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ABSTRACT 

Nowadays, a chip multiprocessor following the x86-

architecture combines at least four dedicated cores. To 

take benefit of this computing power, the application 

has to use multiple threads. To provide the parallel 

behavior for all processes and threads, the allocation has 

to change frequently. Depending on the situation, this 

allocation can differ and is worth to be analyzed. 

The application runs a configurable amount of hard-

working threads. By interfering with the core-thread-

allocation several different scenarios have been tested. 

By recording this thread-core-allocation and the 

execution time, it is possible to compare the different 

scenarios. 

The paper shows that Microsoft Windows 7 handles the 

thread-core-allocation in a lot of situations quite well. 

But the exclusion of core zero provides a performance 

increase. This is only useful if the number of threads is 

lower than the number of available processor cores. 

This situation also shows an additional interesting 

incident. Windows tries to balance the load over all 

processor cores very frequently.  

 
1. INTRODUCTION 

1.1. Operating System 

The most actual devices use an abstraction layer 

between hardware and applications. This layer is called 

operating system (Tanenbaum, Moderne 

Betriebssysteme, 2003). It provides a runtime 

environment for the applications and handles the 

hardware resources like the main processor and the 

memory (Tanenbaum, Computerarchitektur, 2006). An 

operating system runs many different applications at the 

same time. This means that the operating system has to 

share the processor time between the applications. To 

provide a decent allocation the operating system has to 

switch between running application in small time slices.  

An application is a process. And a process can contain 

one or more threads. Threads and processes are 

basically in one of three different states. These three 

states are “Running”, ”Blocked” and “Ready”. When a 

process or a thread gets created, it starts in the Ready 

state. The scheduler selects one of all available Ready 

states by using a special algorithm. When the thread 

gets selected by the scheduler it gets switched into the 

Running state. At this state the thread executes his code. 

There are many situations, where the thread has to wait 

for other resources. A resource can for example be a 

File IO or Events. The thread gets switched to the 

Blocked state and has to wait until the resource is 

available. When the resource gets available, the thread 

gest switched to the Ready State. The scheduler can 

select this thread and continue its execution. All threads 

are scheduled by the operating systems scheduler. 

Simple applications only run their single main thread. 

This means if the program has to wait for a resource the 

whole application has to block and wait for this. The 

operating system runs the scheduler and switches to 

another application. This happens if the application runs 

only one thread like in Figure 1 at (a). This behavior can 

slow down the application. To continue the execution of 

the applications, the applications process has to contain 

multiple threads. These threads can continue the 

execution while another thread is blocking. This 

multiple threads are shown in Figure 1 at (b).  

But multiple threads have also another advantage. If the 

machine has more the one processor core, the operating 

system is able to schedule multiple threads of a process 

to different cores. This can provide a performance 

increase, by executing different code on different 

processor cores at the same time. But this also means 

that the application has to hold the data of the threads 

consistent. In a multithreaded application many threads 

work together to finish faster, but depending on the 

application the threads are not allowed to modify the 

same data as another thread. This can be avoided by 

making the access exclusive for a single thread. This 

can be achieved by different synchronization 

mechanisms like critical sections, mutexes, semaphores, 

events and similar techniques. This functionality is 

provided by the operating systems API (application 

programming interface). The difference between these 

mechanisms is that some of them are working across the 

borders of a process and others work only in a single 

process. Depending on the operating systems, there are 

huge performance differences.  
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Figure 1: Threads and Process (Tanenbaum, Moderne 

Betriebssysteme, 2003) 

 

1.2. Multicore processors 

Before the rise of the on chip multicore processors a 

machine had to use multiple single core processors on a 

single motherboard to gain real advantage of 

multithreaded applications. These systems had to share 

the data by using special bus. It was not possible to use 

the on chip cache for data sharing.  

Current multicore processors (David Harris, 2007) 

combine multiple cores in one single chip. Figure 2 

shows the architecture (David A. Patterson, 2007) of an 

Intel Core i7 processor (Intel, 2011). The figure shows 

that the processor combines four dedicated processor 

cores on a single chip (Becchi, 2006) (Sondag, 2009). 

The chip uses the shared L3 cache for data sharing 

between the cores. The most actual multicore processors 

are comparable, like the AMD Phenom (AMD, 2009) 

and the Phenom II (AMD, 2011). Only the Intel Core 2 

Quad (Intel, 2011) uses a different design, because it 

combines two dual core chips in one processor case. For 

data exchange between the two dual cores the processor 

has to use the main memory. Using the main memory 

for data exchange on a Core 2 Quad processor causes 

another performance loss, because the memory 

controller of this processor was place on a second chip 

on the Motherboard. This chip is called the 

Northbridge. For data sharing the data has to be sent 

form one core to the memory controller by using a bus 

and the same way back. This is slower than using the 

cache on actual quad core processors.  

These multicore designs provide that the operating 

system is now able to run applications in parallel. It is 

also possible to share the data by using cache and the 

main memory. This data exchange is very quick. But 

the number of cores is not as high as the number of 

runnable applications. To get an increase in 

performance the application has to use multiple threads 

(Akhter S., 2006). The operating system can assign 

these threads to different processor cores and gain an 

increase in performance. Multithreaded programming 

does not gain performance automatically. This 

technique has to be used intelligent. If one thread marks 

the cached data of one core invalid by writing on them, 

this thread has to load the data from the main memory. 

This synchronization causes a decrease in performance. 

Creating threads and switching the cores decreases the 

performance. The threads should use the cores of a 

multicore processor, but should also minimize the 

needed overhead for synchronizations.  

Depending on how these threads and processes are 

scheduled the performance can rise or fall. The 

scheduling can be restricted by setting the thread 

affinity. This is used to determine weak spots at 

Windows 7. 

 

 Figure 2: Intel Core i7 architecture 

 

2. TEST 

2.1. Main idea 

The information that is used to find weak spots is the 

runtime and the thread-to-core allocation applied over 

the time. To get the information a test application is 

needed. This application is able to produce a heavy 

work load for every available processor core by using 

multiple threads. This application has to collect the 

thread core allocation and the runtime of each thread. 

The threads execute simple integer operations. After 

some operations the thread checks the allocation and 

stores the information.  

Figure 3 shows the testing application. It uses the Nokia 

QT 4.7 Framework (Nokia, 2008-2011). On the top of 

the application it is possible to define the number of 

threads and the thread priority for the next test run. 

After a run has finished the logged data can be exported 

into a file in the well-known comma separated values 

(csv) format.  

It also supports a simple live view of the thread-to-core 

allocation. But its accuracy is far away from the 

standalone test with the csv export, because it only 

samples the threads at a defined times slice. The sample 

rate is in the range of milliseconds. This means if the 

cores are faster switched, the live view will not show all 

cores switches. 
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Figure 3: Screenshot of the test application 

 

2.2. Test algorithm 

To produce heavy workload a filter kernel calculates 

over a picture. The picture is represented by a simple 

two dimensional array. The array gets divided into 

stripes. Every thread has to calculate a single stripe of 

the picture. Figure 4 is showing this procedure. The 

integer calculation produces the work load. The size of 

the image is adjustable. Because of that this is not fair 

dividable, a small adjustment is made. Every thread has 

to run a fixed number of steps and calculate the filter 

kernel from the top left to the bottom right of their 

image part. If the thread reaches the end it restarts from 

the beginning until the number of calculate steps are 

reached. This provides the same workload for every 

thread. 

To retrieve usable information at runtime it is needed to 

collect the thread-to-core affinity and the time. Figure 5 

shows how this is done. The number of threads and the 

thread affinity is adjustable before the test run. To 

retrieve the thread-to-core affinity every thread has to 

retrieve the number of the core that is actually executing 

code. This is done by calling the Win32 API function 

GetCurrentProcessorNumber. This function returns the 

number of the processor core, from which core the 

function is called. Then the actual time is retrieved 

(GetActualTime). Therefore the Query performance 

counter of Windows is used (Microsoft, 2011). This 

counter makes it possible to retrieve the system ticks. 

These ticks can be converted into the time by using the 

Query Performance Frequency factor. This factor 

depends on the clock frequency of the processor. Before 

starting the threads a base time is stored. This time is 

the same for every thread. After retrieving the core 

number and the time, the core number is compared with 

the core number from the previous check 

(CheckCoreChange). If the core number is different, the 

core number and the time get stored. Then the 

calculation continues. This procedure starts from the 

beginning until the needed number of calculation steps 

is reached. At the end all the information of all threads 

are collected and exported into the csv file. By using 

this timestamps it is possible to calculate the number of 

all core changes that happened while the thread was 

running. It is also possible to calculate the average time 

between the core changes. 

 

 
Figure 4: Picture of filterkernel 

 

 
Figure 5: Algorithm of data determination 

 

 sd Algorithm

THREAD OPERATINGSYSTEM

loop 

[Counter < Target]

GetCurrentProcessorNumber()

GetActualTime()

CheckCoreChange()

Calculate()

Counter++()
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As a summary a thread retrieves the information this 

way: 

1. Calculate the filter kernel for its position 

2. Retrieve the actual core number  

3. Get the actual time 

4. Compare the retrieved core number (step 2) 

with the core number from the last check 

(stored in step 5) 

5. Store the core number if the core number has 

changed 

6. Continue with the calculation 

 

 
Figure 6: Thread affinity mask 

 

Figure 6 shows the thread affinity mask. It is a 

DWORD which is 32 bit wide. This mask is used to set 

the affinity for every worker thread. This is the first 

thing that is done when the thread gets started. 

Therefore this mask is passed to the WIN32 API 

function SetThreadAffinityMask. As shown in the 

picture, every bit represents a processor core. Bit zero is 

for core zero and so on. If the bit for the core is true the 

thread can run on the core. If the bit is false, the core is 

denied. On a quad core processor only the lower four 

bits are important. If the mask is not set, all cores are 

allowed. 

2.3. Test System 

The main specification of the test system: 

 Intel Core i7 860 quad core 

o Turbo Boost Technology disabled  

o Hyper threading disabled 

 Asus P7P55D Evo mainboard 

 12 GB DDR3 Ram 

 Windows 7 Professional 64 bit 

 Microsoft Visual Studio 2010 

o C++ 

o 32 bit Compiler 

 

Due to better comparison between the scenarios with 

different number of threads the Intel Turbo Boost 

Technology is disabled. Otherwise a single thread test 

will run with higher clock rates than a test with four 

threads due to dynamic frequency scaling. Hyper 

threading is disabled, because it provides for every core 

one additional core. But it is wanted to compere only 

real quad core processors. So to disable this feature of 

an Intel Core i7, this is the main difference between a 

Core i7 and a Core i5 quad core processor, was the 

better choice. 

 

2.4. Test cases 

The test cases vary by the number of running threads 

from one up to four threads. For every different thread 

number the thread affinity is changed. The default 

thread affinity is that the operating system can execute 

every thread on every processor core. The second case 

is that every thread can only be executed on one single 

core. Thread zero can only run on core zero, thread one 

can only run on core one and so on. This will avoid that 

the operating system moves the threads from one core 

to a different core. The third main case is that every 

thread can be executed on every core, except core zero. 

This should demonstrate that core zero is preferred by 

the operating system. To start four threads in this 

situation was skipped, because there are only three 

runnable cores. 

Furthermore there are some special cases tested. These 

cases are that the application starts more threads than 

the number of available processor cores, known as 

oversubscription. Other special cases are that only one 

or two threads are used. These threads are tested with 

different thread affinity. This means the thread gets 

bound to core zero or core three. This test should show 

the interference with the preferred core of the operating 

system. 

 
3. RESULTS 

Table 1 shows an example of the result of a single test 

run. It represents the average core change time for one 

to four threads, by using the systems default thread 

affinity and the exclusion of core zero. The average core 

change time describes the time between a thread gets 

pushed from one core to a different core.  

 

Table 1: Average core change time (time in ms) 

Threads OS default Core zero 

excluded 

1 70.1 87.2 

2 8.8 9.4 

3 7.9 29.8 

4 51.0 - 
 

If the number of threads on a quad core processor is less 

than four and higher than one, the average core change 

time is below 10 ms. If the number of threads is one or 

equal the number of cores the average core change time 

is above 50 ms. This means the number of core switches 

with two or three threads is about 5 times higher than 

the number of core switches with one or four threads. If 

core zero is excluded, the averages core change rate of 

two threads is at least 3 times higher than the average 

core change rate of one or three threads. This behavior 

is shown in Figure 7. The upper screenshot of the 

taskmanager shows two hard working threads, where 

the threadaffinity is left at the default settings (all cores 

are allowed). The load overall load stays at 50 percent, 

but it is shared between all four available cores. To 

produced this behaviour Windows 7 has to move the 

threads from one core to an other core in small time 
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slices as shown in Table 1 at two threads. When the two 

threads are fixed to two cores, both cores are loaded by 

100 percent and the other two cores are idle. This is 

shown in Figure 7 at the bottom screenshot. This 

scenario is comparable with a scenario where four hard 

working threads are executed on a quad core processor, 

because from the view of the process the number of 

threads is the same as the number of available processor 

cores. 

 

 
Figure 7: Comparison between default assignment and 

fixed assignment to core zero and core one, two threads 

 

 
Figure 8: Core change comparison between 2 and 4 

threads 

 

Figure 8 shows a snapshot of the traced data. The time 

slice with 10 seconds until 10.2 seconds was randomly 

chosen. The vertical axis stands for the core number 

where the thread was assigned. The top diagram shows 

the two thread situation. And the bottom diagram shows 

the four thread situation. It is obvious that the two 

threads get pushed from one core to another core much 

more often, than four threads. This diagram confirms 

the results from Table 1. 

 

Table 2: Runtime in seconds 

Threads OS 

default 

Core zero 

excluded 

thread fixed 

to core  

1 41.8 41.70 43.7 

2 48.73 47.40 48.03 

3 46.63 47.20 49.23 

4 51.57 - 53.40 
 

Table 2 shows the runtime in the different situations. 

The time is the maximum runtime of all running 

threads, this means this time describe the timespan 

between the start of all threads and the stop of all 

threads. The runtime of the threads don’t decrease by 

the number of threads, because by increasing the 

number of threads the workload gets increased by the 

same factor as describe in 2.2. In every situation, except 

one and two threads with core zero excluded, the default 

affinity mask is the fastest.  

The Table also shows that it is not possible to gain any 

performance by binding every thread to a single core. 

Nearly every situation provided a significantly decrease 

in performance. 

 

Table 3: special cases with two threads 

assignment Runtime [s] Difference [%] 

default 48.73 0 

fixed to core 

0 and 1 

48.03 -1.44 

Core zero 

excluded 

47.40 -2.74 

Core 2 and 3 47.33 -2.87 

Fixed to core 

2 and 3 

46.80 -3.97 

 

Table 3 shows a special case. Therefore in every 

situation only two threads are started. The thread 

affinity mask is the only difference between the test 

cases. The runtime is the time when both threads have 

finished their work. At default the operating system is 

allowed to use every processor core. This time is the 

base for the difference compared to the other situations. 

At fixed to core the thread zero was bound to core zero 

and thread one was bound to core one. This 

modification provides a slight increase in performance 

by 1.44%.  The exclusion of core zero is 2.74 percent 

faster than the default setting. The last two situations 

are, that only core two and core three are used. If the 

operating system is only possible to choose between 

core two and three the performance gain is about 2.87 
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% compared to the default setting. If one thread gets 

bound to core two and the other thread gets bound to 

core three, the increase in performance is about 3.97 

percent. It is obvious that Windows 7 prefers core zero 

and that it is better to bind the threads to other cores if 

the number of threads is smaller than the number of 

available cores. 

 

Table 4: Average and maximum runtime in seconds at 

oversubscription and default thread affinity 

Threads Average 

runtime 

Maximum 

runtime 

3 46.62 46.63 

4 50.57 51.57 

6 69 76.77 

8 97 97.93 
 

Table 4 shows the scenario of oversubscription. In 

comparison to three and four threads the 

oversubscription situations with six and eight threads 

shows interesting results. The average runtime is the 

average time of all threads that is needed to finish the 

work, while the maximum runtime is the time that is 

needed to finish all threads. If we take the average time 

it is obvious that six and eight threads are slightly faster 

than four threads, by including the factor that the work 

increases by the same factor as the number of threads. 

This looks like it would be really good to use 

oversubscription, but depending on the application it is 

important to take a look at the maximum runtime. When 

using three, four or eight threads on a quad core 

processor the difference between the average and the 

maximum runtime is very low, but with six threads the 

difference is much bigger. For this scenario the whole 

work is done after the maximum runtime. With six 

threads some threads would finish earlier than the 

others.  

 

4. CONCLUSION 

Windows 7 handles most of the situations of standard 

applications really well. But there are also special cases 

where it is possible to increase the performance by 

modifying the thread affinity to gain even more 

performance. If the processor should run only one or 

two threads on a quad core processor, it is possible to 

increase the performance by excluding core zero. For 

three or more threads no modification is needed. 

If the number of threads is lower than the number of 

available processor cores Windows 7 tries to balance 

the work load over all processor cores. The balancing 

operation causes heavy core switches and challenges the 

cache coherence protocol of the CPU. In comparison to 

the situation with four threads on a quad core, the core 

change rate is about 5 to 10 times higher. It is possible 

to decrease this rate by modifying the thread affinity. 

Oversubscription is slightly faster than using the same 

number of threads than available processor cores. But if 

the number of threads is no multiple of the number of 

cores, the runtime between the threads differs very 

much. Depending on the used scenario is recommended 

to use a number of threads that is a multiple of the 

number of cores. 
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