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ABSTRACT 

A new practical approach to Asset Liability 

Management (ALM) is proposed, which combines 

Monte Carlo Simulation, Optimisation and Six Sigma 

Define, Measure, Analyse, Improve, Control (DMAIC) 

methodology. This new method determines an 

optimally diversified minimal variance investment 

portfolio, which gains a desired range of return with 

minimal financial risk. Simulation and optimisation are 

conventionally applied to find the optimal portfolio to 

provide the required return. In addition, the Six Sigma 

DMAIC methodology is used to measure and improve 

the portfolio management process in order to establish 

the optimally diversified portfolio. Applying Six Sigma 

DMAIC to the portfolio management process is an 

improvement in comparison with conventional 

stochastic ALM risk models. It offers financial 

institutions internal model options for Basel III and 

Solvency II, which can help them to reduce their capital 

requirements and Value-at-Risk (VaR) providing for 

higher business capabilities and increasing their 

competitive position, which is their ultimate objective. 

 

Keywords: Asset Liability Management; Portfolio 

Optimisation – Minimal Variance; Monte Carlo 

Simulation; Six Sigma DMAIC; Basel III; Solvency II. 

 

1. INTRODUCTION 

Basel III is a comprehensive set of reform measures, 

developed by the Basel Committee on Banking 

Supervision, to strengthen the regulation, supervision 

and risk management of the banking sector. These 

measures aim to: i) improve the banking sector's ability 

to absorb shocks arising from financial and economic 

stress, whatever the source; ii) improve risk 

management and governance; and iii) strengthen banks' 

transparency and disclosures (Atkinson and Blundell-

Wignall 2010; BCBS 2010a; BCBS 2010b; BCBS 

2011; BIS 2011; Cosimano and Hakura 2011).  

Solvency II is designed to introduce a harmonised 

insurance regulatory regime across European Union 

(EU) that will protect policyholders and minimise 

market disruption. The regulation sets stronger 

requirements for capital adequacy, risk management 

and disclosure. Primarily this concerns the amount of 

capital that EU insurance companies must hold to 

reduce the risk of insolvency. Solvency II is an EU 

Directive, which needs to be approved by the European 

Parliament, and will be scheduled to come into effect on 

1 January 2014 once it is approved (Cruz 2009; 

Bourdeau 2009; GDV 2005; SST 2004). 

 The economic capital of financial institutions is one 

major aspect of Basel III and Solvency II. According to 

a research by Mercer Oliver Wyman, the impact of the 

Asset Liability Management (ALM) risk, i.e. Market 

Risk, on the economic capital of banking and insurance 

companies is 64%. This is by far the largest impact 

compared to other quantifiable risk factors, e.g. 27% 

Operational Risk, 5% Credit Risk, and 4% Insurance 

Risk. Consequently, this paper will focus on ALM.  

 ALM has originated from the duration analysis 

proposed by Macaulay and Redington (Macaulay 1938; 

Redington 1952). Subsequently, ALM has evolved in a 

powerful and integrated tool for analysis of assets and 

liabilities in order to value not only the interest rate risk 

but the liquidity risk, solvency risk, firm strategies and 

asset allocation as well (Bloomsbury 2012).  

 The new regulation requirements introduced by 

Basel III and Solvency II focus on the solvency risk in 

order to impose a required amount of equity value on 

the base of the risk associated to the investments of 

asset portfolio. The banking and insurance industry are 

responding to these requirements by developing internal 

models based essentially on the Value-at-Risk (VaR), 

parametric (GARCH, EGARCH) and simulation 

(Monte Carlo) models, extended to Conditional Value-

at-Risk (CVaR) and Copulas.  

 Some financial institutions extended the analysis to 

the cash flows by using a stress testing to generate 

different scenarios. In this case it is possible to analyse 

how the cash flows can evolve to study a strategy to 

hedge the risk exposure.  

 The financial institutions with greater equity value 

have the possibility to invest in riskier assets focussed 

on the portfolio insurance. The basic idea is to construct 

a Put option on the value of asset portfolio by taking a 

long position on the risky assets and on the default-free 

bonds such that their weight will be rebalanced 
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dynamically, which will replicate the value of a 

portfolio of risky assets with a protective Put option.  

 The frontier of Asset and Liability Management is 

based on stochastic optimisation and simulation models 

that involve an asset allocation approach by considering 

the liabilities side as well. 

 Another major aspect of Basel III and Solvency II 

is Financial Risk Management. Jorion, in his book for 

financial risk management, presented the utilisation of 

Monte Carlo Simulation for options’ valuation and VaR 

calculation. He also generally elaborated on Optimal 

Hedging applying Optimal Hedge Ratio, i.e. the 

minimal variance hedge ratio. In addition, he 

specifically described the application of Optimal 

Hedging in two important cases such as Duration 

Hedging and Beta Hedging (Jorion2011).  

 Advanced Financial Risk models involve 

optimisation of investment portfolios. The problem of 

asset allocation for portfolio optimisation was solved by 

Markowitz in the 1950’s. Markowitz applied his mean-

variance method in order to determine the minimum 

variance portfolio that yields a desired expected return 

(Markowitz 1952; Markowitz 1987).  

 Also, advanced Financial Risk models are 

stochastic and use Monte Carlo Simulation. A 

comprehensive elaboration on general applications of 

Monte Carlo Simulation in Finance was published by 

Glasserman (2004). Specifically, an internal Monte 

Carlo Simulation model for Solvency II (i.e. an ALM – 

Market Risk simulation model) was presented by 

Bourdeau (Bourdeau 2009). 

Today, Six Sigma is recognized across industries 

as a standard means to accomplish process and quality 

improvements in order to meet customer requirements 

and achieve higher customer satisfaction. One of the 

principal Six Sigma methodologies is Define, Measure, 

Analyse, Improve, Control (DMAIC). Six Sigma 

applications in finace at introductory level were 

published by Stamatis (Stamatis 2003). 

 This paper presents a new practical approach to the 

ALM risk models for Basel III and Solvency II, i.e. the 

Optimisation-Simulation-DMAIC method. The new 

method combines Optimisation, Monte Carlo 

Simulation, and Six Sigma DMAIC methodology. It 

determines an optimally diversified minimal variance 

investment portfolio, which gains a desired range of 

return with minimal financial risk. Optimisation and 

Simulation are conventionally applied to find the 

minimal variance portfolio to provide the required 

return. In addition, the Six Sigma DMAIC methodology 

is used to measure and improve the portfolio 

management process in order to establish the optimally 

diversified portfolio. 

 Applying Six Sigma DMAIC to the portfolio 

management process is an improvement in comparison 

with the conventional stochastic optimisation and 

simulation ALM risk models. It offers financial 

institutions internal model options for Basel III and 

Solvency II, which can help them to reduce their capital 

requirements and VaR providing for higher business 

capabilities and increasing their competitive position, 

which is their ultimate objective. 

In order to facilitate this presentation, a very 

simple ALM risk model is used to demonstrate the 

method. Only the practical aspects of the ALM risk 

modelling are discussed. Microsoft™ Excel® and 

Palisade™ @RISK® and RISKOptimizer® were used 

in the demonstration experiments.  

 

1.1. Related Work 

 

1.1.1. ALM 

Mitra and Schwaiger edited a book which brings 

together state-of-the-art quantitative decision models for 

asset and liability management in respect of pension 

funds, insurance companies and banks. It takes into 

account new regulations and industry risks, covering 

new accounting standards for pension funds, Solvency 

II implementation for insurance companies and Basel II 

accord for banks (Mitra and Schwaiger 2011). 

In addition, Adam published a comprehensive 

guide to Asset and Liability Management from a 

quantitative perspective with economic explanations. 

He presented advanced ALM stochastic models for 

Solvency II and Basel II & III using optimisation and 

simulation methodologies (Adam 2007). 

 

1.1.2. Six Sigma  

 Hayler and Nichols showed how financial giants 

such as American Express, Bank of America, and 

Wachovia have applied Six Sigma, Lean, and Process 

Management to their service-based operations by 

providing specific, real-world examples and offering 

step-by-step solutions (Hayler and Nichols 2006). 

 Also, Tarantino and Cernauskas provided an 

operational risk framework by using proven quality-

control methods such as Six Sigma and Total Quality 

Management (TQM) in financial risk management to 

forestall major risk management failures (Tarantino and 

Cernauskas 2009).  

 

2. ALM BY USING THE OPTIMISATION-

SIMULATION-DMAIC METHOD  

The following sections demonstrate the new method’s 

procedure step-by-step for ALM Risk modelling. Actual 

financial market data are used in the presentation. 

  

2.1. Problem Statement 

The following is a simplified problem statement for the 

demonstrated ALM risk model.  

Determine the optimally diversified minimum 

variance investment portfolio that yields a desired 

expected annual return to cover the liabilities. The 

model should allow the financial institution to reduce 

their capital requirements and VaR providing for higher 

business capabilities and increasing their competitive 

position. The model should help the company to 

achieve their ultimate objective. 
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2.2. Calculating Compounded Monthly Return 

The monthly returns of four stocks are available for a 

period of seven years, i.e. 1990-1996 (Table 1). Note 

that the data for the period July/1990- June/1996 are not 

shown. 

 

Table 1: Monthly Return (MR) 

Month Stock1 Stock2 Stock3 Stock4 

Jan/1990 0.048 -0.01 -0.06 -0.01 

Feb/1990 0.066 0.096 0.037 0.038 

Mar/1990 0.022 0.022 0.12 0.015 

Apr/1990 0.027 -0.04 -0.02 -0.04 

May/1990 0.112 0.116 0.123 0.075 

Jun/1990 -0.02 -0.02 -0.04 -0.01 

Jul/1996 0.086 -0.07 -0.12 -0.02 

Aug/1996 0.067 0.026 0.146 0.018 

Sep/1996 0.089 -0.03 -0.04 0.092 

Oct/1996 0.036 0.117 0.049 0.039 

 

The Compounded Monthly Return (CMR) is calculated 

for each month and each stock from the given stock 

Monthly Return (MR) using the following formula 

(Table 2):  

 

CMR = ln (1 + MR) 

 

Table 2: Compounded Monthly Return (CMR) 

Month CMR1 CMR2 CMR3 CMR4 

Jan/1990 0.047 -0.01 -0.06 -0.01 

Feb/1990 0.063 0.092 0.036 0.038 

Mar/1990 0.021 0.022 0.113 0.015 

Apr/1990 0.027 -0.04 -0.02 -0.04 

May/1990 0.106 0.11 0.116 0.073 

Jun/1990 -0.02 -0.02 -0.04 -0.01 

Jul/1996 0.082 -0.07 -0.13 -0.02 

Aug/1996 0.065 0.026 0.136 0.018 

Sep/1996 0.085 -0.03 -0.04 0.088 

Oct/1996 0.036 0.111 0.048 0.038 

 

2.3. Fitting Distributions to Compounded Monthly 

Return 

For the Monte Carlo method, we need the distribution 

of the compounded monthly return for each stock.  

Thus, for each stock, we determine the best fit 

distribution based on the Chi-Square measure. For 

example, the best fit distribution for the compounded 

monthly return of Stock 4 (i.e. CMR4) is the normal 

distribution, with Mean Return of 0.6% and Standard 

Deviation of 4.7%, presented in Figure 1. 
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Figure 1: Stock 4 Best Fit Distribution 

 

2.4. Finding Compounded Monthly Return 

Correlations 

The compounded monthly returns of the stocks are 

correlated. We need to find the correlation to allow the 

Monte Carlo method to generate correlated random 

values for the compounded monthly returns. The 

correlation matrix is presented in Table 3. 

 

Table 3: Correlation Matrix 

 CMR1 CMR2 CMR3 CMR4 

CRM 1 1 0.263 0.038 0.0868 

CRM2 0.263 1 0.244 0.0895 

CRM3 0.038 0.244 1 0.095 

CRM4 0.087 0.089 0.095 1 

 

2.5. Generating Compounded Monthly Return  

The Compounded Monthly Return (CMR) is randomly 

generated for each stock from the best fit distribution 

considering the correlations. The following distribution 

functions of the Palisade™ @RISK® are used:  

 

CMR1=RiskLogistic(0.0091429,0.044596)) 

 

  CMR2=RiskLognorm(1.1261,0.077433,Shift(-1.1203)) 

 

CMR3= RiskWeibull(6.9531,0.46395, Shift(-0.42581)) 

 

CMR4= RiskNormal(0.0060531,0.047225) 

 

The correlation is applied by using the 

“RiskCorrmat” function of the Palisade™ @RISK®. 

  

2.6. Calculating Compounded Annual Return by 

Stock  

The Compounded Annual Return (CAR) is calculated 

for each stock from the respective Compounded 

Monthly Return (CMR), using the following formula:  

 

CAR = 12*CMR 
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2.7. Calculating Expected Annual Mean Return on 

the Portfolio 

The expected annual mean return on the portfolio 

(EAPR-Mean) is calculated from the asset allocation 

weights vector (Weights-V) and the vector of 

compounded annual returns of stocks (CAR-V) by using 

the following Excel® formula:  

 

EAR-Mean = SumProduct(Weights-V, CAR-V)  

 

2.8. Calculating Variance, Standard Deviation and 

VaR of the Portfolio  

The variance, standard deviation and VaR (VaR is 

calculated at Confidence Level of 99.95%)  of the 

portfolio are calculated from the distribution of the 

expected annual mean return of the portfolio (EAR- 

Mean) by using the following Palisade™ @RISK® 

functions:  

 

Variance = RiskVariance(EAR-Mean) 

 

Standard-Deviation = RiskStdDev(EAR-Mean) 

 

VaR = RiskPercentile(EAR-Mean,0.005)   

 

2.8.1. Portfolio Simulation and Optimisation  

Palisade™ RISKOptimizer® is used to solve the 

portfolio simulation and optimisation problem. That is 

to find the minimal variance portfolio of investments, 

which yields sufficient return to cover the liabilities. 

Thus, the aim of the simulation and optimisation model 

is to minimise the variance of the portfolio subject to 

the following specific constraints: 

• The expected portfolio return is at least 9%, 

which is sufficient to cover the liabilities; 

• All the money is invested, i.e. 100% of the 

available funds is invested; and  

• No short selling is allowed so all the fractions 

of the capital placed in each stock should be 

non-negative. 

 

 The model should also calculate the Standard 

Deviation and VaR of the portfolio.  

 

2.8.2. Measuring Performance of the Portfolio  

Palisade™ @RISK® has Six Sigma capabilities, thus it 

is used to simulate the optimal portfolio found above 

and calculate the Six Sigma metrics from the simulation 

distribution in order to measure the performance of the 

optimal portfolio.  For this purpose the following Six 

Sigma parameters are specified: 

• Lower Specified Limit (LSL) of the expected 

portfolio return is 5%; 

• Target Value (TV) of the expected portfolio 

return is 9%; 

• Upper Specified Limit (USL) of the expected 

portfolio return is 15%;  

 

 The simulation model calculates the following Six 

Sigma process capability metrics to measure the 

performance of the investment process: i) Process 

Capability (Cp); Probability of Non-Compliance (PNC); 

and Sigma Level (σL). The following Palisade™ 

@RISK® functions are used:  

  

Cp = RiskCp (EAR-Mean) 

 

PNC = RiskPNC(EAR-Mean) 

 

σL = RiskSigmaLevel(EAR-Mean)   

  

2.8.3. Sensitivity Analysis of the Portfolio  

The next step is to calculate (quantify) the impact of the 

investment in every stock to the portfolio mean return, 

by using the sensitivity analysis features of Palisade™ 

@RISK®.  This calculation is stochastic and it is based 

on the statistics of the simulation distribution.   

 From the calculated correlation coefficients, the 

stock on which the portfolio return is most dependent 

can be determined. In addition, the calculated regression 

mapped values show how the portfolio mean return is 

changed in terms of Standard Deviation, if the return of 

a particular stock is changed by one Standard Deviation. 

 The sensitivity analysis is used in order to 

determine how to improve the performance of the 

investment process, i.e. which stocks should be hedged 

to reduce the financial risk of the portfolio. 

 

2.8.4. Simulating the Hedged Portfolio  

Six Sigma Simulation is used again to simulate and 

measure the performance of the hedged portfolio. The 

Six Sigma parameters specified for this simulation are 

the same as in Sec. 2.8.2. Also, the model calculates the 

Six Sigma process capability metrics to measure the 

performance of the investment process as presented in 

Sec. 2.8.2. 

 

2.8.5. Comparing Results and Quantifying 

Improvements  

The final step is to compare the simulation results 

of the initial optimal portfolio with the hedged portfolio 

and quantify the improvements from three aspects, 

portfolio return, financial risk and investment process 

capability.  

 To quantify the improvements, the following 

results are compared: i) Expected Annual Return – 

Mean (EAR- Mean) for portfolio return; ii) Variance, 

Standard Deviation and Value-at-Risk (VaR) for 

financial risk; and iii) Process Capability (Cp), 

Probability of Non-Compliance (PNC), and Sigma 

Level (σL) for investment process capability.   

 

3. RESULTS AND DISCUSSION 

 

3.1. Portfolio Simulation and Optimisation  

The optimal portfolio found by the simulation and 

optimisation model has the following investment 

fractions: 28.6% in Stock 1; 0.7% in Stock 2; 28.5% in 

Stock 3; and 42.2% in Stock 4. The Portfolio Return 
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was 9% with Variance of 22.9%, Standard Deviation of 

47.8% and VaR of -19.7%. 

 The probability distribution of this optimal 

portfolio is given in Figure 2.  
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Figure 2: Portfolio Probability Distribution  

  

 The confidence levels were the following. The 

probability that the portfolio return will be below zero 

(0%), i.e. negative, is 41.7%. There is a 38.5% 

probability that the return will be in the range of 0%-

50%, and 19.8% probability that the return will be 

greater than 50%. 

 

3.2. Measuring the Portfolio Performance  

The performance of the optimal portfolio found above 

was measured with a Six Sigma simulation model. It 

should be noted that the optimal portfolio found above 

is simulated; thus, the investment fractions for this 

simulation model are the same, i.e.: 28.6% in Stock 1; 

0.7% in Stock 2; 28.5% in Stock 3; and 42.2% in Stock 

4.  The following Six Sigma parameters were 

specified: i) LSL = 5%; ii) TV = 9%; iii) USL = 15%. 

 

 The Portfolio Return was 9%, Variance 22.9%, 

Standard Deviation 47.8% and VaR -23%. These 

figures suggest that the financial risk for the optimal 

portfolio is significant.  

 The probability distribution of the optimal portfolio 

Six Sigma simulation is shown in Figure 3.  
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Figure 3: Portfolio Performance Distribution 

  

The confidence levels were as follows. The 

probability that the portfolio return will be below 5% 

(i.e. below LSL) is 46%. There is an 8.9% probability 

that the return will be in the range of 5%-15% (i.e. 

within the desired target range), and 45.1% probability 

that the return will be greater than 15% (i.e. above 

USL). 

The Six Sigma metrics (i.e. the investment process 

capability metrics) of the optimal portfolio is shown in 

Table 4.  

It is easy to draw the conclusion by using the Six 

Sigma Probability of Non-Compliance (PNC) metric of 

the process. The PNC metric determines the total 

probability that the portfolio return distribution will 

deviate from the desired specified limits. The PNC 

equals 0.9112, which is an extremely high probability. 

Also, Cp and Sigma Level are very low, i.e. 0.0348 

and 0.1115, which indicates a poor performance. 

 

Table 4: Investment Process Six Sigma Metrics 

Process 

 

Cp 

 

PNC  

 

Sigma  

Level 

Optimal 

Portfolio 0.0348 0.9112 0.1115 

 

The significant financial risk and the poor 

performance of the optimal portfolio presented above 

strongly suggest that this portfolio is not acceptable. 

Therefore, the portfolio should be improved by hedging 

for example.  

  

3.3. Sensitivity Analysis  

The sensitivity analysis was used in order to 

determine how to improve the performance of the 

investment process, i.e. how to hedge the portfolio. 

The correlation sensitivity graph is given in Figure 

4. The graph shows that the portfolio return is most 

dependent on the return of Stock 4 with a correlation 

coefficient of 0.77. The other three stocks, i.e. Stock 3, 

Stock 2 and Stock 1, are less influential with correlation 

coefficients of 0.49, 0.46 and 0.43 respectively. 
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Figure 4: Correlation Sensitivity 

 

The regression sensitivity graph is given in Figure 

5. This graph shows how the portfolio mean return is 

changed in terms of Standard Deviation, if the return of 

a particular stock is changed by one Standard Deviation. 

 Therefore, this graph shows that if Stock 4 return is 

changed by one Standard Deviation, the portfolio return 

will be changed by 0.313 Standard Deviations (i.e. the 

regression mapped value is 0.313 for Stock 4). Again, 
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the other three stocks, i.e. Stock 3, Stock 1 and Stock 2, 

are less influential as their regression mapped values are 

0.163, 0.141 and 0.108 respectively. 
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Figure 5: Regression Mapped Values Sensitivity 

 

The conclusions of this sensitivity analysis 

suggested that the portfolio can be hedged for example 

if Stock 4 is replaced with an option of Stock 4. 

 

3.4. Option 4 Return Data and Distribution   

A part of the market data for Option 4 (i.e. an option of 

Stock 4) are shown in Table 5, i.e. the Monthly Return 

(MR) and the calculated Compounded Monthly Return 

(CMR) of the option. The Average CMR is 0.61% and 

the yearly return is 7.28%. 

 

Table 5: Option 4 MR and CMR 

Month MR CMR 

Jan/1990 0 0 

Feb/1990 0.038 0.038 

Mar/1990 0.015 0.015 

Apr/1990 0 0 

Jul/1996 0 -0 

Aug/1996 0.018 0.018 

Sep/1996 0.092 0.088 

Oct/1996 0.039 0.038 

 

The best fit distribution to Option 4 CMR is shown 

on Figure 6.  
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Figure 6: Option 4 Best Fit Distribution 

 

 

3.5. The Hedged Portfolio Simulation  

The performance of the hedged portfolio was measured 

with a Six Sigma simulation model. It should be noted 

that the Stock 4 was replaced with Option 4 (i.e. an 

option on Stock 4); thus, the investment fractions for 

this simulation model are: 28.6% in Stock 1; 0.7% in 

Stock 2; 28.5% in Stock 3; and 42.2% in Option 4. 

 The same Six Sigma parameters were specified: i) 

LSL = 5%; ii) TV = 9%; iii) USL = 15%. 

 The Portfolio Return was 9%, Variance 14.6%, 

Standard Deviation 38.3% and VaR -0.45%. These 

figures suggest that the financial risk was considerably 

reduced.  

 The probability distribution of the hedged portfolio 

Six Sigma simulation is shown in Figure 7. The 

confidence levels were as follows. The probability that 

the portfolio return will be below 5% (i.e. below LSL) 

is 44.4%. There is an 10.9% probability that the return 

will be in the range of 5%-15% (i.e. within the desired 

target range), and 44.7% probability that the return will 

be greater than 15% (i.e. above USL). 
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Figure 7: Hedged Portfolio Performance 

  

The Six Sigma metrics (i.e. the investment process 

capability metrics) of the hedged portfolio is shown in 

Table 6.  

 

Table 6: Hedged Portfolio Six Sigma Metrics 

Process 

 

Cp 

 

PNC  

 

Sigma  

Level 

Hedged 

Portfolio 0.2176 0.5294 0.6289 

 

Compared with the initial optimal portfolio 

performance, PNC was reduced from 0.9112 to 0.5294, 

Cp was increased from 0.0348 to 0.2176 and Sigma 

Level was increased from 0.1115 to 0.6289. Therefore, 

an important improvement was achieved with the 

hedged portfolio.  

  

3.6. Sensitivity Analysis  

This sensitivity analysis can be used in order to 

determine how to further improve the performance of 

the investment process, i.e. how to further hedge the 

portfolio. The correlation graph (Figure 8), shows that 

the portfolio return is most dependent on the return of 
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Stock 1 with a correlation coefficient of 0.72. The other 

two stocks and Option 4, i.e. Stock 3, Stock 2 and 

Option 4, are less influential with correlation 

coefficients of 0.67, 0.35 and 0.0 9 respectively. 

 

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

 
Figure 8: Hedged Portfolio Correlation Sensitivity  

 

 The regression sensitivity graph is given in Figure 

9. This graph shows that if Stock 1 return is changed by 

one Standard Deviation, the portfolio return will be 

changed by 0.277 Standard Deviations (the regression 

mapped value is 0.277 for Stock 1). Again, the other 

two stocks and Option 4, i.e. Stock 3, Stock 2 and 

Option 4, are less influential as their regression mapped 

values are 0.251, 0.0065 and 0.0308 respectively. 
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Figure 9: Hedged Portfolio Regression Mapped 

Values Sensitivity 

 

The conclusions of this sensitivity analysis 

suggested that the hedged portfolio can be further 

improved (hedged) if Stock 1 is replaced with an option 

of Stock 1 for example. 

It should be noted that this method is iterative and 

can be iteratively applied until an optimally diversified 

portfolio is established. Only the first iteration is 

presented in the paper. 

 

3.7. The Method’s First Iteration Results 

The results of the first iteration of the method are 

presented and compared in this section. Table 7 shows 

the Mean Return, Variance, Standard Deviation and 

VaR of the initial optimal portfolio and the hedged 

optimal portfolio.  

 The hedged optimal portfolio was significantly 

better than the initial optimal portfolio. The mean return 

is 9% for initial and hedged portfolio but the financial 

risk was considerably reduced by the hedged portfolio, 

i.e. i) Variance was reduced from 22.88% to 14.67%; ii) 

Standard Deviation was reduced from 47.84% to 

38.30%; and iii) Value-at-Risk was reduced from 

23.04% to only 0.45%.  

 

Table 7: The Method’s First Iteration Results  

Portfolio  Mean 

Return 

Variance Standard 

Deviation 

VaR 

Initial 0.0900 0.2288 0.4784 -0.2304 

Hedged 0.0900 0.1467 0.3830 -0.0045 

  

The Six Sigma metrics of the first iteration is given 

in Table 8. The Six Sigma metrics for the hedged 

portfolio was also significantly improved. PNC was 

reduced from 0.9112 to 0.5294, Cp was increased from 

0.0348 to 0.2176 and Sigma Level was increased from 

0.1115 to 0.6289.  

 

Table 8:  The First Iteration Six Sigma Metrics 

Process 

 

Cp 

 

PNC  

 

Sigma  

Level 

Initial 

Portfolio 0.0348 0.9112 0.1115 

Hedged 

Portfolio 0.2176 0.5294 0.6289 

  

 

3.8. The Optimisation-Simulation-DMAIC Method 

versus the Related Work 

A simple comparison of the Optimisation-Simulation-

DMAIC method, i.e. the new practical approach to 

ALM proposed in this paper, with the related work 

summarized in Sec. 1.1 is as follows.  

 

3.8.1. ALM  

The ALM models presented by Mitra and 

Schwaiger (Mitra and Schwaiger 2011) are advanced 

stochastic optimisation and simulation models. The 

ALM models published by Adam are also advanced 

stochastic models using optimisation and simulation 

(Adam 2007). 

The presented Optimisation-Simulation-DMAIC 

model is by nature an advanced stochastic model 

applying optimisation and simulation, which is like the 

models presented in the related work. In contrast, the 

Optimisation-Simulation-DMAIC model uses Six 

Sigma DMAIC to measure and improve the portfolio 

management process in order to establish an optimally 

diversified (hedged) portfolio, which is an advantage. 

 

3.8.2. Six Sigma  

 Hayler and Nichols presented applications of Six 

Sigma tools, e.g. Lean Six Sigma, to the financial 

service-based operations, which is related to the 

operational risk (Hayler and Nichols 2006). The work 

of Tarantino and Cernauskas is also related to the 

operational risk as they created an operational risk 

framework by applying Six Sigma to improve the 

financial risk management process from operational 
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point of view in general (Tarantino and Cernauskas 

2009).  

On the contrary, the Optimisation-Simulation-

DMAIC model uses Six Sigma DMAIC in order to 

establish an optimally diversified (hedged) portfolio. 

This is a new concept as DMAIC is dynamically 

applied to specifically reduce the ALM Market Risk in 

an on-going investment portfolio management process. 

 

4. CONCLUSION 

This paper proposed a new practical and stochastic 

method, i.e. the Optimisation-Simulation-DMAIC 

method, for ALM risk modelling under Solvency II and 

Basel III. The method combines Optimisation, Monte 

Carlo Simulation and Six Sigma DMAIC 

methodologies in order to dynamically manage the 

financial ALM risk (i.e. the market risk) in an on-going 

investment portfolio management process.   The new 

method applies the Markowitz’s Mean-Variance and 

Monte Carlo Simulation methodologies in order to 

determine, by using stochastic calculation, the 

minimum variance portfolio that yields a desired 

expected return. In addition, the new method uses Six 

Sigma DMAIC to measure and improve the portfolio 

management process in order to establish an optimally 

diversified (hedged) portfolio. 

 Consequently, the synergy of the Optimisation, 

Monte Carlo Simulation and Six Sigma DMAIC 

methodologies, which are used by the method, provides 

for a significant advantage compared to the 

conventional ALM models. 

This new Optimisation-Simulation-DMAIC 

method can help the financial institutions to develop or 

improve their Basel III and Solvency II internal risk 

models in order to reduce their capital requirements and 

VaR. Reducing the capital requirements and VaR will 

ultimately provide the insurance companies and banks 

with higher business capabilities, which will increase 

their competitive position on the market. Moreover, the 

proposed method can significantly assist the financial 

institutions to achieve their business objectives. 
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