
ACHIEVEMENTS IN RESULT VISUALIZATION WITH THE

COMPUTER NUMERIC E-LEARNING SYSTEM MMT

Irene Hafner
(a)

, Martin Bicher
(b)

, Thomas Peterseil
(c)

, Stefanie Winkler
(d)

, Ursula Fitsch
(e)

, Nicole Nagele-Wild
(f)

,

Wolfgang Wild
(g)

, Felix Breitenecker
(h)

(a) - (b), (d) - (h) Vienna University of Technology, Institute of Analysis and Scientific Computing

(c)
 dwh Simulation Services

 (a)
irene.hafner@tuwien.ac.at,

(b)
martin.bicher@tuwien.ac.at,

(c)
 thomas.peterseil@drahtwarenhandlung.at,

 (d)
 stefanie.winkler@tuwien.ac.at,

(e)
ursula.fitsch@tuwien.ac.at,

(f)
nicole.nagele@tuwien.ac.at,

 (g)
 wolfgang.wild@tuwien.ac.at,

(h)
 felix.breitenecker@tuwien.ac.at

ABSTRACT

This paper discusses the latest developments of the

MMT system. MMT, which stands for Mathematics,

Modelling and Tools, represents an e-learning system

for teaching basic mathematics as well as modelling and

simulation. Since the MMT system got its new interface

in summer 2010, the range of examples has reached an

impressive amount. Apart from examples concerning

Linear Algebra and Analysis which are used in lectures

of basic mathematics for students of electrical

engineering and geodesy and geomatics engineering,

the focus of the MMT system has recently been laid on

the extension of examples for teaching modelling and

simulation to students of Technical Mathematics.

Lecturers use this web-interface to explain the current

topic by showing examples on the MMT server. In

addition, students receive an account to be able to also

access these examples on the server from home to train

their newly gained knowledge. Recently the data

transfer from MATLAB to the MMT server has been

renewed completely. The new render files enable a

simple exchange of various output data.

Keywords: E-Learning, MATLAB, Simulink, MMT,

rendering

1. STRUCTURE OF THE MMT SERVER

The interface of the MMT server is shown in Fig.1.

Figure 1: Overview of the MMT Interface

 The left section consists of the content tree.

Depending on the lecture they are attending, students

see a certain selection of examples. The middle section

contains a description of the current section or example

and the parameter section. On the right side, all files

offered for download can be found.

2. EXAMPLES

2.1. Introductory Example

Each example on the MMT server starts with a

description providing information about the current

topic. In Addition to the short description in the middle

section, pdf documentations and pictures can be

uploaded from the lecturers. These documents as well

as the underlying source code for an example can be

downloaded by following the links on the right side.

 All parameters for a simulation or calculation can

be defined in the section below the description. By

clicking the ok button, the MMT parameters are

transferred to the referring example’s source code

which is further executed. Fig.2 shows a MMT

MATLAB example consisting of one m-file.

Figure 2: Picture of a MMT Example Accessing One

MATLAB File – Description, Parameters and Output

 The m-files for a MMT example basically look like

usual m-functions consisting of MATLAB code for the

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 489

mailto:irene.hafner@tuwien.ac.at
mailto:martin.bicher@tuwien.ac.at
mailto:thomas.peterseil@drahtwarenhandlung.at
mailto:stefanie.winkler@tuwien.ac.at
mailto:ursula.fitsch@tuwien.ac.at
mailto:nicole.nagele@tuwien.ac.at
mailto:wolfgang.wild@tuwien.ac.at
mailto:felix.breitenecker@tuwien.ac.at

calculation of the example and additional lines to enable

the communication with MMT. After clicking the ok –

button, the parameters currently selected for the

example are converted into strings and stored in a

structure variable. This variable is used as input to the

m-function. After explanatory comments concerning the

topic of the example, authors and last modification date,

the strings stored in the structure variable are converted

into the desired data formats for further usage (see

Fig.3).

K = str2double(instruct.var1);

T = str2double(instruct.var2);

number = str2double(instruct.var3);

tend = str2double(instruct.var4);

dt = str2double(instruct.var5);

xxx = str2double(instruct.var6);

yyy = str2double(instruct.var7);

Figure 3: Extraction of Input Parameters from the MMT

Server in MATLAB

 The ensuing code represents the actual code for the

respective example. At the end of the m-file, all results

are again returned to the MMT server. An overview of

the output possibilities on the MMT system is given in

section 3.

 A MATLAB example for the MMT server can also

exist of several m-files. Only the main m-file which has

to be the first one to be found in the list of attached m-

files contains the additional code for the data exchange

with the MMT server. All other m-files needed for the

corresponding example are called from the main one

and don’t have to be adapted in any way.

 All MATLAB examples on the MMT server are

executed accessing the MATLAB version on the server

itself, so it’s not necessary to possess a local MATLAB

licence.

2.2. Examples Accessing Simulink

The possibility of including examples using several m-

files has also enabled the inclusion of Simulink models

into the MMT system. Simulink models actually consist

of MATLAB code which can also be created

graphically using block diagrams. Hence the Simulink

model is treated like an additional m-file and called

from a MATLAB function which only contains the

extraction of input variables, the execution of the

Simulink file and the return of the simulation results

(see Fig. 4 for the extraction of input parameters from

the MMT server and the execution of the mdl-file).

 Students can download the source code of the

MATLAB function as well as the Simulink model.

Since the mdl-file is treated as text file from the

browser, it has to be stored locally on the downloader’s

computer and re-opened with MATLAB to show the

corresponding graph model. The successful inclusion of

Simulink files also encourages the usage of Simscape

on the MMT server, which will open the possibilities of

teaching other modelling approaches like Physical

Modelling via MMT.

phi0 = str2num(instruct.var1);
w0 = str2num(instruct.var2);
k = str2num(instruct.var3);
l = str2num(instruct.var4);
m = str2num(instruct.var5);
t_end = str2num(instruct.var6);

%%%
%% CALCULATIONS, FUNCTION CALLS AND MAIN PROGRAM %%%%
% All general calculations and operations come here.
%%%

% set the workspace to give simulink access to the
% variables
option=simset('SrcWorkspace', 'current');

% starting simulation:
[t,x] = sim('pendulumtrial',t_end,option);

%% GRAPHICAL OUTPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Graphical output is generated here.

Figure 4: MATLAB Function Extracting Values from

the MMT Server and Simulating a mdl-File

3. NEW RENDER FILES AND CREATION OF

MULTIPLE OUTPUT

One of the very recent developments for the MMT

server has been the enlargement of possibilities to create

output from MATLAB files on the MMT system.

Before developing the new rendering routines, returning

the output from MATLAB to the MMT system was

very unintuitive and rather complicated. Up to March

2012 one could only choose between simple textual

output written in html-code or one MATLAB figure.

Hence the only possibility to show more than one

output plot was using subplots, which of course lead to

a very unclear picture for a certain amount of subplots.

To improve these options, completely new rendering

routines have been developed. These routines allow

every MMT example to have as much layers of outputs

as needed. For each of these layers a number, written in

brackets, occurs in the upper right output corner to

enable the navigation between them, see Fig. 5. Every

layer consists either of textual output, a static figure or

an animated gif with optional title.

Figure 5: Switching between Multiple Output Layers by

Clicking on the Numbers in Brackets

 The return variable for the MMT server has to be a

string containing html code with the information on the

creation of all desired layers. To prevent the manual

creation of this string for every single example, a

variable r of type cell array is used. This array contains

cells of strings with information about every layer

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 490

which has to be created. To initialize the cell array, the

first function to be called in the output section of the

MATLAB function is adamInitialize. Conventionally

the cell array is called r, so the function call would be

r=adamInitialize();

 The strings for the creation of all intended layers

are created by using the new render files described in

the following subsections. After generating as much

layers as needed for the referring example, calling

retstr=adamComposeResultString();

takes the information from the cell array to create an

Excel-file containing strings which represent the html-

code with the information for the construction of the

required layers.

3.1. Rendering Textual Output

In former times, the creation of textual output did

require html knowledge, as can be seen in Fig. 6.

retstr = 'TEXT';
retstr = [retstr, sprintf('The vector product a x b

 results in: (%s)', num2str(ab))];
retstr = [retstr, sprintf('

The vector product

 b x a results in: (%s)',num2str(ba))];
retstr = [retstr, sprintf('
The vector product

 -a x b results in: (%s)', num2str(minab))];
retstr = [retstr, '

You see that

 -a x b = b x a']

Figure 6: Rendering Text without the New Render

Functions

 Using the new render function adamRenderText,

common string variables can be used as textual return

value. As you see in Fig. 7, adamRenderText reqires

several input parameters.

function [r]=adamRenderText(r,instruct,text,varargin)
%Function to render Textual output

%handling with optional parameters
if length(varargin)>0
 s.title=varargin{1};
end;

%defining class and adding it to the cell array
s.type='TEXT';
s.text=text;
r{end+1}=s;
end

Figure 7: Source Code for the New Text Rendering

Function

 r is the already allocated cell array being either

empty but created with adamInitialize or containing the

information of previous layers. As seen here the input

structure instruct of the MMT example has to be used

as an input parameter of the render function too as it not

only contains the manual chosen parameters of the

MMT experiment but also a unique filename extension

(instruct.mlimgfilename) for saving files to a temporary

folder. text contains the common matlab string which

the programmer would like to have displaced on the

layer. varargin is an optional input which can contain a

string with the desired title for the layer. The function

appends a structure variable containing strings with the

information about the title (line 6 in Fig.7), type (line

10) and content (line 11) of the output, which would

now be text, to the cell array. It’s important to call this

function similar to

r=adamRenderText(r,instruct,'sample text',...

'optional title');

to make sure the existing cell array is appended.

3.2. Rendering Static Images

As mentioned before, until this year’s March the only

way to return more than one picture was using subplots

in MATLAB. How unclear the resulting picture can get

this way is shown in Fig. 8.

Figure 8: Output of Nine Figures by Using Subplots

 In addition, returning this picture to the MMT

server required rather unintuitive MATLAB code, as

can be seen in Fig. 9.

% produces a *.jpeg image for graphical output.
drawnow;
wsprintjpeg(Pic, instruct.mlimgfilename);
retstr = 'IMAGE';

Figure 9: Former Code for the Submission of a Picture

to the MMT Server

 Now it’s possible to create one layer for every

picture the user wants to be returned with much easier

code since all additional work is done with the new

function adamRenderImage. Before calling this

function, a MATLAB figure has to be created. Its

visibility is usually set to ‘off’ as graphical output on

the server which executes MATLAB in console mode

and does not provide a graphical interface, is suppressed

anyway. A source code example for this is given below.

Pic = figure('visible','off');
plot(sin(0:0.001:2*pi));

 The figure further has to be transferred to the

render function by calling

r=adamInitialize();
r=adamRenderImage(r,instruct,Pic,'Sine');
retstr=adamComposeResultString(r);

 The source code for adamRenderImage is shown in

Fig.10.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 491

function [r]=adamRenderImage(r,instruct,Pic,varargin)
%Routine for image saving to temp folder as .png

%handling with optional parameters
if length(varargin)>0
 s.title=varargin{1};
end;

%Defining class entry for cell array
s.type='IMAGE';
s.imagetype='png';

%Defining filename of .png file
picId=length(r);
filename=sprintf(instruct.mlimgmultipath,picId);

%Setting figure position fitting to 576*432 pixels
%72pixels/inch is the default resolution for

nonscreen
%figureoutput
set(Pic,'PaperPositionMode','manual','PaperUnits',...

 'inches','PaperPosition',[0 0 576/72 432/72]);

%Saving process, using filename and
%resolution '-r72' => 72pixels/inch
print(Pic, '-dpng', '-r72',[filename,'.png']);

%saving class to cell array
r{end+1}=s;
end

Figure 10: Source Code for the New Rendering

Function for Images

 The input parameters are basically the same as in

adamRenderText whereupon the text string is replaced

by the MATLAB figure. Besides appending again the

information about type and title (lines 6, 11 and 12),

this function prints the MATLAB plot to a pre-allocated

picture on the MMT server (line 26).

3.3. Rendering Animated Images

function

[r]=adamRenderAnimatedCreate(r,instruct,Pic,varargin)
%Routine for image saving to temp folder as .png

%handling with optional parameters
if length(varargin)>0
 delay=varargin{1};
 if length(varargin)>1
 s.title=varargin{2};
 end;
else
 delay=0;
end;

%Defining class entry for cell array
s.type='IMAGE';
s.imagetype='gif';
%Defining filename of .gif file
picId=length(r);
filename=sprintf(instruct.mlimgmultipath,picId);

%Setting figure position fitting to 576*432 pixels
%72pixels/inch is the default resolution for

nonscreen
%figureoutput
set(Pic,'PaperPositionMode','manual','PaperUnits','in

ches','PaperPosition',[0 0 576/72 432/72],'Color',[1

1 1]);

%Saving process, using filename and
%resolution '-r72' => 72pixels/inch
PP = hardcopy(Pic,'-dOpenGL','-r72');
[P,cm]=rgb2ind(PP,256);
imwrite(P,cm,filename,'gif','Loopcount',inf,'DelayTim

e',delay);

%saving class to cell array
r{end+1}=s;
end

Figure 11: Source Code for the New Rendering

Function Creating the First Frame of an Animated gif

 For animated gifs, plots have to be created for

every frame of the picture. To create the first frame, the

picture is initialized with adamRenderAnimatedCreate

(see Fig.11).

 The only significant difference to

adamRenderImage is the option of a delay-time

defining how fast the frames of the gif are intended to

change. Setting the delay to zero causes the fastest

change of frames. All frames besides the first one are

rendered by calling the function

adamRenderAnimatedAppend, which is shown in Fig.

12.

function

[r]=adamRenderAnimatedAppend(r,instruct,Pic,varargin)
%Routine for image appending to an existing animated-

gif

%handling with optional parameters
if length(varargin)>0
 delay=varargin{1};
else
 delay=0;
end;

%Detecting filename of .gif file to append to
picId=length(r);
filename=sprintf(instruct.mlimgmultipath,picId-1);

%Setting figure position fitting to 576*432 pixels
%72pixels/inch is the default resolution for

nonscreen
%figureoutput

set(Pic,'PaperPositionMode','manual','PaperUnits',...

 'inches','PaperPosition',...

 [0 0 576/72 432/72],'Color',[1 1 1]);

%Saving process, using filename and
%resolution '-r72' => 72pixels/inch

PP = hardcopy(Pic,'-dOpenGL','-r72');
[P,cm]=rgb2ind(PP,256);
imwrite(P,cm,filename,'gif','WriteMode','append',...

 'DelayTime',delay)
end

Figure 12: Source Code for the New Rendering

Function Appending Frames to an Animated gif

 An example source code for the creation of an

animated gif is given below.

Pic = figure('visible','off');

plot(sin((0:0.001:2*pi)*t));

r=adamInitialize();
r=adamRenderAnimatedCreate(r,instruct,Pic,0,'sine');

for t=1:time;
 plot(sin((0:0.001:2*pi)*t/20));
r=adamRenderAnimatedAppend(r,instruct,Pic,0);
end;

retstr=adamComposeResultString(r);

3.4. Example with Multiple Output

The following example shows how multiple output

layers can be returned to the MMT server. To enable

students downloading the source code from the MMT

server to easily convert the file into an executable one

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 492

for their own computer, all parts only necessary for the

data exchange with the MMT server are framed by

%=========== BEGIN OF SPECIFIC CODE - CUT HERE ======

and

%=========== END OF SPECIFIC CODE - CUT HERE ========

 The source code of an example creating layers for

textual, animated and static images is shown in Fig. 13.

1 %% GRAPHICAL OUTPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Graphical output is generated here.
3 %%%

4
5 %======= BEGIN OF SPECIFIC CODE - CUT HERE ======
6 % disables graphical output on the remote system.
7 Pic1 = figure('visible','off');
8 %======= END OF SPECIFIC CODE - CUT HERE ========

9
10 plot(sin((0:0.001:2*pi)*t));

11
12 %======= BEGIN OF SPECIFIC CODE - CUT HERE ======
13 r=adamInitialize();
14 r=adamRenderAnimatedCreate(r,instruct,Pic1,0,...

15 'Animation');
16 %======= END OF SPECIFIC CODE - CUT HERE ========

17
18 for t=1:100;
19 plot(sin((0:0.001:2*pi)*t/20));

20
21 %======= BEGIN OF SPECIFIC CODE - CUT HERE ======
22 r=adamRenderAnimatedAppend(r,instruct,Pic1,0);
23 %======= END OF SPECIFIC CODE - CUT HERE ========
24

25 end;

26
27 %======= BEGIN OF SPECIFIC CODE - CUT HERE ======
28 % disables graphical output on the remote system.
29 Pic2 = figure('visible','off');
30 %======= END OF SPECIFIC CODE - CUT HERE ========

31
32 plot(cos(1:0.001:2*pi));

33
34 %======= BEGIN OF SPECIFIC CODE - CUT HERE ======
35 r=adamRenderImage(r,instruct,Pic2,'Image');
36 r=adamRenderText(r,instruct,...

37 'To be or not to be...','Text');
38 retstr=adamComposeResultString(r);
39 %======= END OF SPECIFIC CODE - CUT HERE ========

40
41 %% END OF EXAMPLE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

42
43 end

Figure 13: Creation of Output Layers for Three Output

Types in One Example

 In lines 7-10 the first frame for an animated gif is

created. Before returning this first output to the MMT

server by adamRenderAnimatedCreate in line 14,

adamInitialize has to be called (line 10). Lines 18-25

show the code for creating and appending further

frames to this animated image with delay 0. The

creation of a static picture with the catching title

‘image’ is shown in lines 29-35. In line 36, a short text

is returned to the third frame. The cell array created by

the call of all render functions is further transferred to

adamComposeResultString (see line 38) which returns

the string retrstr. This string finally contains all

information needed from the MMT system to establish

enough output layers with the correct title and contents

while the pictures have already been transferred to the

server during the execution of the render functions.

 The outputs of this MATLAB function on the

MMT server can be seen in Fig. 14. Of course, due to

the disability of print media to show animation, the

movement for the first output has to be imagined.

Figure 14: Different Output Layers of One MMT

Example

4. USAGE OF THE MMT SERVER IN EXAMS

The MMT system has also become a very helpful tool

for exams in lectures about modelling and simulation.

The questions for these exams are posed via TUWEL, a

moodle based e-learning tool of the Vienna University

of Technology. To answer these questions, students

have to log in to the MMT server and vary input

parameters to achieve a certain result. An example for

such a question could be finding the maximum step size

for a certain solver algorithm to stay within a given

error tolerance. Another question demands the

evaluation of the turning point of a PT2 controller for

certain input parameters which have to be set on the

MMT server. The TUWEL question for this example

can be seen in Fig.15.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 493

Figure 15: TUWEL Question for an Exam in

Cooperation with the MMT System

 By following the link in TUWEL, the students find

the MMT example corresponding to this question, see

Fig.16.

Figure 16: MMT Example Corresponding to a TUWEL

Exam Question

 For precise reading of the values to be found,

additionally to the parameters for the PT controllers a

data point can be set. At the chosen point a red cross is

plotted which eases spotting certain data. The students

further fill in the values they found out to the answer

field in the TUWEL question. Grading is done

independently by TUWEL.

5. CONCLUSION AND OUTLOOK

While most of the examples currently existing on the

MMT server have been implemented by programmers

of the Institute of Analysis and Scientific Computing of

the Vienna University of Technology, recently many

examples which have been developed during projects,

diploma and bachelor theses are tested, validated and

further included to the MMT system. That way other

students are able to profit from those projects which

else would probably have been forgotten.

 All in all, the MMT server has become a very

important tool for teaching basic mathematics as well as

modelling and simulation at the Vienna University of

Technology. Although all examples currently available

for teaching on the MMT server are implemented in

MATLAB, MMT has recently been developed to

include also examples implemented in AnyLogic using

Java applets which offer way more interesting

possibilities for the output. Additionally, to loosen the

dependency on the commercial software MATLAB, one

of the next developments concerning the MMT system

will be the inclusion of examples accessing Octave.

ACKNOWLEDGEMENTS

This work has been realized in the context of the

‘Applied Modelling, Simulation And Decision Making‘

project and funded by means of the City of Vienna by

the ZIT GmbH - the Technology Agency of the City of

Vienna, a subsidiary of the Vienna Business Agency.

 The MMT server is administered in cooperation

with the dwh Simulation Services.

REFERENCES

Winkler, S., Körner, A., Hafner, I., 2010. MMT – A

web-based e-learning System for Mathematics,

Modeling and Simulation using MATLAB. 7th

EUROSIM Congress on Modelling and

Simulation, paper 231, Prague (Czech Republic)

Körner, A., Zauner, G., Schneckenreither, G., 2009. Ein

e-learning System für MMT – Mathematik,

Modellbildung und Tools, Systemerweiterung und

Einbindung von graphischer Modellbildung. 20th

Symposium Simulation Techniques, pages 87–94,

Cottbus (Germany)

Körner, A., Hafner, I., Bicher, M., Winkler, S.,

Breitenecker, F., 2011. MMT - A Web

Environment for Education in Mathematical

Modelling and Simulation. ASIM 21. Symposium

Simulationstechnik, Winterthur (Switzerland),

ISBN: 978-3-905745-44-3

Hafner, I., Bicher, M., Winkler, S., Fitsch, U., 2012.

MMT - An E-Learning System based on Computer

Numeric System for teaching Mathematics and

Modelling. MATHMOD 2012 - 7th Vienna

Conference on Mathematical Modelling, Vienna

(Austria)

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 494

