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ABSTRACT 
Unmanned Aerial Vehicles (UAVs) are used in a 
variety of operations in civilian and military domains 
including search and rescue, surveillance, monitoring, 
cadastral surveys, and package transportation. Although 
technological achievements in UAVs made them more 
intelligent than they were in the past, there is still 
human factor affecting their operations. Particularly in 
path planning, operators can improve effectiveness and 
efficiency of the mission by controlling static and 
dynamic criteria before the flight and during the flight. 
However, existence of multiple criteria has made the 
path planning a difficult task that operators can hardly 
achieve an optimal path for an UAV. In this paper, we 
propose a simulation model which can help UAV 
operators and planners achieve optimal paths. Our 
model considers environmental factors, performance 
limitations, basic aviation rules and UAV user 
requirements.  

 
Keywords: Unmanned Aerial Vehicles (UAV), path 
planning, A Star Algorithm 

 
1. INTRODUCTION 
Intelligent machines have made human life easier than 
they made in the past. For example, Unmanned Aerial 
Vehicles (UAVs) are being used for high risk and high 
cost air-based tasks such as military surveillance, search 
and rescue, and geographical surveys. However 
currently, most UAVs are remote-controlled and require 
a human operator.  Therefore, a considerable amount of 
studies conducted in the UAV domain focus on 
increasing the level of UAV intelligence and providing 
more capabilities. Enabling UAVs with autonomous 
path planning is a key research area in developing 
intelligent UAVs. Autonomous path planning is defined 
as the onboard capability of finding navigable sequence 
of waypoints from an initial location to a target location 
which minimizes the pre-defined path costs while 
satisfying several requirements. In addition to 
increasing the autonomy level of UAVs, autonomous 
path planning provides continuous satisfaction of flight 
requirements and objectives in a dynamic operational 
environment.  It also increases the reliability of UAVs 

in case of system and communication failure in remote 
control (Wu et al 2009).  
  There is extensive literature on UAV autonomous 
path planning that address several constraints such as 
flight dynamics, obstacles and environmental factors. 
However, most of the studies do not address UAV 
domain-specific operational issues such as employment 
considerations and aviation rules. Furthermore, most 
studies are unable to propose solutions to generate 
suitable and realistic paths that satisfy UAV mission 
requirements.  
 We aim to develop a multi-criteria path planning 
simulation model for Medium Altitude Long Endurance 
(MALE) UAVs. The model generates paths for online 
and offline UAV employment. Our model extends the 
existing models (Wu 2006, Pettersson 2006, Qi 2010, 
Nikolos 2003) by placing a special emphasis on 
aviation rules and employment considerations. The 
distinction of our study compared to the others is that 
our research includes criteria that are either new or only 
covered in a few studies. Our simulation model aids in 
offline and online planning of optimal paths in terms of 
time, distance and fuel consumption, while taking the 
described flight criteria, environmental factors, 
performance limitations, basic aviation rules and UAV 
user requirements into account. In our study, we also 
investigated the behavior of various A* based path 
search algorithms by comparing them in different 
operational environments.  

 
2. BACKGROUND INFORMATION 
UAV path planning problem is a vehicle motion-
planning problem under some constraints. It has 
significant differences from traditional mobile vehicles 
and manipulator robots (Goerzen 2009). UAV path 
planning problem is defined as a multi-objective, 
decision making problem that must take into account 
flight rules, mission efficiency, operational constraints, 
environmental conditions and flight limitations. 
 Modeling for path planning requires a way of 
representation of the world and its contents. “World 
space” is defined as the physical space, which contains 
the vehicle, start location, target location, and obstacles. 
It is divided into two regions as free-space and obstacle-
space (Latombe 1991, LaValle 2006). Free-space 
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defines the area through which the vehicle can move 
without collision. Obstacle-space is a set of points that 
lead to a collision between the vehicle and the obstacle 
(Hwang and Ahuja 1992). A “configuration” is a vector 
of parameters defining the shape of the vehicle in the 
world space. A configuration that is coupled with its 
rate of change is called a “state”.  
 These are two types of constraints in the world 
space: environmental and motion. While environmental 
constraints consist of obstacles or meteorological 
factors such as wind or icing; motion constraints defines 
the maneuver limitations of the vehicle such as climb 
rate or turning capability. In our study, we use the terms 
“flight criteria” and “flight objective” instead of 
“constraints”. While flight objectives are the elements 
of cost function, flight criteria are the variables that 
must be implemented for flight safety and mission 
efficiency during flight.  

Path planning in robotics has two major 
approaches. Although the first approach, combinatorial 
planning, gives optimal solutions, it is impractical since 
its computational complexity is high. The second 
approach, sampling based planning, is preferred since it 
is a sampling based planning and known to be superior 
for its efficiency, practicality, and simplicity in high 
dimensional environments.  

Collision Detection (CD) and roadmap generation 
are the two other terminologies in sampling based path 
planning. CD algorithms are used to detect obstacles on 
the path. Roadmap generation is the constructing of a 
search tree or graph with connecting samples in free 
space. 

Finally, it is noteworthy to mention the UAV path 
planning flight criteria that are considered in the 
literature. These are geographical structures, buildings, 
danger zones, above ground level rules, cruise level 
rules, mobile objects, cloud, mobile targets, mobile 
threats, wind, approach angle, and flight dynamics. 
Additionally, the flight objectives are generally based 
on distance, time, fuel consumption, risk, path 
smoothness, and hidability.  

 
3. CONCEPTUAL MODEL 

 
3.1. World Space and Roadmap Generation 
Operational environment is represented with a regular 
grid sampling method. Every sample is represented by a 
cube in the world space that contains data related to the 
operational environment. Grid size of the sample cubes 
defines the level of detail in grids. The number of cubes 
increases process time and search time significantly.  
 The size of the sample cubes is determined based 
on UAV flight performance capabilities and maneuver 
limitations. Turn radius and ascend/descend angle are 
the main parameters to identify horizontal and vertical 
length of sample cubes respectively. . In our model, the 
size of the grid is set depending on the tactical range of 
the UAV, maximum fly altitude and computational 
limitations.  

 
Figure 1: Grid based world space 

 
Each node in the grid has the following fields; 

• Latitude/Longitude 
• Above Ground Altitude 
• Above Mean Sea Level Altitude 
• Time Moment 
• Wind speed and direction 
• Start or Target Indicator Flag 
• Obstacle Space Indication Flag 
• Cloud Indicator Flag 

  These fields are initialized with default parameters 
and then updated based on the information collected 
from the environment. Furthermore, nodes have 
additional fields to store the parent node and child 
nodes. These fields are filled in during adjacency 
creation process. 

When the world space is represented as a 2D or a 
3D grid then an algorithm can be applied to find a path 
in the grid. After moving forward one step on the path, 
if any change occurs in the operational environment, the 
path is re-calculated based on the updated grid until the 
vehicle reaches the goal state. Although this iterative 
approach runs faster, it produces inconsistent and costly 
paths in dynamic environments, because this approach 
is unable to predict the future status of the search space. 
However, advances in the sensor technology made the 
UAV’s predict ahead in time and therefore it is possible 
to plan the least cost paths in time varying 
environments. This can be represented with a “4 
dimensional grid (4D)” where the forth dimension is the 
time.  

4D grid consists of future status of mobile objects 
and dynamic criteria parameters in the world space. It 
can be expressed as a combination of 3D grids that 
represent an instant status of the world space in a time 
moment. Each time interval (∆t) between moments is 
equal to a specific duration. This duration is identified 
from UAV performance specifications and it is 
measured as the time elapsed during the travel from one 
hop to another hop, in other words from a parent node 
to a child node. 

In 4D grid generation, as shown briefly in Figure 
2, the first step is to detect movements of moving 
targets and to sense environmental factors. Based on 
this data, future locations are estimated and projected to 
3D grid. These are then combined with 4D grid and 
least-cost pats are calculated. The UAV proceeds to the 
next grid. This whole process is repeated until the UAV 
reaches to the destination.  
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Figure 2: 4D Grid generation 

 
In the roadmap generation phase of the model, 

multi-resolution grids are used. This is done based on a 
successor operator. After the partitioning process, the 
model checks the flag parameters of every node in the 
regions. If any node in a region is an obstacle node, the 
model identifies this region as a high-resolution region. 
Otherwise, the region is classified as a low-resolution 
region. In other words, the regions without obstacles are 
marked as low resolution regions. 

The distance between node pairs in the high-
resolution regions is defined with a successor vector. 
Nodes in the range of successor distance are adjacency 
candidate nodes. Successor-based adjacencies provide 
multiple angular turns for UAVs. Thus, path optimality 
and path smoothness are achieved in the model. 
Although multiple angular turns ensure optimality and 
smoothness, in some cases it may increase 
computational complexity and graph size. Therefore, 
there is a trade-off between successor length and 
computational time. Note that adjacency generation 
time increases by the successor length, however long 
successors provide finding least cost paths and more 
smooth paths compared to a shorter ones. Figure 3 
shows how a path changes when max. successor length 
changes.   

 

 
Max Successor Length=3 Max Successor Length=12 

Figure 3: Paths with different successor lengths 
 
Adjacency creation procedure works as follows; 

the grid is divided into regions as low and high 

resolution. Depending on the node the UAV is located 
currently, successor length is determined for each node. 
The nodes are then connected and a graph is formed. 
Obstacle space indicator of every node pairs are then 
check to remove the links between obstacle nodes. 
Travel time is calculated and finally adjacency relations 
are added to the world space. 

 
3.2. Flight Criteria and Flight Objectives 
In our model we have two types of flight criteria that we 
considered; static and dynamic. Static criteria do not 
change in time and therefore there is no need to update 
the locations and other properties during flight time. 
These include geographical structures, buildings, danger 
areas, above ground level (AGL) rule, and cruise level 
rule.  
 For the geographical structures, the terrain is 
represented as an obstacle that the UAV cannot pass 
through. We obtain terrain elevations from Digital 
Terrain Elevation Data Level 1 (DTED L1) maps. 
Buildings are represented with polygons which the size 
and location information are gathered from geographic 
terrain elevation databases. A danger area is a land 
region that poses any kind of threat to UAV flight. For 
example, an anti-air defense system is a kind of threat 
that a military UAV should stay out of its range. We 
make a distinction between the aerial threats and the 
threats on the ground. Danger areas are related to threats 
found on the ground. In our model, we draw a half-
sphere on the location of the threat. The center of this 
virtual sphere corresponds to the location of the threat.  
 Dynamic flight criteria include mobile obstacles, 
mobile threats, mobile targets, cloud, and wind. 
Properties of these criteria may change in time and 
therefore the locations and properties of the dynamic 
criteria should be updated in time until UAV reaches its 
goal location. The model calculates the future locations 
of the dynamic criteria based on historical information 
obtained with UAV sensors.  
 Other aircrafts in the operational environment are 
referred as mobile obstacles. Our model prevents the 
UAV from colliding with other aircrafts by marking 
mobile obstacles as “obstacle space” in the world space. 
For the representation of mobile obstacles, flying 
objects are mapped into cylindrical shapes which the 
dimensions of the cylinders around mobile targets are 
computed in such a way that UAV is able to maneuver 
at an adequate distance to a safe course to avoid a 
collision with the mobile target. 
 Clouds may prevent UAVs to accomplish some of 
its missions such as reconnaissance via photographing 
or video capturing. In such circumstances, to increase 
detection quality, UAVs should descend to lower 
altitudes below the floor level of clouds. Our model 
enhances mission efficiency by enabling UAVs to go 
under clouds when the weather is cloudy above the 
target location. At other times during flight, the UAV 
can fly through clouds. We represent the clouds with 
polygonal and cylindrical shapes. Likewise, wind is a 
significant factor for UAVs’ path planning. In our 
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model, we assume that in the operational environment 
there are wind fields with a constant speed and 
direction. 
 The objective of the model is to find minimum cost 
paths in terms of time, distance, and fuel consumption. 
These terms are included in the objective function with 
different weights that are determined based on the 
mission requirements. Details are as follows; 

• Flight distance: Distance is a widely used 
flight objective in similar studies as it can be 
calculated with simple algorithms. In our 
model, it is calculated as Euclidian distance 
such as; 
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• Flight time: Although distance and time 

objectives seem alike, flight time is not just a 
function of distance since wind vector effects 
the flight time. In order to calculate the time 
cost, we use the following equation. The 
equation finds the cost of each trajectory 
between node pairs based on distance and 
resultant vector of UAV engine and wind 
speed.  is UAV engine speed, and  is wind 
speed. 
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• Fuel consumption: We construct a fuel 

consumption model for the UAV based on 
EngineSim (NASA, 2012). The UAV uses 
maximum throttle for climbs, minimum 
throttle for descents and optimum throttle for 
the cruise. Similar to aircraft engines, our 
UAV consumes less fuel in higher altitudes 
and in lower speeds. Fuel consumption is 
calculated as follows;  
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 where  is the fuel consumption at 
altitude x,   is the fuel consumption 
at speed x,  is the fuel 
consumption at temp x,   is 
the fuel consumption at payload x and 

 is the fuel consumption at rate x. 
 

4. SIMULATION MODEL 
Based on the conceptual model described in the 
previous section, a simulation model is built in Java 
using Simkit (Buss 2001) and OpenMap (OpenMap 
2012) APIs. Simkit is a Discrete Event Simulation 
(DES) API in Java and works with Event Scheduling 

DES approach. OpenMap is also in Java and an open 
source Geographical Information System which can 
process geographical data such as elevations. Gunal 
(2010) is a latest example of how these two packages 
can work together.  
 
4.1. Flow of Simulation 
Movements of external system entities are handled by 
methods provided with Simkit. Movement behaviors 
include start, stop, pause, and accelerate. OpenMap is 
used to visualize generated paths. A screenshot is 
shown in Figure 4. It also enables to easily visualize the 
terrain structure and simulated entities.   

Since the simulation provides the movements of 
entities, static and dynamic criteria parameters are 
calculated to predict mobile object locations 
beforehand. This causes the 3D grid to be searchable for 
a path. In our simulation we used A* algorithm to find 
the shortest path.  

 
4.2. Inputs 
In our model we have three groups of inputs; UAV, 
Environment, External Systems’ parameters.  
 UAV parameters are; 

• weight,  
• payload,  
• endurance,  
• max.speed, 
•  max.flight  
• altitude,  
• tactical range,  
• fuel consumption,  
• turn radius, 
• ascend/descend rate.  
 
Environmental parameters are; 
• Field size, 
• Wind direction and speed, 
• Cloud origin, 
• Temperature, 
• Number of regions, 
• High and low resolution, 
• Goal and start location altitudes,  
• Rules and safe limits. 
 
External systems’ parameters are; 
• Number of threats, 
• Number of aircrafts, 
• Mobile target speed, 
• Mobile aircraft speed. 

 
4.3. Outputs 
Since we wanted to examine the model’s performance, 
our main output variables are grid generation time and 
search time. Additionally we looked at the path cost for 
the three objectives; distance, time, and fuel.  
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Figure 4: Simulation screen 

 
 
5. EXPERIMENTAL RESULTS 
The model is evaluated with various scenarios 
containing both static criteria and dynamic criteria. The 
simulations are conducted with a personal computer 
(PC) with 2.93 GHz Intel i5 processor and 3 GB RAM.  
The world space is represented in a 
60nm*60nm*31000ft*10t grid which is sampled with 
nodes in a dimension of 2nm*2nm*1000ft. In Figure 4, 
dotted line represents UAV optimal path, which is from 
south to north. Other shapes in the figure represent 
obstacles such as buildings, threats and aircrafts. UAV 
geographical location, UAV altitude, target information 
and simulation parameters are shown in the left side of 
the OpenMap environment. We created 48 scenarios to 
achieve the following in our experiments;  

• Validate and verify the model in various 
scenarios,  

• Analyze the performance of the model under 
different constraints, 

• Analyze the effects of criteria and grid 
dimension on path costs, 

• Test the modifiability and extendibility 
properties of the model 

 Simulation results show that the model is able to 
generate sensible results. Model architecture provides 
enhanced modifiability as various scenarios were easily 
adapted with minor modifications.  In addition, the 
model is able to find collision-free paths in different 
scenarios. Developed model can generate resolution 
optimal paths in static and dynamic environments under 

different constraints. Besides, it is found that the model 
reacts properly to the changes in criteria properties and 
obstacle locations.  
 We analyzed the simulation performances of 3D 
and 4D grids in terms of grid generation time and search 
time in various scenarios for different flight objectives 
(Table 1).  Simulation performance results show that 
target type does not affect grid generation time and 
search time in 3D and 4D grids. However, the number 
of obstacles and obstacle sizes are the main factors on 
grid generation time. In addition, they increase the 
search time if obstacles are at locations that intersect 
with UAV flight path.  The search time increases as the 
number of obstacles increase, since search algorithm 
needs more time while expanding nodes to find the 
least-cost path. On the other hand, the increase in the 
number of obstacles decreases grid generation time as 
search space becomes smaller. In addition, grid 
generation time and search time is higher in 4D grid. In 
fuel consumption objective, search time is longer than 
search times in other objectives as additional parameters 
are incorporated in the calculation of fuel consumption. 
In every scenario, UAV moves from south to north. 
PNF refers to “Path not found” in the tables. Wind 
speed is zero. 
 The model finds the same paths in the calculation 
of time objective and fuel objective in static 
environments (Scenario 1, 2, 5 and 6). Besides, path 
costs in static environments are equal in 3D and 4D grid 
since there is not any mobile objects in the operational 
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environment. It is also found that, in fuel consumption 
objective, UAV climbs to an optimal altitude and 
proceed in this altitude for a while, then descend to 
target altitude to reduce the fuel consumption.  
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1 3D 2 1 2 1 2 1 
2 

0 0 S 
4D 23 1 23 1 23 1 

3 3D 2 1 2 1 2 1 
4 

0 0 M 
4D 18 1 23 1 25 1 

5 3D 1 2 2 2 1 19 
6 

4 0 S 
4D 8 2 9 3 11 66 

7 3D 1 2 2 2 1 14 
8 

4 0 M 
4D 8 2 9 3 10 64 

9 3D 2 2 1 2 2 21 
10 

4 4 S 
4D 5 2 6 3 5 58 

11 3D 2 2 1 2 2 22 
12 

4 4 M 
4D 5 2 6 3 6 63 

13 3D 2 1 2 1 2 1 
14 

0 4 S 
4D 20 1 17 1 15 1 

15 3D PNF PNF PNF PNF PNF PNF
16 

0 4 M 
4D 19 1 15 1 15 1 

 Table 1: Experimental results (M:Mobile, S:Stationary) 
 
6. CONCLUSION 
As the use and application areas of UAVs increase, new 
challenges and issues arise in developing UAVs. Many 
studies in UAV domain focus on increasing intelligence 
capability of these systems. The studies aim to provide 
UAVs with the capability to perform without human 
interference opposing different adversities. An 
important challenge in developing more intelligent 
UAVs is autonomous path planning.  
 In this paper, we present a multi-criteria path-
planning model for UAVs performing in dynamic 
environments. The main contribution of the study is the 
development of a path planning model that provides 
online and offline planning of resolution-complete, 
smooth and optimal paths while meeting distance, time 
and fuel consumption objectives in dynamic 
environments for Medium Altitude High Endurance 
UAVs (MALE UAVs). We implement flight criteria 
and objectives in our model based on employment 
considerations, environmental factors, performance 
limitations, basic aviation rules and user requirements. 
In addition, the presented model takes into 
consideration of operational efficiency presented in 
UAV Roadmaps. Operational environment is 
represented with a 4D grid that includes future status of 
mobile objects. Taking into consideration of possible 
changes in the operational field would increase path 
efficiency and provide least cost paths. In our study, we 
develop a modular architecture that enables integrating 
various UAV models, environmental parameters, search 

algorithms and various flight criteria/objectives with 
minimum efforts. In the development of the model and 
simulation, open source tools and environments are 
utilized. We simulate our model in multiple scenarios. 
The model is able to find optimal and collision-free 
paths in static and dynamic environments under several 
flight constraints. 
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