
ANALYSIS OF THE THREAD ASSIGNMENT BEHAVIOUR OF PARALLEL

PROGRAMS ON CHIP MULTIPROCESSORS

Michael Bogner
 (a)

, Ematinger Markus
 (b)

, Franz Wiesinger
(c)

(a, b, c)

 University of Applied Sciences Upper Austria,

Hardware/Software Design & Embedded Systems Design

(a)

 michael.bogner@fh-hagenberg.at,
(b)

markus.ematinger@fh-hagenberg.at,
(c)

franz.wiesinger@fh-hagenberg.at

ABSTRACT

Nowadays, a chip multiprocessor following the x86-

architecture combines at least four dedicated cores. To

take benefit of this computing power, the application

has to use multiple threads. To provide the parallel

behavior for all processes and threads, the allocation has

to change frequently. Depending on the situation, this

allocation can differ and is worth to be analyzed.

The application runs a configurable amount of hard-

working threads. By interfering with the core-thread-

allocation several different scenarios have been tested.

By recording this thread-core-allocation and the

execution time, it is possible to compare the different

scenarios.

The paper shows that Microsoft Windows 7 handles the

thread-core-allocation in a lot of situations quite well.

But the exclusion of core zero provides a performance

increase. This is only useful if the number of threads is

lower than the number of available processor cores.

This situation also shows an additional interesting

incident. Windows tries to balance the load over all

processor cores very frequently.

1. INTRODUCTION

1.1. Operating System

The most actual devices use an abstraction layer

between hardware and applications. This layer is called

operating system (Tanenbaum, Moderne

Betriebssysteme, 2003). It provides a runtime

environment for the applications and handles the

hardware resources like the main processor and the

memory (Tanenbaum, Computerarchitektur, 2006). An

operating system runs many different applications at the

same time. This means that the operating system has to

share the processor time between the applications. To

provide a decent allocation the operating system has to

switch between running application in small time slices.

An application is a process. And a process can contain

one or more threads. Threads and processes are

basically in one of three different states. These three

states are “Running”, ”Blocked” and “Ready”. When a

process or a thread gets created, it starts in the Ready

state. The scheduler selects one of all available Ready

states by using a special algorithm. When the thread

gets selected by the scheduler it gets switched into the

Running state. At this state the thread executes his code.

There are many situations, where the thread has to wait

for other resources. A resource can for example be a

File IO or Events. The thread gets switched to the

Blocked state and has to wait until the resource is

available. When the resource gets available, the thread

gest switched to the Ready State. The scheduler can

select this thread and continue its execution. All threads

are scheduled by the operating systems scheduler.

Simple applications only run their single main thread.

This means if the program has to wait for a resource the

whole application has to block and wait for this. The

operating system runs the scheduler and switches to

another application. This happens if the application runs

only one thread like in Figure 1 at (a). This behavior can

slow down the application. To continue the execution of

the applications, the applications process has to contain

multiple threads. These threads can continue the

execution while another thread is blocking. This

multiple threads are shown in Figure 1 at (b).

But multiple threads have also another advantage. If the

machine has more the one processor core, the operating

system is able to schedule multiple threads of a process

to different cores. This can provide a performance

increase, by executing different code on different

processor cores at the same time. But this also means

that the application has to hold the data of the threads

consistent. In a multithreaded application many threads

work together to finish faster, but depending on the

application the threads are not allowed to modify the

same data as another thread. This can be avoided by

making the access exclusive for a single thread. This

can be achieved by different synchronization

mechanisms like critical sections, mutexes, semaphores,

events and similar techniques. This functionality is

provided by the operating systems API (application

programming interface). The difference between these

mechanisms is that some of them are working across the

borders of a process and others work only in a single

process. Depending on the operating systems, there are

huge performance differences.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 74

mailto:markus.ematinger@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at

Figure 1: Threads and Process (Tanenbaum, Moderne

Betriebssysteme, 2003)

1.2. Multicore processors

Before the rise of the on chip multicore processors a

machine had to use multiple single core processors on a

single motherboard to gain real advantage of

multithreaded applications. These systems had to share

the data by using special bus. It was not possible to use

the on chip cache for data sharing.

Current multicore processors (David Harris, 2007)

combine multiple cores in one single chip. Figure 2

shows the architecture (David A. Patterson, 2007) of an

Intel Core i7 processor (Intel, 2011). The figure shows

that the processor combines four dedicated processor

cores on a single chip (Becchi, 2006) (Sondag, 2009).

The chip uses the shared L3 cache for data sharing

between the cores. The most actual multicore processors

are comparable, like the AMD Phenom (AMD, 2009)

and the Phenom II (AMD, 2011). Only the Intel Core 2

Quad (Intel, 2011) uses a different design, because it

combines two dual core chips in one processor case. For

data exchange between the two dual cores the processor

has to use the main memory. Using the main memory

for data exchange on a Core 2 Quad processor causes

another performance loss, because the memory

controller of this processor was place on a second chip

on the Motherboard. This chip is called the

Northbridge. For data sharing the data has to be sent

form one core to the memory controller by using a bus

and the same way back. This is slower than using the

cache on actual quad core processors.

These multicore designs provide that the operating

system is now able to run applications in parallel. It is

also possible to share the data by using cache and the

main memory. This data exchange is very quick. But

the number of cores is not as high as the number of

runnable applications. To get an increase in

performance the application has to use multiple threads

(Akhter S., 2006). The operating system can assign

these threads to different processor cores and gain an

increase in performance. Multithreaded programming

does not gain performance automatically. This

technique has to be used intelligent. If one thread marks

the cached data of one core invalid by writing on them,

this thread has to load the data from the main memory.

This synchronization causes a decrease in performance.

Creating threads and switching the cores decreases the

performance. The threads should use the cores of a

multicore processor, but should also minimize the

needed overhead for synchronizations.

Depending on how these threads and processes are

scheduled the performance can rise or fall. The

scheduling can be restricted by setting the thread

affinity. This is used to determine weak spots at

Windows 7.

 Figure 2: Intel Core i7 architecture

2. TEST

2.1. Main idea

The information that is used to find weak spots is the

runtime and the thread-to-core allocation applied over

the time. To get the information a test application is

needed. This application is able to produce a heavy

work load for every available processor core by using

multiple threads. This application has to collect the

thread core allocation and the runtime of each thread.

The threads execute simple integer operations. After

some operations the thread checks the allocation and

stores the information.

Figure 3 shows the testing application. It uses the Nokia

QT 4.7 Framework (Nokia, 2008-2011). On the top of

the application it is possible to define the number of

threads and the thread priority for the next test run.

After a run has finished the logged data can be exported

into a file in the well-known comma separated values

(csv) format.

It also supports a simple live view of the thread-to-core

allocation. But its accuracy is far away from the

standalone test with the csv export, because it only

samples the threads at a defined times slice. The sample

rate is in the range of milliseconds. This means if the

cores are faster switched, the live view will not show all

cores switches.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 75

Figure 3: Screenshot of the test application

2.2. Test algorithm

To produce heavy workload a filter kernel calculates

over a picture. The picture is represented by a simple

two dimensional array. The array gets divided into

stripes. Every thread has to calculate a single stripe of

the picture. Figure 4 is showing this procedure. The

integer calculation produces the work load. The size of

the image is adjustable. Because of that this is not fair

dividable, a small adjustment is made. Every thread has

to run a fixed number of steps and calculate the filter

kernel from the top left to the bottom right of their

image part. If the thread reaches the end it restarts from

the beginning until the number of calculate steps are

reached. This provides the same workload for every

thread.

To retrieve usable information at runtime it is needed to

collect the thread-to-core affinity and the time. Figure 5

shows how this is done. The number of threads and the

thread affinity is adjustable before the test run. To

retrieve the thread-to-core affinity every thread has to

retrieve the number of the core that is actually executing

code. This is done by calling the Win32 API function

GetCurrentProcessorNumber. This function returns the

number of the processor core, from which core the

function is called. Then the actual time is retrieved

(GetActualTime). Therefore the Query performance

counter of Windows is used (Microsoft, 2011). This

counter makes it possible to retrieve the system ticks.

These ticks can be converted into the time by using the

Query Performance Frequency factor. This factor

depends on the clock frequency of the processor. Before

starting the threads a base time is stored. This time is

the same for every thread. After retrieving the core

number and the time, the core number is compared with

the core number from the previous check

(CheckCoreChange). If the core number is different, the

core number and the time get stored. Then the

calculation continues. This procedure starts from the

beginning until the needed number of calculation steps

is reached. At the end all the information of all threads

are collected and exported into the csv file. By using

this timestamps it is possible to calculate the number of

all core changes that happened while the thread was

running. It is also possible to calculate the average time

between the core changes.

Figure 4: Picture of filterkernel

Figure 5: Algorithm of data determination

 sd Algorithm

THREAD OPERATINGSYSTEM

loop

[Counter < Target]

GetCurrentProcessorNumber()

GetActualTime()

CheckCoreChange()

Calculate()

Counter++()

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 76

As a summary a thread retrieves the information this

way:

1. Calculate the filter kernel for its position

2. Retrieve the actual core number

3. Get the actual time

4. Compare the retrieved core number (step 2)

with the core number from the last check

(stored in step 5)

5. Store the core number if the core number has

changed

6. Continue with the calculation

Figure 6: Thread affinity mask

Figure 6 shows the thread affinity mask. It is a

DWORD which is 32 bit wide. This mask is used to set

the affinity for every worker thread. This is the first

thing that is done when the thread gets started.

Therefore this mask is passed to the WIN32 API

function SetThreadAffinityMask. As shown in the

picture, every bit represents a processor core. Bit zero is

for core zero and so on. If the bit for the core is true the

thread can run on the core. If the bit is false, the core is

denied. On a quad core processor only the lower four

bits are important. If the mask is not set, all cores are

allowed.

2.3. Test System

The main specification of the test system:

 Intel Core i7 860 quad core

o Turbo Boost Technology disabled

o Hyper threading disabled

 Asus P7P55D Evo mainboard

 12 GB DDR3 Ram

 Windows 7 Professional 64 bit

 Microsoft Visual Studio 2010

o C++

o 32 bit Compiler

Due to better comparison between the scenarios with

different number of threads the Intel Turbo Boost

Technology is disabled. Otherwise a single thread test

will run with higher clock rates than a test with four

threads due to dynamic frequency scaling. Hyper

threading is disabled, because it provides for every core

one additional core. But it is wanted to compere only

real quad core processors. So to disable this feature of

an Intel Core i7, this is the main difference between a

Core i7 and a Core i5 quad core processor, was the

better choice.

2.4. Test cases

The test cases vary by the number of running threads

from one up to four threads. For every different thread

number the thread affinity is changed. The default

thread affinity is that the operating system can execute

every thread on every processor core. The second case

is that every thread can only be executed on one single

core. Thread zero can only run on core zero, thread one

can only run on core one and so on. This will avoid that

the operating system moves the threads from one core

to a different core. The third main case is that every

thread can be executed on every core, except core zero.

This should demonstrate that core zero is preferred by

the operating system. To start four threads in this

situation was skipped, because there are only three

runnable cores.

Furthermore there are some special cases tested. These

cases are that the application starts more threads than

the number of available processor cores, known as

oversubscription. Other special cases are that only one

or two threads are used. These threads are tested with

different thread affinity. This means the thread gets

bound to core zero or core three. This test should show

the interference with the preferred core of the operating

system.

3. RESULTS

Table 1 shows an example of the result of a single test

run. It represents the average core change time for one

to four threads, by using the systems default thread

affinity and the exclusion of core zero. The average core

change time describes the time between a thread gets

pushed from one core to a different core.

Table 1: Average core change time (time in ms)

Threads OS default Core zero

excluded

1 70.1 87.2

2 8.8 9.4

3 7.9 29.8

4 51.0 -

If the number of threads on a quad core processor is less

than four and higher than one, the average core change

time is below 10 ms. If the number of threads is one or

equal the number of cores the average core change time

is above 50 ms. This means the number of core switches

with two or three threads is about 5 times higher than

the number of core switches with one or four threads. If

core zero is excluded, the averages core change rate of

two threads is at least 3 times higher than the average

core change rate of one or three threads. This behavior

is shown in Figure 7. The upper screenshot of the

taskmanager shows two hard working threads, where

the threadaffinity is left at the default settings (all cores

are allowed). The load overall load stays at 50 percent,

but it is shared between all four available cores. To

produced this behaviour Windows 7 has to move the

threads from one core to an other core in small time

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 77

slices as shown in Table 1 at two threads. When the two

threads are fixed to two cores, both cores are loaded by

100 percent and the other two cores are idle. This is

shown in Figure 7 at the bottom screenshot. This

scenario is comparable with a scenario where four hard

working threads are executed on a quad core processor,

because from the view of the process the number of

threads is the same as the number of available processor

cores.

Figure 7: Comparison between default assignment and

fixed assignment to core zero and core one, two threads

Figure 8: Core change comparison between 2 and 4

threads

Figure 8 shows a snapshot of the traced data. The time

slice with 10 seconds until 10.2 seconds was randomly

chosen. The vertical axis stands for the core number

where the thread was assigned. The top diagram shows

the two thread situation. And the bottom diagram shows

the four thread situation. It is obvious that the two

threads get pushed from one core to another core much

more often, than four threads. This diagram confirms

the results from Table 1.

Table 2: Runtime in seconds

Threads OS

default

Core zero

excluded

thread fixed

to core

1 41.8 41.70 43.7

2 48.73 47.40 48.03

3 46.63 47.20 49.23

4 51.57 - 53.40

Table 2 shows the runtime in the different situations.

The time is the maximum runtime of all running

threads, this means this time describe the timespan

between the start of all threads and the stop of all

threads. The runtime of the threads don’t decrease by

the number of threads, because by increasing the

number of threads the workload gets increased by the

same factor as describe in 2.2. In every situation, except

one and two threads with core zero excluded, the default

affinity mask is the fastest.

The Table also shows that it is not possible to gain any

performance by binding every thread to a single core.

Nearly every situation provided a significantly decrease

in performance.

Table 3: special cases with two threads

assignment Runtime [s] Difference [%]

default 48.73 0

fixed to core

0 and 1

48.03 -1.44

Core zero

excluded

47.40 -2.74

Core 2 and 3 47.33 -2.87

Fixed to core

2 and 3

46.80 -3.97

Table 3 shows a special case. Therefore in every

situation only two threads are started. The thread

affinity mask is the only difference between the test

cases. The runtime is the time when both threads have

finished their work. At default the operating system is

allowed to use every processor core. This time is the

base for the difference compared to the other situations.

At fixed to core the thread zero was bound to core zero

and thread one was bound to core one. This

modification provides a slight increase in performance

by 1.44%. The exclusion of core zero is 2.74 percent

faster than the default setting. The last two situations

are, that only core two and core three are used. If the

operating system is only possible to choose between

core two and three the performance gain is about 2.87

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 78

% compared to the default setting. If one thread gets

bound to core two and the other thread gets bound to

core three, the increase in performance is about 3.97

percent. It is obvious that Windows 7 prefers core zero

and that it is better to bind the threads to other cores if

the number of threads is smaller than the number of

available cores.

Table 4: Average and maximum runtime in seconds at

oversubscription and default thread affinity

Threads Average

runtime

Maximum

runtime

3 46.62 46.63

4 50.57 51.57

6 69 76.77

8 97 97.93

Table 4 shows the scenario of oversubscription. In

comparison to three and four threads the

oversubscription situations with six and eight threads

shows interesting results. The average runtime is the

average time of all threads that is needed to finish the

work, while the maximum runtime is the time that is

needed to finish all threads. If we take the average time

it is obvious that six and eight threads are slightly faster

than four threads, by including the factor that the work

increases by the same factor as the number of threads.

This looks like it would be really good to use

oversubscription, but depending on the application it is

important to take a look at the maximum runtime. When

using three, four or eight threads on a quad core

processor the difference between the average and the

maximum runtime is very low, but with six threads the

difference is much bigger. For this scenario the whole

work is done after the maximum runtime. With six

threads some threads would finish earlier than the

others.

4. CONCLUSION

Windows 7 handles most of the situations of standard

applications really well. But there are also special cases

where it is possible to increase the performance by

modifying the thread affinity to gain even more

performance. If the processor should run only one or

two threads on a quad core processor, it is possible to

increase the performance by excluding core zero. For

three or more threads no modification is needed.

If the number of threads is lower than the number of

available processor cores Windows 7 tries to balance

the work load over all processor cores. The balancing

operation causes heavy core switches and challenges the

cache coherence protocol of the CPU. In comparison to

the situation with four threads on a quad core, the core

change rate is about 5 to 10 times higher. It is possible

to decrease this rate by modifying the thread affinity.

Oversubscription is slightly faster than using the same

number of threads than available processor cores. But if

the number of threads is no multiple of the number of

cores, the runtime between the threads differs very

much. Depending on the used scenario is recommended

to use a number of threads that is a multiple of the

number of cores.

REFERENCES

Akhter S., R. J. (2006). Multicore Programming:

Increasing Performance through Software

Multithreading. Intel Press.

AMD. (2009). Key Architectural Features of AMD

Phenom X4 Quad-Core Processors. Retrieved

2011, from

http://www.amd.com/us/products/desktop/proc

essors/phenom/Pages/AMD-phenom-

processor-X4-features.aspx

AMD. (2011). AMD Phenom II Key Architectural

Features. Retrieved 2011, from

http://www.amd.com/us/products/desktop/proc

essors/phenom-ii/Pages/phenom-ii-key-

architectural-features.aspx

Becchi, M. C. (2006). Dynamic thread assignment on

heterogeneous multiprocessor architectures.

New York: ACM.

David A. Patterson, J. L. (2007). Computer

organization and Design. Burlington: Morgan

Kaufmann.

David Harris, S. H. (2007). Digital Design and

Computer Architecture. From Gates to

Processors. Morgan Kaufmann.

Intel. (2011, 5). 2nd Generation Intel Core Processor

Family Desktop Datasheet, Vol. 1. Retrieved

from

http://www.intel.com/content/www/us/en/proc

essors/core/2nd-gen-core-desktop-vol-1-

datasheet.html

Intel. (2011, 6). Intel Core2 Extreme Quad-Core

Processor QX6000 Sequence and Intel Core2

Quad Processor Q6000 Sequence Datasheet.

Retrieved from

http://download.intel.com/design/processor/dat

ashts/31559205.pdf

Microsoft. (2011). Microsoft Developer Network.

Retrieved from http://msdn.microsoft.com/en-

us/ms348103

Nokia. (2008-2011). QT 4.7 reference Documentation.

Retrieved from

http://doc.qt.nokia.com/4.7/index.html

Sondag, T. R. (2009). Phase-guided thread-to-core

assignment for improved utilization of

performance-asymmetric multi-core

processors. Iowa: ACM.

Tanenbaum, A. S. (2003). Moderne Betriebssysteme.

München: Pearsons Studium.

Tanenbaum, A. S. (2006). Computerarchitektur.

München: Pearsons Studium.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 79

