. MATHEMATICAL MODEL
Assuming a homogeneous distribution of the enzyme in
the enzyme layer of the uniform thickness and symmet-
rical geometry of the dialysis membrane leads to the
mathematical model of the biosensor action defined in
a one-dimensional-in-space domain (Schulmeister 1990;
Baronas et al. 2010).

3.1. Governing equations
Coupling the enzyme-catalyzed reaction (2) in the en-
zyme layer with the mass transport by diffusion, de-
scribed by Fick’s law, leads to the following system of
the reaction-diffusion equations (t > 0):

∂S1

∂t
= DS1

∂2S1

∂x2
− VmaxS1

KM + S1
, (3a)

∂P1

∂t
= DP1

∂2P1

∂x2
+

VmaxS1

KM + S1
, x ∈ (0, a1), (3b)

where x and t stand for space and time, S1 and P1 are the
concentrations of the substrate (S) and the product (P) in
the enzyme layer, DS1

, DP1
are the constant diffusion

coefficients, Vmax is the maximal enzymatic rate attain-
able with that amount of the enzyme, when the enzyme
is fully saturated with the substrate, KM is the Michaelis
constant, and d1 = a1 is the thickness of the enzyme
layer (Kulys 1981; Bartlett and Whitaker 1987; Schul-
meister 1990). The Michaelis constant KM is the con-
centration of the substrate (S) at which the reaction rate is
half its maximum value Vmax. KM is an approximation
of the enzyme affinity for the substrate based on the rate
constants within the reactions (1), KM = (k−1+k2)/k1.

Outside the enzyme layer, only the mass transport
by diffusion of the substrate as well as the product takes
place (t > 0),

∂Si

∂t
= DSi

∂2Si

∂x2
, (4a)

∂Pi

∂t
= DPi

∂2Pi

∂x2
, x ∈ (ai−1, ai), i = 2, 3, (4b)

where Si andPi are the substrate and the product concen-
trations in the i-th layer, DSi

and DPi
are the diffusion

coefficients, and di = ai − ai−1 is the thickness of the
corresponding layer, i = 2, 3.

3.2. Initial conditions
The biosensor operation starts when the substrate ap-
pears in the bulk solution. This leads to the following
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initial conditions (t = 0):

S1(x, 0) = 0, P1(x, 0) = 0, x ∈ [0, a1], (5a)

S2(x, 0) = 0, P2(x, 0) = 0, x ∈ [a1, a2], (5b)

S3(x, 0) =

{
0, x ∈ [a2, a3),
S0, x = a3,

(5c)

P3(x, 0) = 0, x ∈ [a2, a3], (5d)

where S0 is the substrate concentration in the bulk solu-
tion.

3.3. Boundary conditions
During the biosensor operation, the substrate penetrates
through the diffusion layer as well as the dialysis mem-
brane and reaches farther boundary of the enzyme layer
(x = a1). On the boundary between two adjacent re-
gions having different diffusivities, the matching condi-
tions have to be defined (t > 0, i = 1, 2):

DSi

∂Si

∂x

∣∣∣∣
x=ai

= DSi+1

∂Si+1

∂x

∣∣∣∣
x=ai

, (6a)

Si(ai, t) = Si+1(ai, t), (6b)

DPi

∂Pi

∂x

∣∣∣∣
x=ai

= DPi+1

∂Pi+1

∂x

∣∣∣∣
x=ai

, (6c)

Pi(ai, t) = Pi+1(ai, t). (6d)

These conditions mean that fluxes of the substrate and
the product through one region are equal to the corre-
sponding fluxes entering the surface of the neighboring
region. Concentrations of the substrate and the product
in one region versus the neighboring region are assumed
to be equal.

Due to the electrode polarization the concentration
of the reaction product at the electrode surface is perma-
nently reduced to zero (Schulmeister 1990; Baronas et al.
2010),

P1(0, t) = 0. (7)

Due to the substrate electro-inactivity, the substrate
concentration flux on the electrode surface equals zero,

∂S1

∂x

∣∣∣∣
x=0

= 0. (8)

According to the Nernst approach the layer of the
thickness d3 of the outer diffusion layer remains un-
changed with time, and away from it the solution is uni-
form in the concentration (Britz 2005). In the FIA mode
of the biosensor operation, the substrate appears in the
bulk solution only for a short time period called the in-
jection time (Ruzicka and Hansen 1988). Later, the sub-
strate disappears from the bulk solution,

P3(a3, t) = 0, t > 0, (9a)

S3(a3, t) =

{
S0, 0 < t ≤ TF ,
0, t > TF ,

(9b)

where TF is the injection time.

3.4. Biosensor response
The anodic or cathodic current is measured as a result in
a physical experiment. The biosensor current is propor-
tional to the gradient of the reaction product concentra-
tion at the electrode surface, i.e. on the boundary x = 0.
When modeling the biosensor action, due to the direct
proportionality of the current to the area of the elec-
trode surface, the current is often normalized with that
area (Schulmeister 1990; Baronas et al. 2010). The den-
sity I(t) of the biosensor current at time t can be obtained
explicitly from Faraday’s and Fick’s laws (Schulmeister
1990),

I(t) = neFDP1

∂P1

∂x

∣∣∣∣
x=0

, (10)

where ne is a number of electrons involved in a charge
transfer, and F is the Faraday constant.

We assume that the system reaches equilibrium
when t → ∞. The steady-state current is usually as-
sumed to be the main characteristic of commercial am-
perometric biosensors acting in the batch mode (Gut-
freund 1995; Turner et al. 1990; Scheller and Schubert
1992). In the FIA, due to the zero concentration of the
surrounding substrate at t > TF , the steady-state current
falls to zero, I(t) → 0, when t → ∞. Because of this,
the maximum peak current is the mostly used character-
istic in FIA systems,

Imax = max
t>0
{I(t)} , (11)

where Imax is the maximal density of the biosensor cur-
rent.

The corresponding time Tmax of the maximal cur-
rent is used to characterize the response time of the
biosensor,

Tmax = {t : I(t) = Imax} . (12)

3.5. Characteristics of Biosensor Response
The sensitivity is one of the most important characteris-
tics of the biosensor operation (Gutfreund 1995; Turner
et al. 1990; Scheller and Schubert 1992). The sensitivity
BS of the biosensor acting in the FIA mode is defined
as the gradient of the maximal current with respect to
the concentration S0 of the substrate in the bulk (Schul-
meister 1990; Baronas et al. 2010). Since the biosensor
current as well as the substrate concentration vary even
in orders of magnitude, a dimensionless expression of
the sensitivity is preferable (Baronas et al. 2010). The
dimensionless sensitivity BS(S0) for the substrate con-
centration S0 is given by

BS(S0) =
dImax(S0)

dS0
× S0

Imax(S0)
, (13)

where Imax(S0) is the density of the maximal biosensor
current calculated at the substrate concentration S0.
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In the Michaelis-Menten kinetic model, the
Michaelis constant KM as a characteristic of the biosen-
sor calibration curve is numerically equal to the substrate
concentration at which half the maximum rate of the
enzyme-catalyzed reaction is achieved (Gutfreund 1995;
Scheller and Schubert 1992). Under certain conditions,
especially under diffusion limitations for the substrate,
the half maximal effective concentration C50 of the sub-
strate to be determined is often used to characterize the
biosensor calibration curve (Bisswanger 2008). In the
case of FIA analysis, C50 is defined as the concentration
of the substrate at which the response of the biosensor
reaches half of the maximal response,

C50 =

{
S∗0 : Imax(S

∗
0 ) = 0.5 lim

S0→∞
Imax(S0)

}
, (14)

where Imax(S0) is the maximal density of the biosensor
current calculated at the substrate concentration S0.

A greater value of the half maximal effective con-
centration C50 corresponds to a longer linear part of
the calibration curve (Bisswanger 2008). At the sub-
strate concentration S0 corresponding to a linear part
of the calibration curve (S0 < C50) the dimensionless
biosensor sensitivity BS(S0) is approximately equal to
unity (Baronas et al. 2010). The concentration C50 well
characterizes the overall sensitivity of the biosensor.

In the case of biosensors acting in batch mode and
exhibiting the Michaelis-Menten kinetics, the concentra-
tion C50 is usually called the apparent Michaelis-Menten
constant (Stikoniene et al. 2010). It has been shown that,
under certain conditions, the apparent Michaelis constant
highly depends on the biosensor geometry (Ivanauskas
et al. 2008). Also, a substantial increase of the apparent
Michaelis constant has been shown at restricted diffusion
of the substrate through an outer membrane covering an
enzyme layer (Stikoniene et al. 2010). This result ap-
pears to be of a high practical interest, since it enables to
expand the linear dependence of biosensor response on
the substrate concentration towards the higher concen-
trations under the deep diffusion mode of the biosensor
operation, whereas the response time increases not very
drastic (Stikoniene et al. 2010). This property is espe-
cially attractive for biosensors acting in FIA mode be-
cause of a relatively short their response time (Cervini
and Cavalheiro 2008; Baronas et al. 2002).

3.6. Dimensionless Model
In order to extract the main governing parameters of the
mathematical model, thus reducing a number of model
parameters in general, a dimensionless model is often
derived (Amatore et al. 2006; Schulmeister 1990). The
dimensionless model has been derived by replacing the
model parameters as defined in Table 1.

For the enzyme layer, the reaction-diffusion equa-

Table 1: Dimensional and Dimensionless Model Param-
eters (i = 1, 2, 3)

Dimensional Dimensionless

x, cm x̂ = x/d1
ai, cm âi = ai/d1
di, cm d̂i = di/d1
t, s t̂ = tDS1

/d21
TF , s T̂F = TFDS1/d

2
1

Si, M Ŝi = Si/KM

Pi, M P̂i = Pi/KM

C50, M Ĉ50 = C50/KM

DSi
, cm2/s D̂Si

= DSi
/ DS1

DPi , cm2/s D̂Pi = DPi / DS1

I , A/cm2 Î = Id1/(neFDP1
KM )

tions (3) can be rewritten as follows (t̂ > 0):

∂Ŝ1

∂t̂
=
∂2Ŝ1

∂x̂2
− α2 Ŝ1

1 + Ŝ1

, (15a)

∂P̂1

∂t̂
= D̂P1

∂2P̂1

∂x̂2
+ α2 Ŝ1

1 + Ŝ1

, x̂ ∈ (0, 1), (15b)

where α2 is the diffusion module, also known as
Damköhler number (Schulmeister 1990),

α2 =
d21Vmax

DS1
KM

. (16)

The diffusion module α2 compares the rate of the en-
zyme reaction (Vmax/KM ) with the rate of the mass
transport through the enzyme layer (DS1

/d21).
The diffusion equations (4) are transformed as fol-

lows (t̂ > 0):

∂Ŝi

∂t̂
= D̂Si

∂2Ŝi

∂x̂2
, (17a)

∂P̂i

∂t̂
= D̂Pi

∂2P̂i

∂x̂2
, x̂ ∈ (âi−1, âi), i = 2, 3. (17b)

The initial conditions (5) take the following form
(i = 1, 2):

Ŝi(x̂, 0) = 0, P̂i(x̂, 0) = 0, x̂ ∈ [âi−1, âi], (18a)

Ŝ3(x̂, 0) =

{
0, x̂ ∈ [â2, â3),

Ŝ0, x̂ = â3,
(18b)

P̂3(x, 0) = 0, x̂ ∈ [â2, â3]. (18c)

The matching conditions (6) transform to the fol-
lowing conditions (t̂ > 0, i = 1, 2):
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D̂Si

∂Ŝi

∂x̂

∣∣∣∣∣
x̂=âi

= D̂Si+1

∂Ŝi+1

∂x̂

∣∣∣∣∣
x̂=âi

, (19a)

Ŝi(âi, t̂) = Ŝi+1(âi, t̂), (19b)

D̂Pi

∂P̂i

∂x̂

∣∣∣∣∣
x̂=âi

= D̂Pi+1

∂P̂i+1

∂x̂

∣∣∣∣∣
x̂=âi

, (19c)

P̂i(âi, t̂) = P̂i+1(âi, t̂). (19d)

The boundary conditions (7)-(9) take the following
form (t̂ > 0):

P̂1(0, t̂) = 0,
∂Ŝ1

∂x̂

∣∣∣∣∣
x̂=0

= 0, (20a)

P̂3(â3, t̂) = 0, (20b)

Ŝ3(â3, t̂) =

{
Ŝ0, t̂ ≤ T̂F ,
0, t̂ > T̂F .

(20c)

The dimensionless current (flux) Î is defined as fol-
lows:

Î(t̂) =
∂P̂1

∂x̂

∣∣∣∣∣
x̂=0

=
I(t)d1

neFDP1KM
. (21)

Assuming the same diffusion coefficients of the
substrate and the product, the initial set of model parame-
ters reduces to the following aggregate dimensionless pa-
rameters: d̂2 - the thickness of the dialysis membrane, d̂3
- the diffusion layer thickness, α2 - the diffusion module,
T̂F - the injection time, Ŝ0 - the substrate concentration
in the bulk during the injection, and D̂Si = DSi/DS1 =
DPi

/DP1
= D̂Pi

- the ratio of the diffusion coefficient in
the dialysis membrane (at i = 2) or in the diffusion layer
(at i = 3) to the corresponding diffusion coefficient in
the enzyme layer.

The diffusion module α2 is one of the most impor-
tant parameters essentially defining internal character-
istics of layered amperometric biosensors (Kulys 1981;
Bartlett and Whitaker 1987; Schulmeister 1990; Baronas
et al. 2010). The biosensor response is known to be un-
der diffusion control when α2 � 1. In the very opposite
case, when α2 � 1, the enzyme kinetics predominates
in the response.

4. NUMERICAl SIMULATION
An exact analytical solution is practically possible be-
cause of the nonlinearity of the governing equations of
the mathematical model (3)-(10) (Schulmeister 1990;
Kernevez 1980). Because of this the initial boundary
value problem was solved numerically. Solving the prob-
lem, an implicit finite difference scheme was built on a
uniform discrete grid (Schulmeister 1990; Baronas et al.
2010; Britz 2005; Britz et al. 2009). The computational

model was programmed in the C language (Press et al.
1992).

The mathematical model and the numerical solution
were validated using a known analytical solution (Schul-
meister 1990). Assuming TF → ∞ and d2 → 0 or
d3 → 0, the mathematical model (3)-(10) approaches
the two compartment model of the amperometric biosen-
sor acting in the batch mode (Schulmeister 1990). The
three compartment model approaches the two compart-
ment model also in the unrealistic case where the diffu-
sion coefficients for the dialysis membrane are assumed
to be the same as for the diffusion layer, DS2

= DS3

and DP2
= DP3

. Additionally assuming S0 � KM ,
the nonlinear Michaelis-Menten reaction function in (3)
simplifies to a linear function VmaxS1/KM . At these
assumptions the model (3)-(10) has been solved analyt-
ically (Schulmeister 1990). At the steady-state condi-
tions the relative difference between numerical and ana-
lytical solutions was less than 1%.

To investigate the effect of the dialysis membrane
on the biosensor response, a number of experiments were
carried out, while values of some parameters were kept
constant (Gough and Leypoldt 1979; van Stroe-Blezen
et al. 1993),

KM = 100µM, DS1
= DP1

= 300µm2/s,

DS2 = DP2 = 0.3DS1 , DS3 = DP3 = 2DS1 ,

ne = 1, d1 = 200µm, d3 = 20µm.

(22)

To minimize the effect of the Nernst diffusion layer
on the biosensor response, the responses were simulated
at a practically minimal thickness (d3 = 20µm) of the
external diffusion layer assuming well stirred buffer so-
lution by a magnetic stirrer (Gough and Leypoldt 1979).

Figure 2 shows the evolution of the density I(t) of
the biosensor current simulated at a moderate concentra-
tion S0 of the substrate (S0 = KM ) and different values
of the other model parameters: the maximal enzymatic
rate Vmax (0.75 and 1.5µM), the injection time TF (3
and 6 s) and the thickness d2 of the dialysis membrane
(10 and 20µm). Assuming (22), these two values of the
maximal enzymatic rate Vmax correspond to the follow-
ing two values of the dimensionless diffusion module α2:
1 and 2. Accordingly, d2 = 10µm corresponds to the
dimensionless relative thickness d̂2 of the dialysis mem-
brane equal to 0.05, while d2 = 20µm leads to d̂2 = 0.1.

Figure 2 shows a non-monotonic behavior of the
biosensor current. In all the simulated cases the current
increases with increasing time t up to the injection time
TF (t ≤ TF ). However, the current also increases some
time after the substrate disappearing from the bulk so-
lution (t ≥ TF ). The time moment Tmax of the peak
current and the peak current Imax depend on the model
parameters: Vmax, TF and d2. In all the simulated cases,
the time moment of the peak current was greater than TF
(Tmax > TF ).

As one can see in figure 2 that at different values of
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Figure 2: Dynamics of the Biosensor Response; Vmax:
0.75 (1-4), 1.5µM (5-8), TF : 3 (1, 2, 5, 6), 6 s (3, 4, 7,
8); d2: 10 (1, 3, 5, 7), 20µm (2, 4, 6, 8)

the model parameters Vmax and d2, the density Imax of
the maximal current increases almost two times when the
injection time TF doubles. However, the influence of the
doubling the time TF on the time of the maximal current
is rather slight. When comparing curves 1 (TF = 3 )
and 3 (TF = 6 s) one can see that the time Tmax of the
maximal response increases from 31 only to 33 s, while
Imax increases from 19.7 event to 38nA/cm2 at Vmax =
0.75µM (α2 = 2) and d2 = 10µm (d̂2 = 0.1).

Figure 2 also shows that the biosensor response no-
ticeably depends on the thickness d2 of the dialysis mem-
brane. An increase in d2 prolongs the time of the max-
imal current. As one can see in figure 2 that the maxi-
mal current decreases when the thickness d2 of the dial-
ysis membrane increases. FIA biosensing systems have
been already investigated by using mathematical models
at zero thickness of the dialysis membrane (Baronas et al.
2002, 2011). Figure 2 visually substantiates the impor-
tance of the dialysis membrane.

5. RESULTS AND DISCUSSION
Using the numerical simulation, the biosensor action
was analysed with a special emphasis to the conditions
at which the biosensor sensitivity can be increased and
the calibration curve can be prolonged by changing the
biosensor geometry (especially the thickness of the dial-
ysis membrane), the injection duration, and the catalytic
activity of the enzyme. In order to investigate the influ-
ence of the model parameters on the half maximal ef-
fective concentration C50 of the substrate the simulation
was performed at wide ranges of the values of the thick-
ness d2 of the dialysis membrane, the diffusion module
α2 and the injection time TF .

The dimensionless half maximal effective concen-
tration Ĉ50 expresses the relative prolongation (in times)
of the calibration curve in comparison with the theoreti-
cal Michaelis constant KM . For the biosensor of a con-
crete configuration, the concentration C50 as well as the
apparent Michaelis-Menten constant can be rather eas-
ily calculated by multiple simulation of the maximal re-
sponse changing the substrate concentration S0 (Baronas

et al. 2010, 2011).
Figure 3 shows the dependence of the dimensionless

half maximal effective concentration Ĉ50 on the thick-
ness d2 of the dialysis membrane. The the concentration
C50 was calculated and then normalized with respect to
the Michaelis constant KM at three values of the diffu-
sion module α2: 0.1 (curves 1 and 2), 1 (3, 4) and 10 (5,
6), and two practically extreme values of the injection
time TF : 1 (1, 3, 5) and 10 s (2, 4, 6). At all these values
of α2 and TF , the simulations were performed by chang-
ing the thickness d2 from 5µm (d̂2 = 0.025) to 40µm
(d̂2 = 0.2).

5 1 0 1 5 2 0 2 5 3 0 3 5 4 01 0 1

1 0 2

1 0 3

 4
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Figure 3: Effective Concentration Ĉ50 vs. Thickness d2
of the Dialysis Membrane; α2: 0.1 (1, 2), 1 (3, 4), 10 (5,
6), TF : 1 (1, 3, 5), 10 s (2, 4, 6)

One can see in figure 3, that the dimensionless
half maximal effective concentration Ĉ50 (as well as
the corresponding dimensional concentration C50) is a
monotonous increasing function of the thickness d2 of
the dialysis membrane. An increase in the thickness
d2 noticeably prologs the linear part of the calibration
curve of the biosensor. This can be explained by increas-
ing an addition external diffusion limitation caused by
the increasing the thickness of the membrane (Gutfre-
und 1995; Scheller and Schubert 1992; Ivanauskas et al.
2008; Stikoniene et al. 2010). This figure also shows a
significant dependence of C50 on the diffusion module
α2 when α2 ≤ 1.

To properly investigate the impact of the injection
time TF on the length of the linear part of the calibration
curve, the dimensionless half maximal effective concen-
tration Ĉ50 was also calculated by changing TF from 0.5
up to 10 s. Values of Ĉ50 were calculated at three values
of the diffusion module α2 (0.1, 1 and 10) and two values
of the thickness d2 (10 and 20µm) of the dialysis mem-
brane. The calculation results are depicted in figure 4.

Figure 4 shows that Ĉ50 approximately exponen-
tially increases with decreasing the injection time TF .
The calibration curve of the biosensor can be prolonged
by more than an order of magnitude only by a decrease
in the injection time TF . This impact of TF on the
biosensor sensitivity only slightly depends the thickness
d2 of the dialysis membrane and the diffusion module
α2. A similar effect was also noticed when modeling a
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Figure 4: Effective Concentration Ĉ50 vs. Injection Time
TF ; α2: 0.1 (1, 2), 1 (3, 4), 10 (5, 6), d2: 10 (1, 3, 5),
20µm(2, 4, 6)

more simple biosensor containing no dialysis membrane
(Baronas et al. 2011).

One can also see in figure 4 that the effective con-
centration Ĉ50 is noticeably higher at greater values of
the diffusion module α2 than at lower ones.

To investigate the impact of the diffusion module
α2 on the effective concentration the biosensor responses
were simulated at a wide range of values of α2. The sim-
ulation results are presented in figure 5. The effective
concentration Ĉ50 was calculated at two values of the
thickness d2 (10 and 20µm) of the dialysis membrane
and two values of the injection time TF (1 and 10 s). At
concrete values of d2 and TF , the calculations were per-
formed by changing the maximal enzymatic rate Vmax

from 75 nM/s (α2 = 0.1) to 7.5µM/s (α2 = 10) while
keeping the all other parameters constant.

0 . 1 1 1 01 0 1
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Figure 5: Effective Concentration Ĉ50 vs. Diffusion
Module α2; d2: 10 (1, 3), 20µm(2, 4), TF : 1 (1, 2),
10 s (3, 4)

As one can see in figure 5 that the effective concen-
tration Ĉ50 is a monotonous increasing function of α2.
When the enzyme kinetics predominates in the biosen-
sor response (α2 � 1) the concentration Ĉ50 is approx-
imately a constant function. In the opposite case of the
biosensor operation when the biosensor response is un-
der diffusion control (α2 � 1), the concentration Ĉ50

exponentially increases with an increase in the diffusion

module α2. A similar influence of the diffusion module
α2 to the linear part of the calibration curver was also no-
ticed when modeling the corresponding biosensor with
no dialysis membrane (Baronas et al. 2011).

In real applications of biosensors, the diffusion
module α2 can be controlled by changing the maximal
enzyme activity Vmax as well as the thickness d1 of the
enzyme layer. The maximal enzymatic rate Vmax is ac-
tually a product of two parameters: the catalytic constant
k2 introduced in (1) and the total concentration of the
enzyme (Gutfreund 1995; Scheller and Schubert 1992).
Since, in actual applications it is usually impossible to
change a value of the constant k2, the maximal rate Vmax

as well as the diffusion module α2 might be changed by
changing the enzyme concentration in the enzyme layer.

6. CONCLUSIONS
The mathematical model (3)-(10) of an amperometric
biosensor containing a dialysis membrane and utilizing
the flow injection analysis can be successfully used to
investigate the kinetic peculiarities of the biosensor re-
sponse. The corresponding dimensionless mathematical
model (15)-(21) can be applied to the numerical investi-
gation of the impact of model parameters on the biosen-
sor action and to optimize the biosensor configuration.

By increasing the thickness d2 of the dialysis mem-
brane, the half maximal effective concentration Ĉ50 can
be increased and the linear part of the biosensor calibra-
tion curve can be prolonged several fold (see figure 3).

The half maximal effective concentration Ĉ50 ap-
proximately exponentially increases with decreasing the
injection time TF . The calibration curve of the biosen-
sor can be prolonged by a few orders of magnitude by
decreasing the injection time TF (figure 4).

The half maximal effective concentration Ĉ50 is a
monotonous increasing function of the diffusion module
α2. When the enzyme kinetics distinctly predominates
in the response (α2 � 1), the Ĉ50 is approximately a
constant function of α2, while at α2 � 1 the concentra-
tion Ĉ50 exponentially increases with an increase in α2

(figure 5).
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