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ABSTRACT 
A deteriorating production system consisting of two 
parallel machines with the production dependent failure 
rates of the machine is investigated in this paper. The 
machines produce one type of final products. The 
demand rate for the final commodity is constant and 
unmet demand is backlogged. The goal of the control 
problem is to find the production rates of both machines 
so as to minimize a long term average expected cost 
which penalizes both the presence of waiting customers 
and the inventory. In the proposed model, the production 
rate of the first machine is higher than the production rate 
of the second machine. The failure rate of the first 
machine which is the main machine depends on its 
production rate. The failure rate of the second machine is 
constant. The proposed model is based on a Markov 
decision process, and the stochastic dynamic 
programming method is used to obtain the optimality 
conditions. Control policy parameters are obtained by 
combining analytical modelling, simulation experiments 
and response surface methodology. Sensitivity analyses 
of the optimal results with respect to the system 
parameters are also examined to illustrate the importance 
and effectiveness of the proposed methodology. The 
usefulness of the proposed approach is outlined for more 
complex situations where the system must deal with non-
exponential failure and multiple machines.  

 
Keywords: production planning, stochastic dynamic 
programming, numerical methods, simulation 

 
1. INTRODUCTION 
Due to the constant search for increased productivity, a 
better service to clients, the number of scientific 
publications in the field of failure prone manufacturing 
systems has been steadily growing.  

This paper investigates a stochastic deteriorating 
production system consisting of two parallel machines 
with the production rate-dependent failure rates of the 
machine. The stochastic nature of the system is due to 
machines that are subject to random breakdowns and 

repairs. The machines produce one part type; whenever a 
breakdown occurs, a corrective maintenance is performed 
to restore the machines to its operational mode. Our 
objective is to find the production rates of the different 
machines so as to minimize a long term average expected 
cost including inventory and backlog costs. To solve the 
optimization problem of this paper, we propose a 
stochastic programming formulation of the problem and 
derive the optimal production policies numerically. 
Control policy parameters are obtained combining 
analytical modelling, simulation experiments and 
response surface methodology.  

An overview of relevant literature reveals that 
significant contributions have been proposed based on: 
two parallel machines manufacturing systems (Sajadi et 
al. 2011), one machine with the failure rate depends on 
the production rate (Martinelli 2010) and a combination 
of the control theory and the simulation-based 
experimental design (Gharbi et al. 2011). This paper’s 
main contribution lies in the study of a stochastic 
manufacturing system consisting of two parallel 
machines with the production dependent failure rates of 
the main machine.  

A common feature of this paper is that the policies 
are of the hedging point type and depend on multiple 
thresholds. The methodology presented in this paper can 
be applied in the machining mechanical parts industry 
where there are many different parallel machines. Some 
of them are classical machines (constant failure rates) and 
the others are degraded (if they work at faster rates, they 
are more likely to fail). 
 
2. STATEMENT OF THE PROBLEM 
As illustrated in Figure 1, the manufacturing system 
studied consists of two parallel machines producing one 
part type denoted M1 and M2. The machines are subject 
to random breakdowns and repairs. The repair rate is 
constant. The maximum production rates of machines are 
known and the demand for finished products is 
deterministic. The failure rate of M1 which is the main 
machine (machine whose production rate is the highest) 
depends on its production rate. Then, when this machine 
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works at a faster rate, it is more likely to fail. In contrast, 
the failure rate of the second machine is constant. We 
assumed that M2 can’t meet the customer demand alone. 
The stochastic nature of the system is related to 
breakdowns and repairs of machines. 
The state of the machines can be classified as: 
 state 1 (mode 1): 1M and 2M are operational 
 state 2: 1M is operational and 2M is under repair 
 state 3: 1M is under repair and 2M is operational 
 state 4: 1M and 2M are under repair. 

We use  t to denote the state of the machines with 

value in  1, 2,3, 4B  .
 
The dynamic of the system is 

described by a discrete element  t and a continuous 

element  x t . The discrete element represents the status 
of the machines and the continuous one, the stock level. 
It can be positive for an inventory or negative for a 
backlog. 

The discrete part of the system is a continuous time 
Markov process, with a transition rate from state  to 

state  denoted by q with , B   . For the 

considered system, the corresponding 4 4  transition 

matrix Q q
    is one of an ergodic process as 

defined in Ross (2003).  
We assume that the failure rate of the 1st machine 

depends on its production rate and is defined by: 
 
 

1 1max
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Figure 1: System under study 

 
The transition rates verify the following conditions:
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The transition probabilities are given by: 
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with 
 

0
lim 0

t

t

t

 


  for all , B   . 

Let 1( )u t  and 2( )u t denote the production rates 

of 1M  and 2M  respectively, in mode   and at time t . 

The set of the feasible control policies   , including 

1( )u   and 2 ( )u   depends on the stochastic process  t  
and is given by:  

      
 

2

1 2 1 1max

2 2 max

, , 0 , ,
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0 ,
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     
 

  

 
 
   (5) 

where 1( )u  and 2 ( )u  are known as control variables, and 
constitute the control policies of the problem under study. 

The continuous part of the system dynamics is 
described by the following differential equation: 

1 2

( )
( ) ( ) ,  (0)

dx t
u t u t d x x

dt
      (6) 

Let  g   be the cost rate defined as follows:  

( , , )g x c x c x           (7) 

The constants c  and c  ($ per parts per unit of time) 
are used to penalize inventory and backlog respectively, 

   max 0, , max , 0x x x x     
The problem here is to control the production rates 

of the both machines. The performance criterion 
considered is the expected discounted cost ( )J   given by: 

 
   

0
1 2

( , , )
, , ,

0 , 0

te g x dt
J x u u E

x x

 

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  


 

  
 
  

   (8) 

where  is the discount rate. The value function of such 
a problem is defined as follows:  
   

1 2

1 2
( ( ), ( )) ( )

, inf , , ,  
u u

v x J x u u B


  
  

  
  

(9) 

In Appendix A, we present the optimality conditions 
and the numerical methods used to solve them for the 
value function ( )   given by equation (9). The 
contribution of this research to the Hamilton-Jacobi- 
Bellman (HJB) equations is that in the modes 1 and 2 
where 1M is operational, we have four equations instead 
of two equations in the case of a manufacturing system 
without production rate dependent failure rate (see 
equations A.3 and A.4). The next section provides a 
numerical example to illustrate the structure of the 
control policies.  
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3. NUMERICAL RESULTS AND SENSITIVITY 
ANALYSES 
 

3.1. Numerical results 
In this section, we present a numerical example for the 
manufacturing system presented in Section 2. A four-
state Markov process with the modes in  1, 2,3, 4B   
describes the system capacity. The instantaneous cost is 
described by equation (7).  

The considered computation domain D  is given by:  
 : 20 40D x x   

               
(10) 

The condition to meet the customer demands, over 
an infinite horizon and reach a steady state is given by:  

1 1max 2 max 2 1max 3 2 max

1 2 max 2 3 2 max

( )

( )

u u u u d

U u U u d

  

  

   

   

  
   

    (11) 

Where ( 1 2,  and 3 ) are the limiting probability at the 
operational modes of the machines. Note that the limiting 
probabilities of modes 1, 2, 3 and 4 (i.e., 

1 2 3, ,   and 4 ), are computed as follows:  
4

1

( ) 0     and     1i
i

Q 


                   (12) 

where 1 2 3 4( , , , )      and ( )Q   is the corresponding 
4 4  generator matrix. Table 1 summarizes the 
parameters of the numerical example for which the 
feasibility conditions given by equation (11) are satisfied.  
 

 
 

 Table 1: Parameters of numerical example 
c   c   h  U  1maxu  2maxu  

1d  2d  d  
11

12q  12

12q  2
12q  1

21q  2
21q    11

12q  

1 100 0.5 0.70 1.2 0.65 0.5 0.5 1 0.03 0.02 0.04 0.1 0.2 0.5 0.3 
 
Figures 2 and 3 represent the production rates at 

mode 1 of machines 1M and 2M respectively. In these 

figures, we can see that the thresholds 1z and 3z are low 
because both machines are operational. The results of 
Figure 3 suggest that as the inventory level approaches a 
hedging point level, it may be beneficial to decrease the 
production rate to gain in reliability. Figures 2 and 3 
show that the production rates are set to zero for 
comfortable stock levels. Then, there is no need to 
produce parts for comfortable stock levels. From the 
results obtained, the computational domain of Figure 3 
( 2M ) is divided into three regions as in Akella and 
Kumar (1986) and references therein.  However, the 
computational domain of Figure 2 is divided into four 
regions. This is the main contribution of this paper. The 
optimal production control policy consists of one of the 
following rules: 
1. Set the production rate of 1M to its maximal value 

when the current stock level is under the first 
threshold value ( 1 0.0z  ); 

2. Reduce the production rate of 1M to its minimal 
value when the current stock level approaches the 
second threshold value ( 2 13.0z  ); 

3. Set the production rate of 1M to the demand rate 
when the current stock level is equal to the second 
threshold value; 

4. Set the production rate of 1M to zero when the 
current stock level is larger than the second threshold 
value. 
 

The control policies obtained are the multi-hedging 
point policies. As shown within the numerical results and 
in Figure 2 and 3, the optimal production rates can be 
expressed as follows: 

1

1

1max 1

1 2

2

2

  if 

      if z
( ,1)

      if 

0       if 

0.0
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U x z
u x
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

 







 




               (13) 

where 1z  and 2z  are the first and second optimal 

threshold values of 1M respectively. 
 

2 2

2max 3

3

3

  if 

( ,1)       if 

0       if 

1.5u x z

u x d x z

x z



 




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



              (14) 

where 3z  is the optimal threshold value of 2M . 
Unlike in Figure 2 where the tendency was to use 

less the maximal production rate of the first machine, 
Figure 4 shows that the first threshold (

4 1.0z  ) is 

higher than the case of Figure 2 because the machine 
works alone. However, the control policy is still a multi-
hedging point policy and is defined by:  

1

1max 4

4 5

5

5

1

  if 

      if z
( , 2)

     if 

0       if 

1.0
7.5

u x z

U x z
u x

d x z
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

 







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



              (15) 

where 4z  and 5z  are the first and second optimal 

threshold values of 1M respectively. 
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Using the control policies given by equations (13), 
(14) and (15), the company will be able to take into 
account the availability of machines. Then, it can 
minimize the total cost due to failure of machines, 
allowing it to eventually maximize its total profit. The 
next section analyses the sensitivity of the policies 
obtained and several experimentations are conducted to 
ensure that the structure of the obtained policy is 
maintained and can be considered as a generalized policy 
for the general problem under study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Production rate of 1M at mode 1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3: Production rate of 2M  at mode 1 
 

3.2. Sensitivity analyses 
A set of numerical examples are considered to measure 
the sensitivity of the obtained control policies and to 
illustrate the contribution of this paper. The sensitivity of 
the control policies is analyzed according to the variation 
of the backlog costs. 

The results presented in Figures 5 and 6 show the 
behavior of the production rates of machines according to 
the variation of backlog costs. Based on these results, we 
can see that the value of the backlog costs is not too 
much impact the threshold 1z . This is logical because at 

mode 1, when both machines are operational, it was less 
use a first machine to its maximal production rate to take 
into account its reliability. The thresholds 2z  and 3z  
increase in order to avoid further backlog costs. 
However, 3z  is far less than 2z . Thus, it does not use the 
second machine a lot when both machines are producing. 
One prefers to use 1M to its minimal production rate 
because the failure rate depends on the rate of production 
(for a low production rate, the probability to fail is low). 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
Figure 4: Production rate of 1M  at mode 2 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 5: Threshold value at mode 1 versus backlog costs 
 

Figure 6 shows that the threshold values of 1M at 
mode 2 increase as the backlog costs increase. We 
therefore need a lot of parts in stock to avoid further 
backlog costs. 

Through the observations made from the sensitivity 
analysis, it clearly appears that the results obtained make 
sense and confirm and validate the proposed approach. It 
shows the usefulness of the proposed model given that 
the control policies move as predicted, from a practical 
view point. 
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4. PROPOSED SIMULATION BASED OPTIMAL 
APPROACH 

The results from traditional methods of planning in the 
environment of manufacturing systems are not sufficient 
to reach a comfortable level of desired performances. To 
improve these methods, a combination of the control 
theory and the simulation-based experimental design, as 
in Gharbi et al. (2011), is used to obtain a near-optimal 
control policy. This could allow the possibility of 
developing more realistic cases. To quantity the policy, 
which structure is given by analytical model, simulation 
model are combined with experimental design and 
response surface methodology to estimate the optimal 
values of the policy’s parameters. In the case of non-
exponential failure distribution, the quantification 
parameters are also possible with the help of the 
simulation model, which can easily take into account the 
nature of any probability distributions. The incurred cost 
is then given by simulation model which affects the 
response surface model. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 6: Threshold value at mode 2 versus backlog costs 
 
5. SIMULATION MODEL 
A discrete event simulation model that described the 
dynamics of the system is developed using Arena 
software (Arena is a powerful modeling and simulation 
software tool that allows the user to construct a 
simulation model run experiments. It generates several 
reports as a result of a simulation run). In order to obtain 
the cost of the system for a given set of input factors, the 
behavior of the system is simulated following the 
diagram shown in Figure 7 with the following block 
descriptions: 
1. The initialization block sets the values of threshold 

( 1 2 3,z  and  z z ), the demand rate ( d ), and the 

machines parameters ( 11 12 2

1max 2 max 12 12 12, , , , , ,U u u q q q  
1 2

21 21 and  q q ), etc. The simulation time Tsim is also 
assigned at this step. 

2. The arrival demand block performs the arrival of the 
demand for the production system at each 1 / d unit 
of time. Verification is then performed on the 
inventory values. The inventory or the backlog level 
is then updated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Diagram of simulation model 
 
3. The M1 and M2 blocks represent the main machine 

and the second machine respectively. The machines 
are subject to random failures and repairs. 

4. The control policy block is defined in Section 3 
(Equations 13-15) for the system production rates. 
The control policy is given by the output of the 
inventory update block. This block permanently 
sends signals to verify the variation in the stock level 

( )x t . 
5. The failure and repair blocks sample the times to 

failure (MTBF1and MTBF2 of 1M , and MTBF3 of 

2M ) and time to repair MTTR1 (
1 1

21( )q  ) and MTTR2 

( 2 1

21( )q  ) of the first machine and the second machine 
respectively. 

6. The state equation is given by (5). It describes the 
inventory and backlog variables using the production 
rates set by the control policy and the variables from 
the failures and repairs of machines 1M and 2M . 

7. The time advance block uses an algorithm provided 
by simulation software. It is a combination of 
discrete event scheduling (failures and repairs), 
continuous variable threshold crossing events and 
time step specifications. 

8. The inventory update block updates inventories 
when a unit is produced or when a unit of demand 
for the final product occurs. 
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9. The update occurred cost block calculates the 
average total costs according to the levels of the 
inventory and backlog variables (  and  x x  ), their 

corresponding costs (  and  c c  ) and which machine 
is producing ( 1M and/or 2M ). 

The simulation runs until the current time Tnow reaches 
the simulation horizon Tsim, which is the time needed to 
reach the steady state. We perform five replications of the 
simulation model. 
 
6. EXPERIMENTAL DESIGN AND RESPONSE 

SURFACE METHODOLOGY 
Given that an optimal solution of the stochastic control 
problem described in Section 2 exists and given the 
convexity property of the cost function, we define three 
levels for each factor to obtain a convex estimated cost 
function. For these raisons, a complete 33 experimental 
design and a second-order response surface model were 
proposed. 
 
6.1. Numerical example 
For the numerical example experiment in this section, 
the following values are used: 

1 max
11 1 12 1

2 max 12 12
2 1 1 1 2 1

12 21 21

1 units/UT,  1.2  units/UT,  U 0.7  units/UT,
0.65 units/UT, ( ) 33 UT,  ( ) 50 UT,

( ) 25 UT,  ( ) 10 UT, ( ) 5 UT,
10 $/unit/UT,  100 $/unit/UT.

d u
u q q
q q q

c c

 

  

 

  
  
  

 

We also defined a new variable 1

2

z
a

z
 with 

0 1a  to ensure that the constraint 1 2z z is 
respected. The minimum and maximum values of 

2z and 3z were first observed using simulation 
experiments. The independent variable levels were then 
chosen as presented in Table 2. 

 
Table 2: Level of independent variables 

Factors Low level High level
a  0 1 

2z  0 20 

3z  0 20 
 

We selected a 33 response surface design since we 
have three independent variables at three levels each. 
This design leads to the completion of 381 (3 3)  
experimental trials. To ensure that the steady state of the 
cost was achieved, the simulation model was run during 
25 000 months for each replication (the simulation was 
run for 5 replications). 

 

6.2. Results analysis 
The statistical analysis of the simulated data consists of 
the multi-factor analysis of variance (ANOVA). This is 
done using a statistical software application 
(STATGRAPHICS) to provide the effects of the three 
independent variables ( 1 2,z z  and 3z ) on the dependent 
variable (Total cost). The ANOVA table for this model is 
summarized in Table 3. For each main effect, interaction 
and quadratic effect, Table 3 includes the sum of squares, 
the degree of freedom (df), the mean square, an F-ratio, 
computed using the residual mean square, and the 
significance level of the P-value. The factors, the 
quadratics effects and the interactions were considered 
significant at p-values less than 5% ( 0.05p  ). The 

2

adjustedR value of 0.9231 from the ANOVA table states that 
more than 92% of the total variability is explained by the 
model (Montgomery 2005).  

 
Table 3: ANOVA table 

 Sum of 
squares d.f Mean 

square F-ratio P-value

a  1117,93 1 1117,93 1,28 0,2625

2z  504600, 1 504600, 576,09 0,0000

3z  17077,3 1 17077,3 19,50 0,0000
aa  5586,24 1 5586,24 6,38 0,0139

2az  1840,41 1 1840,41 2,10 0,1517

3az  43597,4 1 43597,4 49,77 0,0000

2 2z z  254185, 1 254185, 290,19 0,0000

2 3z z  1592,01 1 1592,01 1,82 0,1820

3 3z z  22071,0 1 22071,0 25,20 0,0000
Total 
error 60437,9 69 875,912   

Total 
(corr.) 912105, 80    

   
2

1 2

92,32%
( * )

adjustedR
z a z




  

 
The residual analysis was used to verify the adequacy of 
the model. A residual versus predicted value plot and 
normal probability plot were used to test the 
homogeneity of the variances and the residual normality, 
respectively. It can be concluded that the model is 
satisfactory. Due to the convexity property of the value 
function, the second-order response surface method was 
selected. The third-order interactions and all other effects 
were ignored. The estimated second-order model of the 
total cost is given by: 
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2 3
2 2

2 3 2
2

2 3 3

5373,144 145, 567 33, 4833 11, 5967
70, 4667 1, 43 +6,96 1,18833
0, 0665 0, 350167

J a z z
a a z a z z

z z z

       
        

   

                   (16) 
The projection of the corresponding cost response 

surfaces onto two-dimensional planes are presented in 
Figures 8(a) and 8(b). The minimum of the cost function, 

45,03J    is located at 
2 1

11,31,  0, 477 ( 5,39),z a z      

3
10, 31z   . These values define the best values to be 

applied to the manufacturing system considered. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

    (a)                            (b) 
Figure 8: Contour plot of the response surface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (a) Threshold values                 (b) Total cost 
Figure 9: Trend of threshold values and total cost versus backlog costs 

 
6.3. Sensitivity analysis 
Another set of experiments is considered to measure the 
sensitivity of the obtained control policy with respect to 
backlog costs (i.e. c  ). The following variations, 
illustrated in Figure 9 ((a) and (b)) are explored and 
compared to the basic case ( 100c   ). 

The results show that when the backlog costs 
decrease, the threshold levels of 1M ( 1z and 2z ) decrease 

in order to avoid further inventory costs, 3z  increases. 
Consequently, when both machines are operational, the 
first machine has to work less to take into account its 
reliability. The overall cost decrease. Increasing 
c  results in a tendency to increase the threshold 
values 1z and 2z  in order to avoid further backlog costs. 

The total cost also increases and the threshold 3z  
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decreases. Thus, it does not use the second machine a lot 
when both machines are producing.  

It clearly appears that the results obtained and 
discussed are coherent and confirm the numerical 
observation in the sense that when a cost decreases (resp. 
increases), the area where this costs is incurred increases 
(resp. decreases). But, in the case of the second machine, 
the chart of 3z  gives the opposite results compared with 
the numerical method. The simulation-based 
experimental design suggests using the main machine a 
lot when the backlog costs increase in order to avoid 
further backlog costs. We recall that the failure rates of 
the main machine depend on its production rate. Then, 
we have the possibility to act on its production rate. 

 
7. CONCLUSION 
Hedging point and multiple thresholds hedging point are 
piecewise constant control policies that can be easily 
implemented for planning of non-homogeneous Markov 
failure/repair manufacturing systems. This paper has 
shown that under such policies, the stock level of 
manufacturing systems that produce a single part-type 
can be obtained even when failure rates of the machine 
depend on the production rate of parts. From the 
numerical study it has been found that for two parallel 
machines systems, when the failure rate of the main 
machine depends on its production rate, the hedging 
point policies are optimal among feedback policies and 
the reliability of the machines is enhanced. This result 
generalizes the results of Akella and Kumar (1986) which 
are derived for a constant failure rate and the works of 
Martinelli (2010) which is derived for a single machine 
with production rate dependent failure rate.  To optimise 
the production policies, an experimental approach based 
on design of experiments, simulation modelling and 
response surface methodology has been used. The 
usefulness of the proposed approach is outlined for more 
complex situations in which analytical solutions are not 
easy to obtain. In the future, we plan to extend the 
proposed model to the reverse logistics (a hybrid 
manufacturing and remanufacturing system) with 
production rate dependent failure rates of the 
remanufacturing machine. 

 
APPENDIX A. OPTIMALITY CONDITIONS AND 
NUMERICAL APPROACH 

 
The properties of the value function and the manner in 
which the Hamilton-Jacobi-Bellman (HJB) equations are 
obtained can be found in Martinelli (2010). He describes 
the optimal control policies (optimality conditions) for 
one-machine manufacturing system with production rate 
dependent failure rates. Regarding the optimality 
principle, we can write the HJB equations as follows: 

1 2

1 2

( , ) ( )

1 2

( , , , ) ( , )

( , ) min
( , )( )

B

u u

g x u u q v x
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  
 
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(A.1)  

where
( , )v x

x




is the partial derivatives of the value 

function ( , )v x  
The optimal control policies over ( ) of the right 

hand side of equation (A.1) are * *

1 2( ( ), ( ))u u  . When the 
value function described by equation (9) is available, 
optimal control policies can be obtained as in equation 
(A.1).  

To solve the HJB equations, the numerical method 
based on the Kushner (1992) approach as in Gharbi et al. 
(2011) and references therein is used. By approximating 

( , )v x by a function ( , )hv x and the first-order partial 

derivative of the value function 
( , )v x

x


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the HJB equation becomes: 
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(A.2)  
with q q 

 
 

  , ( )h  is the numerical control grid 

and  
1      

0   
 

if is true
Ind

otherwise


 



  

The system of equations (A.2) can be interpreted as 
the infinite horizon dynamic programming equation of a 
discrete-time, discrete-state decision process, as in 
Boukas and Haurie (1990). In this paper, we use the 
value iteration procedure to approximate the value 
function given by equation (A.2). Charlot et al. (2007) 
and references therein provide details on such methods. 

The discrete dynamic programming equation (A.2) 
gives the following six equations: 
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