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ABSTRACT 
This research deals with a utilization of a modern tool 
for symbolic regression, which is analytic 
programming, for the purpose of the evolutionary 
synthesis of a feedback controller for the chaotic 
system. This synthesized chaotic controller secures the 
stabilization of high periodic orbit – oscillations 
between several values of discrete chaotic system, 
which is Logistic Equation. The paper consists of the 
descriptions of analytic programming as well as chaotic 
system, used heuristic and cost function. For 
experimentation, Self-Organizing Migrating Algorithm 
(SOMA) and Differential evolution (DE) were used. 

 
Keywords: Chaos Control, Analytic programming, 
optimization, evolutionary algorithms. 

 
1. INTRODUCTION 
During the past five years, usage of new intelligent 
systems in engineering, technology, modeling, 
computing and simulations has attracted the attention of 
researchers worldwide. The most current methods are 
mostly based on soft computing, which is a discipline 
tightly bound to computers, representing a set of 
methods of special algorithms, belonging to the 
artificial intelligence paradigm. The most popular of 
these methods are neural networks, evolutionary 
algorithms, fuzzy logic, and genetic programming. 
Presently, evolutionary algorithms are known as a 
powerful set of tools for almost any difficult and 
complex optimization problem. 

The interest about the interconnection between 
evolutionary techniques and control of chaotic systems 
is spread daily. First steps were done in (Senkerik et al.; 
2010a), (Zelinka et al., 2009), where the control law 
was based on Pyragas method: Extended delay feedback 
control – ETDAS (Pyragas, 1995). These papers were 
concerned to tune several parameters inside the control 
technique for chaotic system. Compared to previous 
research, this paper shows a possibility how to generate 
the whole control law (not only to optimize several 
parameters) for the purpose of stabilization of a chaotic 
system. The synthesis of control is inspired by the 

Pyragas’s delayed feedback control technique (Just, 
1999), (Pyragas, 1992). Unlike the original OGY 
control method (Ott et al., 1990), it can be simply 
considered as a targeting and stabilizing algorithm 
together in one package (Kwon, 1999). Another big 
advantage of the Pyragas method for evolutionary 
computation is the amount of accessible control 
parameters, which can be easily tuned by means of 
evolutionary algorithms (EA). 
Instead of EA utilization, analytic programming (AP) is 
used in this research. AP is a superstructure of EAs and 
is used for synthesis of analytic solution according to 
the required behaviour. Control law from the proposed 
system can be viewed as a symbolic structure, which 
can be synthesized according to the requirements for the 
stabilization of the chaotic system. The advantage is 
that it is not necessary to have some “preliminary” 
control law and to estimate its parameters only. This 
system will generate the whole structure of the law even 
with suitable parameter values. 

This work is focused on the expansion of AP 
application for synthesis of a whole control law instead 
of parameters tuning for existing and commonly used 
method control law to stabilize desired Unstable 
Periodic Orbits (UPO) of chaotic systems. 

This work is an extension of previous research 
(Oplatkova et al., 2010a; 2010b), (Senkerik et al., 
2010b) focused on stabilization of simple p-1 orbit – 
stable state and p-2 orbit. In general, this research is 
concerned to stabilize p-4 UPO – high periodic orbit 
(oscillations between four values). 

Firstly, AP is explained, and then a problem design 
is proposed. The next sections are focused on the 
description of used cost function and evolutionary 
algorithms. Results and conclusion follow afterwards. 
 
2. PROBLEM DESIGN 
The brief description of used chaotic systems and 
original feedback chaos control method, ETDAS is 
given. The ETDAS control technique was used in this 
research as an inspiration for synthesizing a new 
feedback control law by means of evolutionary 
techniques. 
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2.1. Selected Chaotic System 
The chosen example of chaotic systems was the one-
dimensional Logistic equation in form (1). 

 ( )nnn xrxx −=+ 11  (1) 

The Logistic equation (logistic map) is a one-
dimensional discrete-time example of how complex 
chaotic behaviour can arise from very simple non-linear 
dynamical equation (Hilborn, 2000). This chaotic 
system was introduced and popularized by the biologist 
Robert May (May, 2001). It was originally introduced 
as a demographic model as a typical predator – prey 
relationship. The chaotic behaviour can be observed by 
varying the parameter r. At r = 3.57 is the beginning of 
chaos, at the end of the period-doubling behaviour. At  
r > 3.57 the system exhibits chaotic behaviour. The 
example of this behaviour can be clearly seen from 
bifurcation diagram – Figure 1. 
 

 
Figure 1: Bifurcation diagram of Logistic Equation  

 
2.2. ETDAS Control Method 
This work is focused on explanation of application of 
AP for synthesis of a whole control law instead of 
demanding tuning of EDTAS method control law to 
stabilize desired Unstable Periodic Orbits (UPO). In this 
research desired UPO is only p-2 (higher periodic orbit 
– oscillation between two values). ETDAS method was 
obviously an inspiration for preparation of sets of basic 
functions and operators for AP. 
The original control method – ETDAS has form (2). 
  

( ) ( )[ ])(1)( txtSRKtF d −−−= τ  
( )dtRStxtS τ−+= )()(  (2) 

 
Where: K and R are adjustable constants, F is the 
perturbation; S is given by a delay equation utilizing 
previous states of the system and dτ is a time delay. 

The original control method – ETDAS in the 
discrete form suitable for one-dimensional Logistic 
equation has the form (3). 
 

( ) nnnn Fxrxx +−=+ 11  
( )[ ]nmnn xSRKF −−= −1    

mnnn RSxS −+=  (3) 

Where: m is the period of m-periodic orbit to be 
stabilized. The perturbation nF  in equations (3) may 
have arbitrarily large value, which can cause diverging 
of the system outside the interval {0, 1.0}. Therefore, 

nF  should have a value between maxF− , maxF . In this 
preliminary study a suitable maxF  value was taken from 
the previous research. To find the optimal value also for 
this parameter is in future plans. 

Previous research concentrated on synthesis of 
control law only for p-1 orbit (a fixed point). An 
inspiration for preparation of sets of basic functions and 
operators for AP was simpler TDAS control method (4) 
and its discrete form suitable for logistic equation given 
in (5). 
 

( )[ ])()( txtxKtF −−= τ  (4) 
( )nmnn xxKF −= −  (5) 

 
2.3. Cost Function 
Proposal for the cost function comes from the simplest 
Cost Function (CF). The core of CF could be used only 
for the stabilization of p-1 orbit. The idea was to 
minimize the area created by the difference between the 
required state and the real system output on the whole 
simulation interval – τi.  

But another universal cost function had to be used 
for stabilizing of higher periodic orbit and having the 
possibility of adding penalization rules. It was 
synthesized from the simple CF and other terms were 
added. In this case, it is not possible to use the simple 
rule of minimizing the area created by the difference 
between the required and actual state on the whole 
simulation interval – τi, due to many serious reasons, for 
example: degrading of the possible best solution by 
phase shift of periodic orbit.  

This CF is in general based on searching for 
desired stabilized periodic orbit and thereafter 
calculation of the difference between desired and found 
actual periodic orbit on the short time interval - τs (40 
iterations) from the point, where the first min. value of 
difference between desired and actual system output is 
found. Such a design of CF should secure the successful 
stabilization of either p-1 orbit (stable state) or higher 
periodic orbit anywise phase shifted. The CFBasic has the 
form (6). 
 

∑
=

−+=
2

1
1

τ

τt
ttBasic ASTSpenCF , (6) 

 
where:   
TS - target state, AS - actual state 
τ1 - the first min value of difference between TS and AS 
τ2 – the end of optimization interval (τ1+ τs) 
pen1= 0 if τi - τ2 ≥ τs;  
pen1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization). 
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3. ANALYTIC PROGRAMMING 
Basic principles of the AP were developed in 2001 
(Zelinka et al. 2005). Until that time only Genetic 
Programming (GP) and Grammatical Evolution (GE) 
had existed. GP uses Genetic Algorithms (GA) while 
AP can be used with any EA, independently on 
individual representation. To avoid any confusion, 
based on the nomenclature according to the used 
algorithm, the name - Analytic Programming was 
chosen, since AP represents synthesis of analytical 
solution by means of EA. 

The core of AP is based on a special set of 
mathematical objects and operations. The set of 
mathematical objects is a set of functions, operators and 
so-called terminals (as well as in GP), which are usually 
constants or independent variables. This set of variables 
is usually mixed together and consists of functions with 
different number of arguments. Because of a variability 
of the content of this set, it is termed the “general 
functional set” – GFS. The structure of GFS is created 
by subsets of functions according to the number of their 
arguments. For example GFSall is a set of all functions, 
operators and terminals, GFS3arg is a subset containing 
functions with only three arguments, GFS0arg represents 
only terminals, etc. The subset structure presence in 
GFS is vitally important for AP. It is used to avoid 
synthesis of pathological programs, i.e. programs 
containing functions without arguments, etc. The 
content of GFS is dependent only on the user. Various 
functions and terminals can be mixed together (Zelinka 
et al. 2005, Zelinka et al. 2008, Oplatkova et al. 2009).  

The second part of the AP core is a sequence of 
mathematical operations, which are used for the 
program synthesis. These operations are used to 
transform an individual of a population into a suitable 
program. Mathematically stated, it is a mapping from an 
individual domain into a program domain. This 
mapping consists of two main parts. The first part is 
called Discrete Set Handling (DSH) (See Figure 2) 
(Zelinka et al. 2005, Lampinen and Zelinka 1999) and 
the second one stands for security procedures which do 
not allow synthesizing pathological programs.  

 
 

 
Figure 2: Discrete set handling 

 

 
Figure 3: The main principles of AP 

 
The method of DSH, when used, allows handling 

arbitrary objects including nonnumeric objects like 
linguistic terms {hot, cold, dark…}, logic terms (True, 
False) or other user defined functions. In the AP, DSH 
is used to map an individual into GFS and together with 
security procedures creates the above-mentioned 
mapping, which transforms arbitrary individual into a 
program.  

AP needs some EA (Zelinka et al. 2005) that 
consists of a population of individuals for its run. 
Individuals in the population consist of integer 
parameters, i.e. an individual is an integer index 
pointing into GFS. The creation of the program can be 
schematically observed in Figure 3. The individual 
contains numbers which are indices into GFS. The 
detailed description is represented in (Zelinka et al. 
2005, Zelinka et al. 2008, Oplatkova et al. 2009). 

AP exists in 3 versions – basic without constant 
estimation, APnf – estimation by means of nonlinear 
fitting package in Mathematica environment and APmeta 
– constant estimation by means of another evolutionary 
algorithms; meta implies metaevolution. 

 
4. USED EVOLUTIONARY ALGORITHMS 
This research used two evolutionary algorithms: Self-
Organizing Migrating Algorithm (Zelinka 2004) and 
Differential Evolution (Price and Storn 2001, Price 
2005). Future simulations expect a usage of soft 
computing GAHC algorithm (modification of HC12) 
(Matousek 2007) and a CUDA implementation of HC12 
algorithm (Matousek 2010). 
 
4.1. Self Organizing Migrating Algorithm – SOMA 
SOMA is a stochastic optimization algorithm that is 
modelled on the social behaviour of cooperating 
individuals (Zelinka 2004). It was chosen because it has 
been proven that the algorithm has the ability to 
converge towards the global optimum (Zelinka 2004) 
and due to the successful applications together with AP 
(Varacha and Zelinka 2008, Varacha and Jasek 2011).  

SOMA works with groups of individuals 
(population) whose behavior can be described as a 
competitive – cooperative strategy. The construction of 
a new population of individuals is not based on 
evolutionary principles (two parents produce offspring) 
but on the behavior of social group, e.g. a herd of 
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animals looking for food. This algorithm can be 
classified as an algorithm of a social environment. To 
the same group of algorithms, Particle Swarm 
Optimization (PSO) algorithm can also be classified 
sometimes called swarm intelligence. In the case of 
SOMA, there is no velocity vector as in PSO, only the 
position of individuals in the search space is changed 
during one generation, referred to as ‘migration loop’. 

The rules are as follows: In every migration loop 
the best individual is chosen, i.e. individual with the 
minimum cost value, which is called the Leader. An 
active individual from the population moves in the 
direction towards the Leader in the search space. At the 
end of the crossover, the position of the individual with 
minimum cost value is chosen. If the cost value of the 
new position is better than the cost value of an 
individual from the old population, the new one appears 
in new population. Otherwise the old one remains there. 
The main principle is depicted in Figures 4 and 5. 
 

 
Figure 4: Principle of SOMA, movement in the 
direction towards the Leader 
 
 

 
 
Figure 5: Basic principle of crossover in SOMA, 
PathLength is replaced here by Mass 
 
 

4.2. Differential Evolution 
DE is a population-based optimization method that 
works on real-number-coded individuals (Price, 2005). 
A schematic is given in Figure 6. There are essentially 
five sections to the code. Section 1 describes the input 
to the heuristic. D is the size of the problem, Gmax is the 
maximum number of generations, NP is the total 
number of solutions, F is the scaling factor of the 
solution and CR is the factor for crossover. F and CR 
together make the internal tuning parameters for the 
heuristic. 

Section 2 outlines the initialization of the heuristic. 
Each solution xi,j,G=0 is created randomly between the 
two bounds x(lo) and x(hi). The parameter j represents the 
index to the values within the solution and i indexes the 
solutions within the population. So, to illustrate, x4,2,0 
represents the fourth value of the second solution at the 
initial generation. 

After initialization, the population is subjected to 
repeated iterations in section 3. 

Section 4 describes the conversion routines of DE. 
Initially, three random numbers r1, r2, r3 are selected, 
unique to each other and to the current indexed solution 
i in the population in 4.1. Henceforth, a new index jrand 
is selected in the solution. jrand points to the value being 
modified in the solution as given in 4.2. In 4.3, two 
solutions, xj,r1,G and xj,r2,G are selected through the index 
r1 and r2 and their values subtracted. This value is then 
multiplied by F, the predefined scaling factor. This is 
added to the value indexed by r3. 

However, this solution is not arbitrarily accepted in 
the solution. A new random number is generated, and if 
this random number is less than the value of CR, then 
the new value replaces the old value in the current 
solution. The fitness of the resulting solution, referred 
to as a perturbed vector uj,i,G., is then compared with the 
fitness of xj,i,G. If the fitness of uj,i,G is greater than the 
fitness of xj,i,G., then xj,i,G. is replaced with uj,i,G; 
otherwise, xj,i,G. remains in the population as xj,i,G+1. 
Hence the competition is only between the new child 
solution and its parent solution. 
 

 
 

Figure 6: DE Schematic 
 

DE is quite robust, fast, and effective, with global 
optimization ability. It does not require the objective 
function to be differentiable, and it works well even 
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with noisy and time-dependent objective functions. 
Description of used DERand1Bin strategy is presented 
in (7). Please refer to (Price and Storn 2001, Price 2005) 
for the description of all other strategies. These 
strategies differ in the way of calculating the perturbed 
vector uj,i,G. 
 

( )GrGrGrGi xxFxu ,3,2,11, −⋅+=+  (7) 
 
 
5. SIMULATION RESULTS 
As described in section about Analytic Programming, 
AP requires some EA for its run. In this paper APmeta 
version was used. Meta-evolutionary approach means 
usage of one main evolutionary algorithm for AP 
process and second algorithm for coefficient estimation, 
thus to find optimal values of constants in the 
evolutionary synthesized control law.  

SOMA algorithm was used for main AP process 
and DE was used in the second evolutionary process. 
Settings of EA parameters for both processes were 
based on performed numerous experiments with chaotic 
systems and simulations with APmeta (Table 1 and Table 
2). 
 

 
Table 1: SOMA settings for AP  

PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 50 
Migrations 4 
Max. CF Evaluations (CFE) 5345 
 
 

Table 2: DE settings for meta-evolution 
PopSize 40 
F 0.8 
CR 0.8 
Generations 150 
Max. CF Evaluations (CFE) 6000 
 
 

Compared to previous research with stabilization 
of stable state - p-1 orbit, the data set for AP required 
only constants, operators like plus, minus, power and 
output values nx and 1−nx . Due to the recursive 
attributes of delay equation S utilizing previous states of 
the system in discrete ETDAS (3), the data set for AP 
had to be expanded and cover longer system output 

history, thus to imitate inspiring control method for the 
successful synthesis of control law securing the 
stabilization of higher periodic orbits. 
 
Basic set of elementary functions for AP: 
 
 GFS2arg= +, -, /, *, ^ 
GFS0arg= datan-11 to datan, K 
 

Total number of 200 simulations was carried out. 
The most simulations were successful and have given 
new synthesized control law, which was able to 
stabilize the system at required behaviour (p-4 orbit) 
within short simulation interval of 200 iterations. 

Total number of cost function evaluations for AP 
was 5345, for the second EA it was 6000, together 
32.07 millions per each simulation. All experiments 
were performed in the Wolfram Mathematica 
environment. One experiment (simulation) took approx. 
72 hours. See Table 3 for simple CF values statistic. 
 

 
Table 3: Cost Function values 

Min 0.0314 
Max 8.9088 
Average 0.6178 

 
 
The novelty of this approach represents the 

synthesis of feedback control law Fn (8) (perturbation) 
for the Logistic equation inspired by original ETDAS 
control method.  
 

( ) nnnn Fxrxx +−=+ 11  (8) 
 

Following Table 4 and Figure 7 contains examples 
of synthesized control laws. Obtained simulation results 
can be classified into 2 groups, based on the quality and 
durability of stabilization at real p-4 UPO, which for 
unperturbed Logistic equation has following values:  
x1 = 0.3038, x2 = 0.8037, x3 = 0.5995, x4 = 0.9124. More 
about this phenomenon is written in the conclusion 
section. 
 

Table 4 covers direct output from AP – synthesized 
control law without coefficients estimated, further the 
notation with simplification after estimation by means 
of second algorithm DE, corresponding CF value, 
average error between actual and required system 
output, and identification of figure with simulation 
results. 
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Table 4: Simulation results 

Control Law Control Law with coefficients CF Value 
Avg. 

output 
error 

Figure
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Figure 7a Figure 7b 
 

 
Figure 7c 

 

 
Figure 7d 

 
Figure 7: Examples of results – stabilization of p-4 orbit for Logistic equation by means of control laws given in Table 4. 
 
 
6. CONCLUSION 
This paper deals with a synthesis of a control law by 
means of AP for stabilization of selected chaotic system 
at high periodic orbit. Logistic equation as an example 
of one-dimensional discrete chaotic system was used in 
this research.  

In this presented approach, the analytic programming 
was used instead of tuning of parameters for existing 
control technique by means of EA’s as in the previous 
research. 

Obtained results reinforce the argument that AP is 
able to solve this kind of difficult problems and to 
produce a new synthesized control law in a symbolic 
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way securing desired behaviour of chaotic system and 
stabilization. 

Presented four simulation examples show two 
different results. Low CF values indicating precise, but 
unfortunately sometimes unstable and only temporary 
stabilization, together with simple control law in the 
first two cases. And according to the higher CF values 
not very precise, but very stable and relatively complex 
notation of chaotic controller in the next two cases. This 
phenomenon is caused by the design of CF, which was 
borrowed from the previous research focused on the 
simpler cases, which were stabilization of stable state 
and p-2 orbit, and it has given satisfactory results 
Nevertheless this fact lends weight to the argument, that 
AP is a powerful symbolic regression tool, which is 
able to strictly and precisely follow the rules given by 
cost function and synthesizes any symbolic formula, in 
the case of this research – the feedback controller for 
chaotic system.  

The question of energy costs and more precise and 
faster stabilization will be included into future research 
together with development of better cost functions, 
different AP data set, and performing of numerous 
simulations to obtain more results and produce better 
statistics, thus to confirm the robustness of this 
approach.  

Future research will be also aimed at the time-
continuous systems, not only discrete chaotic maps. 
 
ACKNOWLEDGMENTS 
This work was supported by the European Regional 
Development Fund under the project CEBIA-Tech No. 
CZ.1.05/2.1.00/03.0089 and project IT4Innovations 
Centre of Excellence No. CZ.1.05/1.1.00/02.0070 and 
and by Internal Grant Agency of Tomas Bata University 
under the project No.IGA/FAI/2012/037. 
 
REFERENCES 
Hilborn R.C., 2000. Chaos and Nonlinear Dynamics: An 

Introduction for Scientists and Engineers, Oxford 
University Press, 2000, ISBN: 0-19-850723-2. 

Just W., 1999, “Principles of Time Delayed Feedback 
Control”, In: Schuster H.G., Handbook of Chaos 
Control, Wiley-Vch, ISBN 3-527-29436-8. 

Kwon O. J., 1999. “Targeting and Stabilizing Chaotic 
Trajectories in the Standard Map”, Physics Letters A. 
vol. 258, 1999, pp. 229-236. 

Lampinen J., Zelinka I., 1999, “New Ideas in Optimization – 
Mechanical Engineering Design Optimization by 
Differential Evolution”, Volume 1, London: McGraw-
hill, 1999,   20 p., ISBN 007-709506-5. 

Matousek R., 2007, „GAHC: Improved GA with HC station“, 
In WCECS 2007, San Francisco, pp. 915‐920. ISBN: 
978‐988‐98671‐6‐4. 

Matousek  R., 2010, „HC12: The Principle of CUDA 
Implementation“. In MENDEL 2010, Mendel Journal 
series, pp. 303‐308. ISBN: 978‐80‐214‐4120‐ 0. ISSN: 
1803‐ 3814. 

May R.M., 2001, “Stability and Complexity in Model 
Ecosystems”, Princeton University Press, ISBN: 0-691-
08861-6. 

Oplatková, Z., Zelinka, I.: 2009. Investigation on 
Evolutionary Synthesis of Movement Commands, 

Modelling and Simulation in Engineering, Volume 2009 
(2009), Article ID 845080, 12 pages, Hindawi 
Publishing Corporation, ISSN: 1687-559. 

Oplatkova Z., Senkerik R., Zelinka I., Holoska J., 2010a, 
Synthesis of Control Law for Chaotic Henon System - 
Preliminary study, ECMS 2010, Kuala Lumpur, 
Malaysia, p. 277-282, ISBN 978-0-9564944-0-5. 

Oplatkova Z., Senkerik R., Belaskova S., Zelinka I., 2010b, 
Synthesis of Control Rule for Synthesized Chaotic 
System by means of Evolutionary Techniques, Mendel 
2010, Brno, Czech Republic, p. 91 - 98, ISBN 978-80-
214-4120-0. 

Ott E., C. Greboki, J.A. Yorke, 1990. “Controlling Chaos”, 
Phys. Rev. Lett. vol. 64, 1990, pp. 1196-1199. 

Price, K. and Storn, R. (2001), Differential evolution 
homepage, [Online]: 
http://www.icsi.berkeley.edu/~storn/code.html,  
[Accessed 29/02/2012]. 

Price K., Storn R. M., Lampinen J. A., 2005, “Differential 
Evolution : A Practical Approach to Global 
Optimization”, (Natural Computing Series), Springer; 1 
edition. 

Pyragas K., 1992, “Continuous control of chaos by self-
controlling feedback”, Physics Letters A, 170, 421-428. 

Pyragas K., 1995. “Control of chaos via extended delay 
feedback”, Physics Letters A, vol. 206, 1995, pp. 323-
330. 

Senkerik R., Zelinka I., Davendra D., Oplatkova Z., 2010a, 
“Utilization of SOMA and differential evolution for 
robust stabilization of chaotic Logistic equation”, 
Computers & Mathematics with Applications, Volume 
60, Issue 4, pp. 1026-1037. 

Senkerik R., Oplatkova Z., Zelinka I., Davendra D.,Jasek R., 
2010b, “Synthesis Of Feedback Controller For Chaotic 
Systems By Means Of Evolutionary Techniques,”, 
Proceeding of Fourth Global Conference on Power 
Control and Optimization, Sarawak, Borneo, 2010. 

Varacha P; Jasek, R., “ANN Synthesis for an Agglomeration 
Heating Power Consumption Approximation“. In: 
Recent Researches in Automatic Control. Montreux : 
WSEAS Press, p. 239-244. ISBN 978-1-61804-004-6. 

Varacha P., Zelinka I., 2008, “Distributed Self-Organizing 
Migrating Algorithm Application and Evolutionary 
Scanning”. In: Proceedings of the 22nd European 
Conference on Modelling and Simulation ECMS 2008, 
p. 201-206. ISBN 0-9553018-5-8. 

Zelinka I., 2004. “SOMA – Self Organizing Migrating 
Algorithm”, In: New Optimization Techniques in 
Engineering, (B.V. Babu, G. Onwubolu (eds)), chapter 
7, 33, Springer-Verlag, 2004, ISBN 3-540-20167X. 

Zelinka I.,Oplatkova Z, Nolle L., 2005. Boolean Symmetry 
Function Synthesis by Means of Arbitrary Evolutionary 
Algorithms-Comparative Study, International Journal of 
Simulation Systems, Science and Technology, Volume 
6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-
8031. 

Zelinka I., Senkerik R., Navratil E., 2009, “Investigation on 
evolutionary optimization of chaos control”, Chaos, 
Solitons & Fractals, Volume 40, Issue 1, pp. 111-129. 

Zelinka, I., Guanrong Ch., Celikovsky S., 2008. Chaos 
Synthesis by Means of Evolutionary algorithms, 
International Journal of Bifurcation and Chaos, Vol. 18, 
No. 4 (2008) 911–942 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 464



TRANSFORMATION ALGORITHM FROM AN ALTERNATIVES AGGRE GATION 
PETRI NET TO A COMPOUND PETRI NET. TWO REPRESENTATI ONS OF AN 

UNDEFINED PETRI NET WITH A NON-EMPTY SET OF EXCLUSI VE ENTITIES 
 
 

Juan Ignacio Latorre-Biel(a), Emilio Jiménez-Macías (b) 
 
 

(a) Public University of Navarre. Deptartment of Mechanical Engineering, Energetics and Materials. 
Campus of Tudela, Spain 

(b) University of La Rioja. Industrial Engineering Technical School. 
Department of Electrical Engineering. Logroño, Spain 

 
 

(a)juanignacio.latorre@unavarra.es, (b)emilio.jimenez@unirioja.es 
 
 
 
 
ABSTRACT 
Simulation, analysis, decision making, and control of 
discrete event systems, are examples of very common 
applications in industrial and technological fields. All 
these operations require the representation of the 
discrete event system in an appropriate formal language, 
that is to say obtaining the best suited model for the 
current application. A very common family of 
formalisms is the paradigm of the Petri nets. Different 
Petri net-based formalisms present different modelling 
power and diverse features, which make them especially 
suited for a given operation. In the field of decision 
making, where there exist a number of alternative 
structural configurations, the alternatives aggregation 
Petri nets and the compound Petri nets, lead to compact 
models for describing a discrete event system. This 
paper describes a transformation algorithm between 
them and an example to illustrate the application of the 
different steps. This transformation algorithm allows a 
fast transformation between both formalisms for 
applications related to decision making, since it is not 
necessary to perform a previous transformation to an 
intermediate set of alternative Petri nets to afford the 
construction of a compound Petri net from an 
alternatives aggregation Petri net. 
 
Keywords: Petri nets, transformation, alternatives 
aggregation Petri nets, compound Petri nets, decision 
making 
 
1. INTRODUCTION 
Petri nets constitute one of the best suited formalisms 
for representing discrete event systems with complex 
behaviour. Petri nets (PN) are in fact a family of 
formalisms, each one of which have been developed for 
being more suited for a given application. The 
expressiveness and modelling power of the different 
formalisms may be related to the constraints imposed to 
their definitions. Some of the formalisms introduce 
exogenous elements such as time, in interpreted Petri 
nets, or random variables, in generalized stochastic Petri 

nets, while others transfer information of the static 
structure from the elements of the incidence matrices, 
weight of the arcs, to features of the tokens, in coloured 
Petri nets (Jensen and Kristensen, 2009; David and 
Alla, 2005; Silva, 1993). 

The applications of these particular Petri net-based 
formalisms range from structural analysis to 
performance analysis and the compact representation of 
large systems with shared subsystems. The 
transformation algorithms allow translating a model of a 
discrete event system form a given formalism to a 
different one or simplifying the representation of a 
given model. This translation is useful for performing 
certain operations in a model represented by a 
formalism that is not suited for the aimed application. 

Alternatives aggregation Petri nets (AAPN) and 
compound Petri nets are two Petri net-based formalisms 
that have been defined for decision making. Both of 
them are well suited for representing in a compact way 
a model of a system with alternative structural 
configurations (Latorre et al. 2011b, Latorre et al. 
2009). In real applications of decision making related to 
discrete event systems with alternative structural 
configurations it is common to represent the system by 
means of a set of alternative Petri nets (Tsinarakis et al. 
2005, Zimmerman et al. 2001). Algorithms have been 
described to transform a set of alternative Petri nets into 
an alternatives aggregation Petri net (Latorre et al. 
2009) and into a compound Petri net (Latorre et al. 
2011a). In this paper, an algorithm for transforming an 
alternatives aggregation Petri net to a compound Petri 
net is described, as well as an example of application to 
illustrate the different steps. This algorithm is aimed to 
allow a direct and fast transformation of a model 
between these two formalisms for applications such as 
the comparison of the performance of a given model 
represented in both formalisms when integrated in a 
decision problem. 

In section 2, the definitions that are relevant for the 
application of the transformation algorithm are given. 
The section 3 is focussed on the transformation 
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algorithm itself. Some considerations on a reduction 
rule to simplify the compound Petri net obtained from 
the algorithm are presented in the section 4. One 
important step in the transformation algorithm is 
explained in the section 5: the translation of the set of 
exclusive entities associated to the model of the discrete 
event system from their representation as a set of choice 
variables to a set of feasible combinations of values for 
the undefined structural parameters of the resulting 
compound Petri net. An example of application is 
detailed in the section 6, while the following section is 
devoted to the conclusions and future research lines. 
Finally, the last section lists the bibliographical 
references of this paper. 
 
2. DEFINITIONS 
An alternatives aggregation Petri net can be defined in 
the following way: 
Definition 1. Alternatives aggregation Petri net system. 

An alternatives aggregation Petri net system, RA, is 
defined as the 8-tuple: 

RA = 〈P, T, pre, post, m0, Sα, Svalα, SA , fA〉 
where,  

• P is the set of places. 
• T is the set of transitions. 
• pre is the pre-incidence matrix, also called 

input incidence matrix. 
• post is the post-incidence matrix, also called 

output incidence matrix. 
• m0 is the initial marking that represents the 

initial vector of state and is usually a function 
of the choice variables. 

• Sα  is a set of undefined parameters. 
• Svalα is the set of feasible combination of 

values for the undefined parameters in Sα . 
• SA is a set of choice variables such that SA ≠ ∅ 

and |SA| = n. 
• fA: T → f(a1, …, an) assigns a function of the 

choice variables to each transition t such that 
type[fA(t)] = Boolean. 

□ 
Where a set of choice variables is given by: 
Let cstr ∈ Cstr = {1, 2, …, mstrq} ⊆ Ν*. 
A set of choice variables can be defined as SA = {a1, 

a2, …, amstrq | ∃∃∃∃! ai=1, i ∈ Cstr ∧ aj=0 ∀ j≠i, j ∈ Cstr } 
Furthermore, the dynamic behaviour of an 

alternatives aggregation Petri net is given by an 
enabling rule that differs slightly from most of the 
formalisms based on Petri nets. The firing rule is the 
one of a generalized Petri net. 
 
Definition 2. Enabled transition. 

Given an alternatives aggregation Petri net RA with 
an associated set of choice variables SA = { a1, a2, …, an 
}, let us consider the following decision: 
 

ai = 1 ⇒ ai = 0 ∀ j ∈ Ν* such that 
1 ≤ j ≤ n ∧ j ≠ i 

 

A transition tj ∈ T in an alternatives aggregation 
Petri net is said to be enabled if 

mi ≥ pre(pi, tj) ∀ pi ∈ ºtj ∧ fA(tj) = 1 
□ 

On the other hand, a compound Petri net can be 
defined from a parametric point of view, as in (Latorre 
et al, 2011c). 

Moreover, a more classic approach (Silva, 1993) 
for the definition of a compound Petri net can be given 
as stated below: 
Definition 3. Compound Petri net. 

A compound  Petri net is a 7-tuple  
Rc = 〈 P, T, F, w, m0, Sα, Svalα 〉, where 

i) Sα is the set of undefined parameters of Rc. 
ii)  Sstrα ≠ ∅ is the set of undefined structural 

parameters of Rc, such that Sstrα ⊆ Sα. Notice that Sα is 
the set of undefined parameters of Rc. 

iii) Svalα is the feasible combination of values for 
the undefined parameters . 

□ 
A compound Petri net can be considered as a 

parametric Petri net with undefined structural 
parameters. 

The structural parameters refer to the elements of 
the incidence matrix of a Petri net. If a Petri net has 
undefined structural parameters it has a structure with 
certain freedom degrees that should be specified by a 
decision from the set of feasible combinations of values 
for them. 

In summary, the undefined structural parameters 
are present in models that correspond with DES with 
undefined structure, in process of being designed, 
modified or controlled. 
 
3. TRANSFORMATION FROM AN AAPN TO A 

COMPOUND PN 
In (Latorre et al. 2011b) it was described a 
transformation algorithm to obtain an alternatives 
aggregation Petri net from a compound Petri net. The 
algorithm presented in this paper solves the opposite 
transformation and verifies that it is possible to perform 
a double transformation, using both algorithms 
sequentially, to return to the initial representation of the 
discrete event system. As a conclusion it is possible to 
state that both transformations are reversible. 

 
The algorithm to perform a direct and fast 

transformation from an alternatives aggregation Petri 
net RA to a compound Petri net is presented in the 
following. 

 
Algorithm. 

Step 1. 
Create a set of variables Svalstrα(Rc) = { cv1 , cv2 , … 

, 
rncv  } such that |Svalstrα(Rc)| = |SA|,  

where SA = { a1 , a2 , … , 
rna  } is the set of choice 

variables of RA. 
 

Create a bijection between Svalstrα(Rc) and SA. 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 466



This set Svalstrα(Rc) will contain the feasible 
combinations of values for the undefined structural 
parameters of the resulting compound Petri net.  
 
Step 2. 

Apply reduction rules to the columns of the 
incidence matrix of the AAPN, RA, which have 
elements in common and are associated to different 
choice variables, aiming to obtain a more compact 
matrix. 
 
Step 3. 

For every transition ti ∈ T(RA), with a function of 
choice variables associated to it, fA(ti,aj) , transform this 
function into the sets Sstrα(ti) and Svalstrα(ti). 
 
Step 4. 

Represent the resulting compound Petri net Rc. 
□ 

 
4. TRANSFORMATION FROM AN AAPN TO A 

COMPOUND PN 
Reduction rules have been developed for the 
simplification of Petri net models in order to perform 
structural analysis or performance analysis in an easier 
or more efficient way. See for example (Berthelot, 
1987) and (Haddad and Pradat-Peyre, 2006). One of the 
reduction rules is based on the reduction of several 
identical transitions to a single one (Berthelot, 1987) 
and (Silva, 1993). 

In order to apply this rule to an alternatives 
aggregation Petri net, it is necessary to consider two or 
more columns of the incidence matrix of the alternatives 
aggregation Petri net associated to functions of choice 
variables, which do not have any choice variable in 
common. It is possible to merge the mentioned columns 
by the creation of the appropriate undefined structural 
parameters if there are elements belonging to different 
columns but to the same row that are not equal and 
modifying the function of choice variables. 

Furthermore, a simplication rule can also be 
applied, since according to the Boole algebra if the 
function of choice variables includes every choice 
variable in the form a1 + a2 + … + an, where |SA| = n, 
then the function can be removed since it is true after 
any decision that selects one of the choice variables. 

 
5. TRANSFORMATION OF THE FUNCTIONS 

OF CHOICE VARIABLES INTO UNDEFINED 
STRUCTURAL PARAMETERS. 

This step is complementary to the previous one. The 
difference between both operations is that the previous 
one merges columns of the incidence matrix of the 
AAPN aiming to obtain a more compact incidence 
matrix, while this operation manages to eliminate the 
functions of choice variables and to convert the AAPN 
into a compound alternative Petri net 

In order to proceed as explained, this step develops 
a reverse operation to a replication of the transitions 
with associated function of choice variables. Taken a 

column with a function of choice variables that does not 
include a certain choice variable, a new isolated 
transition is added (a columns of zeros) and associated 
to this missing choice variable (Latorre et al. 2011b). 
Then, both transitions are merged by the creation of the 
appropriate choice variables and increasing the sets of 
feasible values for the undefined structural parameters if 
necessary. 

On the other hand, the function of choice variables 
acquires the choice variable of the merged isolated 
transition. 

The resulting function of choice variables might 
include all the choice variables. In this case, by the 
application of the simplification rule mentioned in the 
section 4, the function can be removed. Otherwise, 
another operation of creation of an isolated transition 
associated to another missing choice variable and the 
merge of it can be performed and so on. 

As a consequence of the previous explanations it is 
possible to see that the operation described in this 
section 5 can be decomposed in the following steps: 

a) Replication of the transition associated to 
functions of choice variables to isolate the individual 
choice variables. This operation is the opposite to the 
reduction rule of the transformation described in the 
previous section. 

b) Addition of isolated transitions to complete the 
choice variables in every transition of the original net. 

c) Merging of the transitions with different choice 
variables and with arcs to the same places and which 
complete the set of choice variables SA. 

Notice that all the operations described in this 
section are the opposite operation to those applied in the 
reverse transformation from a compound Petri net into 
an alternatives aggregation Petri net (Latorre et al. 
2011b). Due to the fact that the equivalence between the 
nets before and after the operations are the same and 
that they are reversible, their application can be 
performed in this algorithm. 

 
6. EXAMPLE OF APPLICATION. 
 

 

This example will describe the application of the 
different steps of the algorithm described in the section 

p1 

2 

p2 p3 

a1+a3 a2 

a1 a2+a3 
 

Fig. 1. Graphical representation of the 
AAPN to be converted into a compound PN. 

 

2 

a3 t1 t2 t5 

t3 t4 
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3 for the transformation of an alternatives aggregation 
Petri net into a compound Petri net. The original 
alternatives aggregation Petri net to be transformed is 
shown in the figure 1 in its graphical form and its 
matrix-based representation is given in the figure 2. 

 

 
 

Step 1. 
The set of choice variables of the AAPN is SA = { 

a1, a2, a3 }. 
 

As a consequence, the set of variables associated to 
the feasible combination of values for the undefined 
structural parameters of the resulting compound Petri 
net, Rc, is created: 
 

Svalstrα(Rc) = { cv1 , cv2 , cv3 } such that |Svalstrα(Rc)| 
= |SA| = 3. 

 
On the other hand, a bijection between Svalstrα(Rc) 

and SA is defined and their elements are made 
correspond, resulting in the following pairs: 
 

( cv1 , a1 ), (cv2 , a2) and ( cv3 , a3) 
 

Step 2. 
Apply reduction rules to the columns of the 

incidence matrix of the AAPN, RA that have elements in 
common and are associated to different choice 
variables, aiming to obtain a more compact matrix. 
 

The first couple of columns to be merged are the 
1st and the 2nd ones. In the first case the associated 
function of choice variables is fA(t1, ai) = a1 + a3. 
Moreover, the second column is associated to  
fA(t2, ai) = a2. 
 

In order to merge both columns, the elements that 
are placed in the same row are compared and if they are 
different an undefined structural parameter is created: 
 

Row 1: w11 = w12 = -1 ⇒ '
11w  = -1 

Row 2: w21 = 2, w22 = 1 ⇒ '
21w  = α4, where 

4αvalS = { 1, 2 } 

 
Due  to the fact that w21 = 2 was associated to  

a1 + a3 and that there is a bijection that makes the pairs 

(cv1 , a1) and (cv3 , a3), then α4 = 2 will be associated to 
the following combinations of choice variables: cv1 and 
cv3. 
 

On the other hand, w22 = 1 was associated to a2 and 
the bijection defines the pair ( cv2 , a2 ), then α4 = 1 will 
be associated to the combination of choice variables cv2. 

 

Row 3: w31 = 0, w32 = 1 ⇒ '
31w  = α7, where 

7αvalS = { 0, 1 } and α7 = 0 is associated to cv1 and cv3, 

whereas α7 = 1 is associated to cv2. 
 

The result of this first merging of columns can be 
seen in the figure 3. 

 

 
 
Where Svalstrα = { cv1, cv2, cv3 } = { (…, α4 = 2 , …, 

α7 = 0 , …) , (…,α4 = 1 , …, α7 = 1 , …) , (…,α4 = 2 , 
…, α7 = 0 , …) } 
 

Furthermore, the function of choice variables 
associated to the resulting transition, called t1 in the 
figure 3, can be removed since it contains all the choice 
variables, as it is justified in the section 4. 
 

Another couple of columns in the incidence matrix 
can be merged. They are the ones associated to the 
transitions t3 and t4. In the first case the associated 
function of choice variables is fA(t3, ai) = a1. Moreover, 
the second column is associated to fA(t4, ai) = a2 + a3. 
 

In order to merge both columns, the elements that 
are placed in the same row are compared and if they are 
different an undefined structural parameter is created: 
 

Row 1: w12 = w13 = 1 ⇒ '
12w  = 1 

Row 2: w22 = w23 = -1 ⇒ '
22w  = -1 

Row 3: w32 = 0, w33 = -1 ⇒ '
32w  = - α8, where 

8αvalS = { 0, 1 } and α8 = 0 is associated to cv1, whereas 

α8 = 1 is associated to cv2 and cv3. 
 

The result of this second reduction of transitions 
can be seen in the figure 4. 

 

t1     t3     t4     t5 
-1     1     1    -1    p1 
α4    -1   -1     0    p2 
α7     0    -1    2    p3 

         a1          a3 

W( AR1 ) = 

Fig. 3. First reduction of transitions. 

a1+a3+a3 a2+a3 

t1     t2     t3     t4     t5 
-1    -1    1      1     -1    p1 
2      1    -1     -1     0    p2 
0      1     0     -1      2    p3 

       a2    a1            a3 

W(RA) = 

Fig. 2 Matrix-based representation of the 
AAPN to be converted into a compound PN. 

 

a1+a3 a2+a3 
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Where 
 Svalstrα = { cv1, cv2, cv3 } = { (…, α4 = 2 , …, α7 = 0 , α8 
= 0, …) ,  
(…,α4 = 1 , …, α7 = 1 , α8 = 1 , …) , (…,α4 = 2 , …, α7 
= 0 , α8 = 1 , …) } 
 
Furthermore, 
 the function of choice variables associated to the 
resulting transition can be removed since it contains all 
the choice variables, as it is justified in the section 4. 
 
Step 3. 

For every transition ti ∈ T(RA), transform the 
function of choice variables associated to it, fA(ti,aj) , 
into the sets Sstrα(ti) and Svalstrα(ti). 
 

In the case of t1 and t3, the associated function of 
choice variables has been removed and the subsequent 
sets Sstrα(ti) and Svalstrα(ti) have already been obtained. 
 

On the contrary, t5 has an associated function of 
choice variables, which is fA(t5,ai) = a3. 

 
In order to develop this step, two new isolated 

transitions will be added, associated to the choice 
variables a1 and a2 respectively (Latorre et al. 2011a). 
The result can be seen in the resulting incidence matrix 
written in the figure 5. 

 

 
 
At this stage, it is possible to reduce the transitions 

t5, t6 and t7. 
 

In order to merge the three columns of the 
incidence matrix related to these transitions, the 
elements that are placed in the same row are compared 
and if they are different an undefined structural 
parameter is created: 
 

Row 1: w13 = -1 and w14 = w15 = 0 ⇒ '
13w  = -α3, where 

3αvalS = { 0, 1 } and α3 = 0 is associated to cv1 and cv2, 

whereas α3 = 1 is associated to cv3. 
 

Row 2: w23 = w24 = w25 = 0 ⇒ '
23w  = 0. 

 

Row 3: w33 = 2 and w34 = w35 = 0 ⇒ '
33w  = α9, where 

9αvalS = { 0, 2 } and α9 = 0 is associated to cv1 and cv2, 

whereas α9 = 2 is associated to cv3. 
 

The result of this step can be seen in the incidence 
matrix given in the figure 6. 

 
 
At this stage, it is possible to reduce the transitions 

t5, t6 and t7. 
 

In order to merge the three columns of the 
incidence matrix related to these transitions, the 
elements that are placed in the same row are compared 
and if they are different an undefined structural 
parameter is created: 
 

Row 1: w13 = -1 and w14 = w15 = 0 ⇒ '
13w  = -α3, where 

3αvalS = { 0, 1 } and α3 = 0 is associated to cv1 and cv2, 

whereas α3 = 1 is associated to cv3. 
 

Row 2: w23 = w24 = w25 = 0 ⇒ '
23w  = 0. 

 

Row 3: w33 = 2 and w34 = w35 = 0 ⇒ '
33w  = α9, where 

9αvalS = { 0, 2 } and α9 = 0 is associated to cv1 and cv2, 

whereas α9 = 2 is associated to cv3. 
 

The result of this step can be seen in the incidence 
matrix given in the figure 6. 

 

 

t1  t3 t5 
-1 1 -α3 p1 
α4 -1 0 p2 
α7 α8 α8 p3 

                   a3    a1    a2t1     

W( AR4  ) = 

Fig.6. Result of the reduction of the transitions t5, 
t6 and t7 into a single transition named t5. 

t1     t3     t5     t6     t7 
-1     1    -1     0     0    p1 
α4    -1     0     0     0    p2 
α7   -α8    2     0     0    p3 

               a3    a1    a2 

W( AR3  ) = 

Fig.5. Addition of isolated transitions to 
remove of the function fA(t5,ai). 

t3     t5     t6     t7 
-1     1    -1     0     0    p1 
α4    -1     0     0     0    p2 
α7   -α8    2     0     0    p3 

               a3    a1    a2 

W( AR3  ) = 

Fig.5. Addition of isolated transitions to 
remove of the function fA(t5,ai). 

t1 t3 t5 
-1 1 -1 p1 
α4 -1 0 p2 
α7 -α8 2 p3 

  a3 

W( AR2 ) = 

Fig. 4. Second reduction of transitions. 

a1+a3+a3 a1+a3+a3 
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Where Sstrα = { α3 , α4 , α7 , α8 , α9 } and Svalstrα = { cv1, 
cv2, cv3 } = { (0,2,0,0,0), (0,1,1,1,0), (1,2,0,1,2) } 

Furthermore, the function of choice variables 
associated to the resulting transition can be removed 
since it contains all the choice variables, as it is justified 
in the section 4. 
 
Step 4. 

Represent the resulting compound Petri net Rc. 
 

 

 
 
The result of this transformation algorithm can be 

seen in the graphical and matrix-based representations 
of the resulting compound Petri net, which is equivalent 
to the original alternatives aggregation Petri net. These 
representations are shown in the figures 7 and 8 
respectively. 
|Svalstrα(Rc)| = |{ (0,2,0,0,0) , (0,1,1,1,0) , (1,2,0,1,2) }|=3 

 
7. CONCLUSIONS 
As a conclusion of this paper it can be stated that with 
this algorithm it has been completed the set of 
transformations between three common Petri net-based 
formalisms to represent Petri nets with alternative 
structural configurations for the main purpose of 
developing automatic decision support systems: the set 
of alternative Petri nets, the compound Petri net and the 
alternatives aggregation Petri net. It is now possible to 
perform any direct transformation between any pair of 
formalisms belonging to the mentioned group. 

As open research lines it can be considered the 
analysis of the freedom degrees in these algorithms to 
adjust them in order to obtain the most compact models 
for the development of the most efficient optimization 
problems to solve the original decision problems. 
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Fig. 8. Matrix-based representation of the 
resulting compound Petri net. 
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Fig. 7.Graphical representation of 
the resulting compound Petri net. 
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