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ABSTRACT 
As providing e-learning opportunities for students is 
getting more and more important, the so called MMT 
system provides an user-friendly online modelling and 
simulation laboratory. Here a course consisting of a set 
of experiments is shown to give an example how e-
learning can be used in a modern way. A series of tank 
experiments is used, each of them with different 
difficulties and increasing complexity, to teach 
modelling and simulation in fluid dynamics. 
 
Keywords: fluid dynamics, e-learning, MMT, hydraulic, 
MATLAB, tank 
 
1. INTRODUCTION 
Teaching modelling and simulation especially to 
students who are not permanently confronted with the 
topic is always a challenge. On the one hand, reasonable 
models are often too difficult to present them in detail, 
either for mathematical reasons, lack of programming 
skills or timing problems. On the other hand presenting 
a simulation for simplified problems, which cannot be 
used directly in reality, causes students to suggest, that 
modelling is a rather theoretical part of science and 
underestimate the value of good simulations and the 
complexity and dangers involved.  
 Thus as a part of the Bologna study a collaborating 
group of researchers from the University of Ljubljana 
and the Vienna University of Technology assembled a 
constructive, well organized e-learning course 
consisting of a set of high quality simulation models. 
The course was assembled taking into account the 
following main ideas: 

1. The complexity of the examples is increasing 
during the course. 

2. The examples are strongly related and 
constructive.  

3. Each example deals with different important 
questions about modelling and simulation. 

4. The course can be taught to different fields of 
study. 

5. The examples are available to each student 
taking part in the course on an internet 
platform. 

6. Students can experiment with the models at 
home. 

7. All students interested in this topic can take 
part in the course independent from their 
already existing programming skills.  

 
Especially point 6 and 7 are usually inconsistent or at 
least hard to manage, so therefore the Vienna University 
of Technology uses the so called MMT system for 
teaching, testing and e-learning purposes.  
 
2. MMT SYSTEM 
The MMT system - “Mathematics, Modelling and 
Tools” -  is a MATLAB based online simulation 
platform which provides a user-friendly environment on 
the one hand for lecturers, who need to present 
simulation examples in their course, on the other hand 
for students, who want to experiment with well 
implemented models at home. 
 The platform was created in a collaboration 
between the Drahtwarenhandlung (DWH) and the 
Vienna University of Technology for many different 
purposes: 

• As an e-learning opportunity for students 
• As a virtual modelling and simulation 

laboratory 
• To extend MATLAB, SIMULINK and even 

JAVA and ANYLOGIC programming skills 
by downloading and modifying source codes 

• As an environment for presentations and 
lectures 

• As a supporting platform for tests and exams 
• As a place where well implemented simulation 

examples by advanced students e.g. for their 
bachelor or diploma thesis finally get to a good 
use. 

 
 So far about 300 different modelling and simulation 
examples have been loaded up to the server and the 
number is steadily increasing. Therefor it is getting 
more and more difficult for lecturers to find the most 
appropriate assembly of examples for their course. Thus 
the upload of a single model or an idealess mix of 
simulation examples to the server is not enough. A well 
structured educational aim, e.g. as the one we defined in 
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the last section, is required to help lecturers taking the 
correct choice without getting intimidated by the whole 
variety of the MMT server. 
The following set of models shall give an example of 
how a course can be arranged according to the above 
mentioned ideas and how the MMT system can be used 
to assist the lecturer. 
 
3. THE THREE TANK MODEL 
The process shown in Figure 1, is located at the Faculty 
of Electrical Engineering, University of Ljubljana, and 
consists of three cylindrical plexiglas tanks connected 
with pipes which can smoothly be closed or opened by 
valves.  
 

 
Figure 1: Photograph Of The Process 

 
When water is pumped into the first or the third of the 
three tanks, assuming that at least those two valves 
necessary for the flux between the tanks are open, the 
system complies to the laws of communicating vessels 
and is thus highly non-linear. Regarding that a model of 
the whole process is very complex and might be too 
difficult to explain it is useful to separate the problem.  

 
Figure 2: Partition Of The Model 

As indicated in Figure 2 the system can be partitioned, 
hence providing a better understanding of the different 
subsystems of the tank. The different models discussed 
later on in the paper are marked in different colours. 
 
 
 
 

3.1. One Tank Model 
The easiest model to deal with is 
defined if the valve, connecting 
tank one and two, is closed. 
Though this is a simple first 
order system it is still non-linear 
and thus surely a challenge to 
students inexperienced in 
modelling. A dynamic model can 
be found if the relation between 
the flux into the tank to the 
derivation of volume and the 
relation between filling level to the speed of the 
streaming out liquid are combined: 
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In these formulas S donates the cross section area of the 
cylindrical tank g defines the gravitational acceleration 
and A donates the cross section area of the valve. The 
second formula is called Torricelli’s Law for water 
streaming out of a vessel and is a consequence of the 
famous Bernoulli equation for fluid dynamics. The 
constant C (close to one) depends on the liquid and on 
the form of the opening. The resulting non-linear first 
order differential equation is: 
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The following topics are interesting to deal with in a 
lecture: 

• Physical derivation (Torricelli’s Law) 
• Valve opening ↔ flux of water (empty tank ↔ 

spilling over) 
• Linearised model 
• Comparison with MATLAB’s own linmod() 

function 
• Transfer function modelling 
• Experimenting equilibrium states with the 

MMT system 
• Experimenting with different kinds of input 

functions (unsteady, steady, smooth) to the 
pump 

• Comparison to real measured data from the 
process in Ljubljana (Experiment parameters 
of the simulation at the MMT system) 

• Comparison between measured parameters and 
theoretical calculated parameters (friction, 
turbulences, incompressible liquid) 

• Controlling e.g. by PID (and other) controller 
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3.2. Two Tank Model 
Adding the second tank 
leads to a second order 
system which raises 
additional issues. First of 
all linearisation leads to a 
two dimensional Taylor 
series expansion which is 
a really good repetition to 
students lacking of basic 
math skills. Also it 
becomes a little bit more 
difficult for students to determine steady states, on the 
one hand due to an unsteady signum function and on the 
other hand due to the definition of the working point 
regarding the degrees of freedom. From the physical 
point of view the determination of the differential 
equations needs a little bit extension because the flux 
between the two vessels has to be calculated. The 
problem can be solved using Bernoulli’s equation. This 
leads to the following system of  coupled differential 
equations: 
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Because liquid can pass the valve in both directions the 
signum function is important here. The following points 
are taken into account. 
 

• Physical derivation of flux between 
communicating vessels (Bernoulli’s principle, 
Torricelli’s law) 

• Calculation of linearised models in form of 
state-space and transfer function models 

• Experimenting with valve openings at the 
MMT system 

• Tuning of the controller 
• Difference between SISO and MIMO 

problems 
 

3.3. Three Tank Models – SISO 

  

Adding the third tank leads to a third order system but is 
still a SISO problem. The differential equations are 
quite similar to the two tank system: 
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(The signum functions are not shown here) 
 Due to the fact that the third equation does not 

depend on 1h the extension of the two tank model to 

this third order model is extremely easy. This model can 
be a perfect example that regarding the modelling point 
of view a higher order does not always increase the 
complexity of the problem as the SIMULINK model of 
the non-linear model needs only to be extended by an 
additional loop. But the controller needs to be modified 
and linearisation is getting slightly more difficult. The 
following points are dealt with. 

• Calculate linearised models 
• Modification of the controller  
• Why is the system SISO 

 
3.4. Three Tank Model – MIMO 

  

In the fourth model the second pump is activated and 
causes a second input parameter. As a result the system 
suddenly becomes MIMO and requires completely 
different controlling. It is important to use and discuss 
the second degree of freedom which grants that not one 
but two of the three filling levels can be controlled at 
once and that there are different options to do so. On the 
one hand two independent SISO controllers can be 
used, on the other hand there are several options for 
really difficult multivariate controllers too. The 
corresponding differential equation system is: 
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Model 4 is the most frequently used and simulated 
experiment also in Ljubljana. Therefore exists a great 
number of real measurement data from the actual plant. 
So the comparisons of the simulation to the 
measurements can be performed at the MMT system 
which can be a real deal for students which are solely 
used to deal with theoretical models. Discussing and 
extending Model 4 and the possibilities for controllers 
is the final target of the course. 

• Comparisons between linearised and non-
linear model 

• Comparison of different controllers at the 
MMT system 

• Create a linearised model 
• Comparison to real measured data at the MMT 

system 
• Experimenting with controller parameters 

 
3.5. Model Summary 
Each of the four discussed models has its own special 
properties and raises additional questions. A short 
summary is given in the following table. 

Model Order Type Controller 
One Tank 1 SISO SISO 
Two Tank 2 SISO SISO 
Three Tank 3 SISO SISO 

Three Tank + 
2nd pump 

3 MIMO MIMO/ 
SISO 

Table 1: Summary Of The Models 
 
4. RESULTS 
4.1. Main Pages 
The following screenshot (Figure 3) shows the main 
page of the course at the MMT system. 

 

Figure 3: Main Page Of The Course 

 
The area at the left side of the picture respectively of the 
“Adam-Riese Math Playground”, as the MMT server is 
called, shows the links to the four model sections with 
each containing several targeted examples dealing with 
the already discussed points. It can be seen here, that the 
MMT system is built up strictly hierarchically using a 
structure similar to LaTex:  

1. Book 

2. Chapter 

3. Section 

4. Subsection 

In this case the whole course constitutes a chapter and 
the four sub-models are created as sections with each 
containing several subsection examples.  

 The centre area of the page contains a first raw 
explanation for the main topic and the goal of the course 
and the well known sketch of the three tanks. Due to a 
LaTex environment provided by the MMT server also 
formulas can be included into this part of the page (see 
Figure 5). As the graphical environment of the page is 
detailed and colourful, it can also be used instead of 
slides for an introduction to the course. 

 The right hand area of the page represents a 
download section. Files like slides, PDF-files, pictures 
etc. can additionally be loaded up to the server and 
offered for download at this area. The links at the main 
page of this course offer three photographs of the 
original plant in Ljubljana and a paper containing 
detailed theoretical information about the system and 
how to derivate a simulation model. 

 Using the links in the left hand area lead to the 
main pages of each sub-model containing more detailed 
information about each experiment like a sketch of the 
physical derivation and a short introduction to the 
different subsection examples. 

4.2. Linearisation Examples 
Understanding the usage and creation of linearised 
models poses an important aim of the course. Often 
linearisation and especially the role of working point 
and equilibrium state are misinterpreted and used in a 
wrong way (a correct interpretation can be found in 
Figure 4).  
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Figure 4: Interpretation Of A Linearised Model 
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In case of the three tank system, in which all of the 
differential equations have square-root characteristics 
and linearisation is not possible or, at least, very bad 
close to the origin, this is even more important. Figure 5 
shows an example of how the process deriving a 
linearised model could be trained at the example of the 
one tank system. 

 

 The example deals with the calculation of the 
correct parameters for the linear state space model at a 

certain working point 0h :  

BuAxx
S

hC

dt

dh in +=⇒
−Φ= &  

So first of all the equilibrium state has to be calculated 
and afterwards, Taylor series expansion leads to A and 
B . The calculated parameters can be compared to 
MATLAB’s own linmod() function. 

 The function [A,B,C,D]=linmod(Mdl, Wp, Displ) 
calculates the linearised State Space model  

DuCxy

BuAxx

+=
+=&

 

out of the, usually non-linear, model  Mdl at working 
point Wp with input displacement Displ.  

 As the experiment requires to calculate the correct 
parameters the user has to put them into the textboxes 
and press the “ok” button. Doing this, MATLAB is 
started and the content of the boxes is used as input 
parameters for a MATLAB function. This function 
starts SIMULINK, deals with the results and performs 
the final plots. In this case (Figure 5) the choice for the 
three input parameters was, taking the output curves 
compared to the linmod() function into account, not 
perfectly correct. 

 As the improvement of MATLAB and SIMULINK 
programming skills is also a target of the MMT server 
usage, the links to all source files can be found at the 
right hand side. As all MATLAB codes also the 
SIMULINK models can be downloaded in text form 
(which can easily be converted to the classic .mdl-
surface again by just saving the file as “filename”.mdl). 

 

Figure 5: Linearised One Tank model 
 

 At the right hand side directly above the figure of 
the two graphs, a small “<1>” and “<2>” button 
indicates that there is a second figure available. 
Switching to the second figure, the graph for the input 
function (flux into the tank), in this case, a sum of 
rectangular functions, can be seen. So the MMT server 
supports multiple output figures represented by a 
slideshow. 

4.3. Non-linear examples 
In an example of section “Model 4” several input 
functions can be tested and the results of the non-linear 
model is compared to the results of the linearisation. 
(Indicated in Figure 6) 

 As there is a choice between a sine-cosine wave 
function, a sum of rectangular functions (shown in the 
plot in Figure 6), a sum of sigmoid functions and a 
pulse of triangular functions, the user can compare the 
results of steady and unsteady input functions. Because 
the working points in tank 1 and tank 3 can manually be 
chosen by the user, comparisons between the non-linear 
model and the linearisation can also be performed. The 
plot in Figure 6 shows the results of the non-linear and 
the linearised model if a sum of rectangular input 
functions, respectively an unsteady changing but 
otherwise constant influx into both tanks (one and 
three), is used. 
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Figure 6: Comparison Between Non-Linear And Linear 
Three Tank Model Simulation At Tank 1 

 
4.4. Animated examples 
As an additional bonus to the graphical plots, the MMT 
server also supports animated output figures created in 
MATLAB. In case of the tank system, the scientific 
value of these examples might not be very high, but 
they can be used to encourage students and improve the 
quality of lectures. An example is shown in Figure 7. 

 

Figure 7: Animated Comparison Between Linear And 
Non-Linear One-Tank Model 

 
In the animation the water-levels change proportional to 
the calculated simulation results. A series of plots is 
used to create a so called animated-“.gif” by a function 
supported directly in MATLAB. 
 
SUMMARY AND FURTHER DEVELOPMENT 
The assembled set of models shall give an example of 
how flexible the MMT server is used in modelling and 
simulation lectures as well as in tests or exams.  
 But yet many developments extending the course 
are planned too. On the one hand a whole variety of 
multivariate controllers opens up a very difficult topic 

for advanced students e.g. examples dealing with 
parameterisation of different MIMO controllers and 
comparisons between them. On the other hand, the 
University of Ljubljana does studies dealing with 
remote control of real experiments. Thus the MMT 
could be used to collect measured data from Ljubljana 
which could directly be used for model comparisons at 
the server. 
 However it has to be kept in mind that none of the 
mentioned points necessarily require MATLAB or 
SIMULINK programming skills, hence encouraging 
students to deal with MATLAB and SIMULINK as the 
MMT system provides great flexibility. This work has 
been realized in the context of the ‘Applied Modelling 
Simluation And Decision Making‘ project and funded 
by means of the City of Vienna by the ZIT GmbH - The 
Technology Agency of the City of Vienna, a subsidiary 
of the Vienna Business Agency. 
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ABSTRACT 

When it comes to modeling diseases with 

inhomogeneous populations a modular setup can be 

useful, because specific parts of the model can be easily 

exchanged or altered. We propose a modular setup 

consisting of a population model and a separate disease 

model, which interact on a specifically defined 

interface. After that an economic cost model can be 

built and integrated into the modular setup. Aim of this 

work is to build a population model, in this case with 
Austrian data, and to define the interface with the 

disease model, in this case an obesity model. Obesity 

has become a major problem in Austria. According to 

(Rieder 2006), over 30% of the Austrian population is 

overweight and over 9% is obese, resulting in over 

227.7 million euro health care costs in 2004.  

 

Keywords: Modular Modeling, Obesity, System 

Dynamics, Population Model  

 

1. INTRODUCTION 

Obesity, defined as the presence of excess adipose 
tissue, is a health concern of paramount importance in 

Austria and also worldwide. Next to the long list of co-

morbidities associated with obesity, like pulmonary 

disease, coronary heart disease, diabetes mellitus type 2, 

orthopedic problems, hypertension, etc. obesity is a 

great cost factor for health care systems because of 

weight reduction medications, hospitalizations, 

laboratory costs, inability to work, loss of productivity, 

early death, pain and reduced quality of life (Dieterle 

2006). 

A System Dynamics model for the prevalence of 
obesity in Austria is needed to show the trend of the 

prevalence of obesity in the next few years and decades, 

to identify the most important influences on the disease 

and to test possible political strategies preventing and 

treating obesity. The usage of System Dynamics is due 

to a better overview for non-experts and easier 

administration for the modeler.  

Because of the fact that the model will show the 

prevalence of obesity in the population over at least the 

next 50 years, a population model, predicting the 

change of the Austrian population dependent on births, 

deaths and migration is necessary. How this affects the 

population is seen in figure 1. In Austria especially 

migration is very important, because without it the 

population would be reduced significantly due to low 

birth rates. 

 

In this paper we demonstrate why those parts of 

the model, especially the population model and the 

disease model, should be independent and therefore a 

modular setup, as seen in figure 2, is important and how 

it is done, first by explaining the structure of the disease 

model and in more detail the structure of the population 

model and by defining the points of intersection of 

those two models. Advantages and disadvantages of this 
modular setup will be discussed too. 

 

 

 

 

 

 

Figure 2: A Modular Setup Of the Simulation Model. 

An Independent Population Model Is The Basis, 

Connected Through Defined Points Of Intersection 

With The Disease Model. Furthermore An Economic 
Model Can Be Built Individually Based On The Disease 

Model.   

2. THE METHOD: SYSTEM DYNAMICS 

The modeling method used for all parts of the whole 

model is called System Dynamics and was developed in 

1956 by Jay W. Forrester (Forrester 1961).  It is a top 

down modeling method, where aggregated states are 

Figure 1: The Growth Of The Population Is Dependent 

On Births And Immigration. The Contraction Of The 

Population is Dependent On Deaths And Emigration. 
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looked at and not individuals. For example all male 

persons aged 15-45 could form a single state, but also 

all male overweight persons aged 15-45. System 

Dynamics is a commonly used approach to understand 

the behavior of complex systems. It is different to other 

approaches because it allows the usage of feedback 
loops, which, due to the fact that this is a very 

descriptive modeling method - easily to be overviewed 

by non-experts - can be better understood and 

researched. Sometimes a specific state of the system has 

an effect (feedback) on itself over (a long) time, which 

is not recognized easily (Sterman 2000).  

 Especially the disease model for the prevalence of 

obesity requires feedback loops, to represent the main 

influence factors on obesity and how they are 

influenced in return. An example of a possible 

reinforcing feedback loop, represented in a causal loop 

diagram, can be seen in figure 3.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

It shows that the fraction of the obese population, 

who are parents, has a positive feedback on itself over 

time:  The more obese parents there are, the more obese 

children they will get, by passing their eating habits on 

to their children. Therefore the fraction of the obese 

adult population will increase and also the fraction of 
the obese parents. Linkages are shown by the blue 

arrows. A plus-sign represents a proportional effect 

from quantity at the arrows end to the quantity of the 

arrows top, as described before. 

These causal loop diagrams are a useful tool for 

developing a model.  A System Dynamics model 

consists of three main elements, described as following 

and also seen in figure 4:  

 

 Stocks describe the state of the system in each 

time step. They are represented as rectangles. 

 Parameters are constants. 

 Auxiliaries are mostly used for mathematical 

formulas combining stocks and parameters. 

Special auxiliaries are flows, which describe 

the changes of stocks. Flows are only allowed 

between two stocks or from a source 

(represents systems of levels outside the 

boundary of the model) to a stock or from a 

stock into a sink (where flows terminate 

outside of the system) 

  

Furthermore most System Dynamics Simulators 

provide a great number of tools, like delay functions, 

table functions etc. to allow an easier administration of 
the modelling process.  

 

 

 

 

 

 

 

 

 

Mathematically System Dynamics models are 

systems of differential equations with a given 

simulation time t and initial conditions for the 

simulation start at t0. Each stock represents a single 

equation. The mathematical formulas for the simple 

stock and flow structure for time t from figure 4 are 

shown in equation 1 and 2:  
 

𝑆𝑡𝑜𝑐𝑘 𝑡 =    𝐹𝑙𝑜𝑤 𝑡  𝑑𝑡    +    𝑆𝑡𝑜𝑐𝑘 𝑡0              (1) 

𝐹𝑙𝑜𝑤 𝑡 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∙  𝑆𝑡𝑜𝑐𝑘(𝑡 − 1)                      (2) 
 

 The integral for the stock from equation 1 can be 

transformed into a differential equation, describing the 

net change of the stock as seen in equation 3.   

𝑆𝑡𝑜𝑐𝑘  (t) = + Flow (t)                                                     (3) 
 
When building a system dynamics model, the modeler 

does not need to know exactly how differential 

equations work or how they are solved, because the 

modeling device is graphical and the model can simply 

be built by dragging and dropping stocks, flows, 

parameters and auxiliaries onto the main user interface. 

 

3. THE OBESITY DISEASE MODEL 

First the main structure of the disease model needs to be 

discussed shortly. Before starting to build the actual 
model we specify the research questions as following:  

 

 What are the main factors that influence body 

weight? As a result: How is the obese (resp. 

normal-weight and overweight) fraction going 

to develop in the population?  

 What can be changed (after identifying the 

main influences) and more important what is 

the effect of those changes in the obese (resp. 

Figure 4: A Simple System Dynamics Stock And Flow 

Structure With One Parameter And a Source. The Stock 

Could Represent The Population And The Inflow Births. 

The Parameter Could Be The Birthrate Depended On 

The Actual Size Of The Population. 

Figure 3: A Causal Loop Diagram Of A Simple 

Feedback Loop Of the Disease Model.  
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normal-weight and overweight) population 

compared to the costs?  

 

Overweight and obesity are defined as abnormal or 

excessive fat accumulation that may impair health 

(WHO 2000). Obesity is measured by the so call Body 
Mass Index (BMI), which is calculated by dividing 

body mass m (in kg) through the square of body height l 

(in meters) as shown in equation 4 and categorized as 

seen in table 1. 

 

𝐵𝑀𝐼 =
𝑚

𝑙²
                                                                             (4) 

  

Table 1: BMI classification: The BMI is divided into 4 
main categories of weight classification for adults 

(WHO 2000).  

Classification BMI 

underweight <18.50 

normal weight 18.50 – 24.99 

overweight 25.00 – 29.99 

obese ≥ 30.00 

 

Furthermore the changes in body weight, and 

therefore in the BMI are also dependent on the age and 

sex of the person. For example the basal metabolic rate 

is different for different ages and also for different 

gender. Knowing this, we can start to identify the stocks 

of the System Dynamics disease model: The population 

is divided by the severity-degree of the disease, age and 

sex. The idea of this partitioning seen in figure 5 is 

adapted from Homer et al. (Homer 2006), with the 

difference that we do not need 100 one-year age-
classes, but 12 aggregated five- to ten-year age-classes 

(except age 0, which is a one-year age-class because of 

the high infant mortality), because we want to get a look 

on the trend in general and the main influences on 

obesity. 

 

 
Figure 5: Partitioning Of The Population In The Disease 
Model (Homer 2006). Persons Of The Same Age, Sex 

And Severity Degree Of The Disease Build A Separate 

Stock. 

 

The  reasons of crossing over into another BMI-

category –  which in our model can also be within one 

age-class, because for example in a 10-year age-class a 

person can significantly reduce or gain weight – are due 

to physical activity (caloric expenditure) and eating 

habits (caloric intake), but they will not be discussed in 
this paper. 

Data is available for the years 1999 and 2006/07 

for the partitioning of the population by gender, some 

age-classes and the four severity degrees of obesity seen 

in figure 5. 

 

4. THE POPULATION MODEL 

As mentioned before the main parts that influence the 

change of the population are births, deaths and 

migration. Figure 6 shows the population model as a 

causal loop diagram. The black loops in the center of 

such a circle with blue arrows show the polarity of the 
corresponding feedback loop. A positive feedback 

portrays a self-reinforcing process, for example: the 

more people live, the more births will occur and 

therefore the more people will live in the future.  The 

opposite is a negative feedback loop, or also called a 

balancing loop, that stabilizes the system. For example: 

the more people live, the more deaths will occur and the 

fewer people will live in the future. 

 
Figure 6: Causal Loop Diagram Of The Population 

Model Showing The Causal Links And Dependencies 

Of Variables. 

  

4.1. Available Data  

For the partitioning of the population as seen in table 2 
data from Statistics Austria (Statistics Austria Database 

2012) is available.  

 The simulation starts in 1999, because for the 

disease model data is only available since 1999, so the 

initial partitioning of the population is for this specific 

year. Due to the fact that migration is not dependent on 

the population, real data for the years 1999 until 2010 

for immigration and emigration (with same partitioning 

as the population) is also taken from Statistics Austria 

Database (Statistics Austria Database 2012). The 

simulation will run 50 years. Therefore the migration 
data for the next 50 years has to be provided too and a 

prognosis for immigration and emigration is available in 

the database, but only for different sexes. To get the 

partitioning for the age-classes, the distribution of the 

previous known years is taken, averaged, and assigned 

to the upcoming years. 
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Table 2: Partitioning Of The Population By Age And 

Sex  

Age-classes Sex 

Age 0 male 

Age 1- 4 female 

Age 5 – 9  

Age 10 – 14  

Age 15 – 19  

Age 20 – 24  

Age 25 – 34  

Age 35 – 44  

Age 45 – 54  

Age 55 - 64  

Age 65 – 74  

Age 75+  

 

The death rate is given for the known years, but for 

the years from 2010 until 2060 the predicted trend of 

the life expectancy, which increases by the years and 
was also taken from Statistics Austria Database 

(Statistics Austria Database 2012), was used together 

with a Weibull distribution to calculate the death rates 

for the upcoming years. 

Due to the fact that fertility rates did not change 

significantly over time they were assumed to be 

constant for the next years as those from 1999. Statistics 

Austria (Statistics Austria 2011) provides the number of 

live births per 1000 women per year for the four 

relevant age-classes in which women can bear a child, 

namely 15 – 19, 20 – 24, 25 – 34 and 35 – 44. These 

probabilities p(i), i=1,2,3,4, meaning the number of live 
born singletons divided by 1000 for each of the i age-

classes, have to be transformed into rates r(i) as seen in 

equation 5. 

 

𝑟 𝑖 = ln 1 + 𝑝 𝑖                                                            (5) 

 
The aging-rates are calculated to 1/groupsize for 

each age-class and sex, where groupsize is the length of 

the interval of the age-class. 

Furthermore all rates have to have the same, 

according to the simulation time step, right dimension, 

in this case months. 

 

4.2. Implementation of the model 

The population model is implemented in Anylogic® 

University 6.5.0 and can be seen in figure 7. 

For a better overview and the fact that similar 
equations and a lot more arrows are saved to be built   

AnyLogic provides arrays. As seen in figure 5, there 

would be 12 (for aggregated age-classes) x 2 (for sex) = 

24 stocks for the population, but as seen in figure 7, 

there is only one stock, called Population. An array is a 

container with linear storage of fixed size, called 

dimension. In this case it is a 2x12 array and holds the 

24 entries of the partitioned population. Since the 

population in general is not the important part of the 

model, it is “hidden” in one stock and helps non-experts 

to understand the model better. 

 

 

 

Figure 7: Population Model In Anylogic® University 

6.5.0. 
 

Furthermore there are 4 flows, which change the 

stock (in each dimension of the array). A function 

provides the input for immigration and emigration and 

they are not dependent on the population. Two 

auxiliaries TotalFertileWomen and BirthsPerGroup are 

used – also for better overview and understanding, 

because formally they could be integrated in the 

equations for TotalBirths – in each dimension of the 

array. TotalFertileWoman copies the entries from 

Population that are representative for the fertile women 

in the previously mentioned four relevant age-classes. 
BirthsPerGroup stores in each time step t the number of 

total births (male and female together) per age-group of 

fertile women as calculated in equation 6. 

 

𝐵𝑖𝑟𝑡𝑠𝑃𝑒𝑟𝐺𝑟𝑜𝑢𝑝 𝐹𝑒𝑟𝑡𝑖𝑙𝑒𝑊𝑜𝑚𝑒𝑛 (𝑡)
= 𝑇𝑜𝑡𝑎𝑙𝐹𝑒𝑟𝑡𝑖𝑙𝑒𝑊𝑜𝑚𝑒𝑛 𝐹𝑒𝑟𝑡𝑖𝑙𝑒𝑊𝑜𝑚𝑒𝑛  (𝑡)             (6)  
∙  𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑟𝑎𝑡𝑒[𝐹𝑒𝑟𝑡𝑖𝑙𝑒𝑊𝑜𝑚𝑒𝑛] (t) 

 

FertileWomen in the brackets represent the 

dimension of a sub array from the array for population, 
which in this case is a 4x1 array for females in the four 

relevant age-classes of fertile women.  

The auxiliary Ageing stores the number of people 

(in each index of the dimension of the array) that cross 

over into the next age-class within the next time step, 

which is calculated as seen in equation 7. 

 

𝐴𝑔𝑒𝑖𝑛𝑔 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)
= 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)                                      (7)  
∙  𝐴𝑔𝑖𝑛𝑔𝑅𝑎𝑡𝑒 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)  
 

Age represents the dimensions of the 12 age-

classes and Gender represents the dimensions of the 

two sexes.  

The mathematical formulas behind the stock 

Population are stated in equation 8, 9 and 10.  Because 

of the fact that new born enter the population at age 0, 

there is a separate equation (9) for the first age-class, 
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including births. And because of the fact that once a 

person has arrived in the last age-class, he/she stays 

there or dies, there is s separate equation (10) for the 

last age-class. 

 
𝑑𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11, 𝐺𝑒𝑛𝑑𝑒𝑟]

𝑑𝑡
                    (8)  

= 𝐼𝑚𝑚𝑖𝑔𝑎𝑟𝑡𝑖𝑜𝑛 𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐸𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐷𝑒𝑎𝑡𝑠 𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
+ 𝐴𝑔𝑖𝑛𝑔 𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11 − 1, 𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐴𝑔𝑖𝑛𝑔 𝐴𝑔𝑒𝐴𝑙𝑙𝐵𝑢𝑡0_11,𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡) 

 
𝑑𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝐴𝑔𝑒0, 𝐺𝑒𝑛𝑑𝑒𝑟]

𝑑𝑡
                                         (9)

= 𝐼𝑚𝑚𝑖𝑔𝑎𝑟𝑡𝑖𝑜𝑛 𝐴𝑔𝑒0,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐸𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒0,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐷𝑒𝑎𝑡𝑠 𝐴𝑔𝑒0,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
+ 𝐵𝑖𝑟𝑡𝑠 𝐴𝑔𝑒0,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐴𝑔𝑖𝑛𝑔[𝐴𝑔𝑒0,𝐺𝑒𝑛𝑑𝑒𝑟](𝑡) 

 

𝑑𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝐴𝑔𝑒11, 𝐺𝑒𝑛𝑑𝑒𝑟]

𝑑𝑡
                                  (10)

= 𝐼𝑚𝑚𝑖𝑔𝑎𝑟𝑡𝑖𝑜𝑛 𝐴𝑔𝑒11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐸𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐷𝑒𝑎𝑡𝑠 𝐴𝑔𝑒11, 𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
+ 𝐵𝑖𝑟𝑡𝑠 𝐴𝑔𝑒11,𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
− 𝐴𝑔𝑖𝑛𝑔[𝐴𝑔𝑒11, 𝐺𝑒𝑛𝑑𝑒𝑟](𝑡) 

 

The equation for the two flows (one for female 

newborns entering the population and one for male 

newborns entering the population) of the TotalBirths 

flow from figure 7 is simply the sum of all births from 

the BirthsPerGroup auxiliary. It is assumed that of all 

newborns 49% are female and 51% are male. 

At last the formula for the flow Deaths from figure 
7 is calculated as seen in equation 11. 

 

𝐷𝑒𝑎𝑡𝑠 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟  𝑡 
=  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)                                (11)
∙   𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛[𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟](𝑡) 

 

Mortality_Function is a function that represents the 

time dependent, Weibull-fittet mortality rates as 

mentioned before and is not seen in figure 7. 

 

5. DEFINING POINTS OF INTERSECTION 

WITH THE DISEASE MODEL 

The changes in the stock of the population model (in 

each age- and sex-class) are calculated continuously. 

The disease model has the same partitioning concerning 

age- and sex-classes (also with arrays for sex and age), 

but is furthermore divided by severity-degrees of the 

disease (in this case each BMI-category has a separate 

stock graphically). Therefore an additional auxiliary 

PopulationChange, which is also an array variable with 

dimensions Gender and Age as in the population model, 

receives the changes in the population from the 
population model continuously as seen in figure 8. The 

changes are calculated by the net migration 

(immigration minus emigration) and the changes within 

the stock Population (Ageing). In the disease model 

there are flows, as seen in figure 5, from one severity 

degree to another one, and also from one age-class to 

the next. The PopulationChange affects the flows from 
one age-class to the next of the disease model, but has 

to be split up for the different severity degrees for each 

(Age, Gender)-array-entry. As a result for each severity 

degree (and (Age, Gender)-array-entry) an additional 

flow is implemented that calculates the corresponding 

change by taking into account the current size of the 

stock and the current size of the part of the population 

from the population model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Auxiliary PopulationChange is implemented, 

which has the same structure (dimensions) as 

Population. It stores in each time step the changes of 

the stocks “hidden” in Population and transfers them to 

the disease model, by splitting them up into BMI-

categories. 

The equation for the flow ChangeOverweight, 

which calculates the changes within the overweight 
population (again: the stock overweight is an array with 

dimension Age and Gender and therefore the calculation 

is made separately for each entry of this 2x12) is seen in 

equation 12. 

 

𝐶𝑎𝑛𝑔𝑒𝑂𝑣𝑒𝑟𝑤𝑒𝑖𝑔𝑡 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟  𝑡  
=  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑛𝑔𝑒 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟  𝑡                    (12)

∙
𝑂𝑣𝑒𝑟𝑤𝑒𝑖𝑔𝑡 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑡)
 

 

The changes for the other BMI-Categories are 

analogue. 
This technique leads to some assumptions, which 

are discussed in the following. 
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5.1. Assumptions for the disease model 

There are some assumptions concerning the points of 

intersection:  

 

 Obesity (resp. the other BMI-categories) 

among persons who enter the system of the 
population model through immigration (resp. 

exit the system through emigration) is 

considered equally distributed as in the main 

population. 

 Obesity (resp. the other BMI-categories) 

among deaths is considered to be distributed as 

it is in the main population. Obesity-related 

deaths are not considered here separately. 

 

5.2. Advantages and disadvantages of a modular 

setup 
Keeping in mind that the model should include a 

separate cost model for calculating the costs assigned to 

obesity (e.g. costs for hospitalizations, medications, or 

even surgery as for example gastric banding), we need 

to research the conditions (concerning the BMI) on 

which such medications are prescribed or surgeries are 

done. The evidence based guidelines of the Austrian 

society for obesity-surgery (Miller 2005) suggest 

performing surgery only with a BMI > 40 or with BMI 

> 35 and additional obesity-related co-morbidities, like 

hypertension or diabetes mellitus type 2. Therefore the 

classification of “obese” can be split into 3 more 
categories as seen in table 3. 

 

Table 3: BMI Classification Of The Obese Category: 

The Obese Can Be Separated Into 4 More Categories 

For Adults (WHO 2000).  

obese BMI 

obese class I 30.00 – 34.99 

obese class II 35.00 – 39.99 

obese class III ≥ 40.00  

 

The advantages of a modular set up are, that if one 

wants to change the disease model afterwards, because 

of new or altered research questions, only the disease 

model (but with the same assumptions from chapter 

5.1.) needs to be altered. In this case, the obese fraction 

needs to be split up in three stocks and initialized again 

and no new mortality rates, fertility rates or migration 

data have to be calculated again. 

Furthermore the population model can be used in 

another disease model where this partitioning of the 
population is used. If the partitioning of the age-classes 

is not needed in so much detail, the classes only have to 

be aggregated. 

For some diseases people develop co-morbidities, 

which result in higher costs for health care systems. The 

modular setup allows an easy change or integration of 

additional stocks for people with co-morbidities without 

changing the population model. 

Furthermore an easier change of the population, by 

changing the rates and initial conditions, can be done, if 

one wants to calculate the prevalence, costs etc. for 

another population. 

Tests with the separate parts of the model can be 

done to look for failures more easily. 
A disadvantage of this setup is that disease-related 

fertility rates and mortality rates cannot be tested or 

modeled. 

 

6. CONCLUSION 

A modular structure can be more understandable, 

especially for non-mathematicians, when they look at 

two separate models, one concerning the population and 

the other one concerning the disease. Secondly the 

modular parts are easily exchangeable, for example if 

the disease model shall simulate a different kind of 

disease, with different severity degrees, but the same 
population. This increases the reusability of models. 
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