
UTILIZATION OF ANALYTIC PROGRAMMING FOR THE STABILIZATION OF HIGH
ORDER OSCILLATIONS OF CHAOTIC LOGISTIC EQUATION

Roman Senkerik(a), Zuzana Oplatkova(a), Ivan Zelinka(b), Donald Davendra(b), Michal Pluhacek(a)

(a)Tomas Bata University in Zlin , Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin,
Czech Republic

(b) Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15, 708 33
Ostrava-Poruba, Czech Republic

(a)senkerik@fai.utb.cz, (b)ivan.zelinka@vsb.cz

ABSTRACT
This research deals with a utilization of a modern tool
for symbolic regression, which is analytic
programming, for the purpose of the evolutionary
synthesis of a feedback controller for the chaotic
system. This synthesized chaotic controller secures the
stabilization of high periodic orbit – oscillations
between several values of discrete chaotic system,
which is Logistic Equation. The paper consists of the
descriptions of analytic programming as well as chaotic
system, used heuristic and cost function. For
experimentation, Self-Organizing Migrating Algorithm
(SOMA) and Differential evolution (DE) were used.

Keywords: Chaos Control, Analytic programming,
optimization, evolutionary algorithms.

1. INTRODUCTION
During the past five years, usage of new intelligent
systems in engineering, technology, modeling,
computing and simulations has attracted the attention of
researchers worldwide. The most current methods are
mostly based on soft computing, which is a discipline
tightly bound to computers, representing a set of
methods of special algorithms, belonging to the
artificial intelligence paradigm. The most popular of
these methods are neural networks, evolutionary
algorithms, fuzzy logic, and genetic programming.
Presently, evolutionary algorithms are known as a
powerful set of tools for almost any difficult and
complex optimization problem.

The interest about the interconnection between
evolutionary techniques and control of chaotic systems
is spread daily. First steps were done in (Senkerik et al.;
2010a), (Zelinka et al., 2009), where the control law
was based on Pyragas method: Extended delay feedback
control – ETDAS (Pyragas, 1995). These papers were
concerned to tune several parameters inside the control
technique for chaotic system. Compared to previous
research, this paper shows a possibility how to generate
the whole control law (not only to optimize several
parameters) for the purpose of stabilization of a chaotic
system. The synthesis of control is inspired by the

Pyragas’s delayed feedback control technique (Just,
1999), (Pyragas, 1992). Unlike the original OGY
control method (Ott et al., 1990), it can be simply
considered as a targeting and stabilizing algorithm
together in one package (Kwon, 1999). Another big
advantage of the Pyragas method for evolutionary
computation is the amount of accessible control
parameters, which can be easily tuned by means of
evolutionary algorithms (EA).
Instead of EA utilization, analytic programming (AP) is
used in this research. AP is a superstructure of EAs and
is used for synthesis of analytic solution according to
the required behaviour. Control law from the proposed
system can be viewed as a symbolic structure, which
can be synthesized according to the requirements for the
stabilization of the chaotic system. The advantage is
that it is not necessary to have some “preliminary”
control law and to estimate its parameters only. This
system will generate the whole structure of the law even
with suitable parameter values.

This work is focused on the expansion of AP
application for synthesis of a whole control law instead
of parameters tuning for existing and commonly used
method control law to stabilize desired Unstable
Periodic Orbits (UPO) of chaotic systems.

This work is an extension of previous research
(Oplatkova et al., 2010a; 2010b), (Senkerik et al.,
2010b) focused on stabilization of simple p-1 orbit –
stable state and p-2 orbit. In general, this research is
concerned to stabilize p-4 UPO – high periodic orbit
(oscillations between four values).

Firstly, AP is explained, and then a problem design
is proposed. The next sections are focused on the
description of used cost function and evolutionary
algorithms. Results and conclusion follow afterwards.

2. PROBLEM DESIGN
The brief description of used chaotic systems and
original feedback chaos control method, ETDAS is
given. The ETDAS control technique was used in this
research as an inspiration for synthesizing a new
feedback control law by means of evolutionary
techniques.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 458

2.1. Selected Chaotic System
The chosen example of chaotic systems was the one-
dimensional Logistic equation in form (1).

 ()nnn xrxx −=+ 11 (1)

The Logistic equation (logistic map) is a one-
dimensional discrete-time example of how complex
chaotic behaviour can arise from very simple non-linear
dynamical equation (Hilborn, 2000). This chaotic
system was introduced and popularized by the biologist
Robert May (May, 2001). It was originally introduced
as a demographic model as a typical predator – prey
relationship. The chaotic behaviour can be observed by
varying the parameter r. At r = 3.57 is the beginning of
chaos, at the end of the period-doubling behaviour. At
r > 3.57 the system exhibits chaotic behaviour. The
example of this behaviour can be clearly seen from
bifurcation diagram – Figure 1.

Figure 1: Bifurcation diagram of Logistic Equation

2.2. ETDAS Control Method
This work is focused on explanation of application of
AP for synthesis of a whole control law instead of
demanding tuning of EDTAS method control law to
stabilize desired Unstable Periodic Orbits (UPO). In this
research desired UPO is only p-2 (higher periodic orbit
– oscillation between two values). ETDAS method was
obviously an inspiration for preparation of sets of basic
functions and operators for AP.
The original control method – ETDAS has form (2).

() ()[])(1)(txtSRKtF d −−−= τ
()dtRStxtS τ−+=)()((2)

Where: K and R are adjustable constants, F is the
perturbation; S is given by a delay equation utilizing
previous states of the system and dτ is a time delay.

The original control method – ETDAS in the
discrete form suitable for one-dimensional Logistic
equation has the form (3).

() nnnn Fxrxx +−=+ 11
()[]nmnn xSRKF −−= −1

mnnn RSxS −+= (3)

Where: m is the period of m-periodic orbit to be
stabilized. The perturbation nF in equations (3) may
have arbitrarily large value, which can cause diverging
of the system outside the interval {0, 1.0}. Therefore,

nF should have a value between maxF− , maxF . In this
preliminary study a suitable maxF value was taken from
the previous research. To find the optimal value also for
this parameter is in future plans.

Previous research concentrated on synthesis of
control law only for p-1 orbit (a fixed point). An
inspiration for preparation of sets of basic functions and
operators for AP was simpler TDAS control method (4)
and its discrete form suitable for logistic equation given
in (5).

()[])()(txtxKtF −−= τ (4)
()nmnn xxKF −= − (5)

2.3. Cost Function
Proposal for the cost function comes from the simplest
Cost Function (CF). The core of CF could be used only
for the stabilization of p-1 orbit. The idea was to
minimize the area created by the difference between the
required state and the real system output on the whole
simulation interval – τi.

But another universal cost function had to be used
for stabilizing of higher periodic orbit and having the
possibility of adding penalization rules. It was
synthesized from the simple CF and other terms were
added. In this case, it is not possible to use the simple
rule of minimizing the area created by the difference
between the required and actual state on the whole
simulation interval – τi, due to many serious reasons, for
example: degrading of the possible best solution by
phase shift of periodic orbit.

This CF is in general based on searching for
desired stabilized periodic orbit and thereafter
calculation of the difference between desired and found
actual periodic orbit on the short time interval - τs (40
iterations) from the point, where the first min. value of
difference between desired and actual system output is
found. Such a design of CF should secure the successful
stabilization of either p-1 orbit (stable state) or higher
periodic orbit anywise phase shifted. The CFBasic has the
form (6).

∑
=

−+=
2

1
1

τ

τt
ttBasic ASTSpenCF , (6)

where:
TS - target state, AS - actual state
τ1 - the first min value of difference between TS and AS
τ2 – the end of optimization interval (τ1+ τs)
pen1= 0 if τi - τ2 ≥ τs;
pen1= 10*(τi - τ2) if τi - τ2 < τs (i.e. late stabilization).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 459

3. ANALYTIC PROGRAMMING
Basic principles of the AP were developed in 2001
(Zelinka et al. 2005). Until that time only Genetic
Programming (GP) and Grammatical Evolution (GE)
had existed. GP uses Genetic Algorithms (GA) while
AP can be used with any EA, independently on
individual representation. To avoid any confusion,
based on the nomenclature according to the used
algorithm, the name - Analytic Programming was
chosen, since AP represents synthesis of analytical
solution by means of EA.

The core of AP is based on a special set of
mathematical objects and operations. The set of
mathematical objects is a set of functions, operators and
so-called terminals (as well as in GP), which are usually
constants or independent variables. This set of variables
is usually mixed together and consists of functions with
different number of arguments. Because of a variability
of the content of this set, it is termed the “general
functional set” – GFS. The structure of GFS is created
by subsets of functions according to the number of their
arguments. For example GFSall is a set of all functions,
operators and terminals, GFS3arg is a subset containing
functions with only three arguments, GFS0arg represents
only terminals, etc. The subset structure presence in
GFS is vitally important for AP. It is used to avoid
synthesis of pathological programs, i.e. programs
containing functions without arguments, etc. The
content of GFS is dependent only on the user. Various
functions and terminals can be mixed together (Zelinka
et al. 2005, Zelinka et al. 2008, Oplatkova et al. 2009).

The second part of the AP core is a sequence of
mathematical operations, which are used for the
program synthesis. These operations are used to
transform an individual of a population into a suitable
program. Mathematically stated, it is a mapping from an
individual domain into a program domain. This
mapping consists of two main parts. The first part is
called Discrete Set Handling (DSH) (See Figure 2)
(Zelinka et al. 2005, Lampinen and Zelinka 1999) and
the second one stands for security procedures which do
not allow synthesizing pathological programs.

Figure 2: Discrete set handling

Figure 3: The main principles of AP

The method of DSH, when used, allows handling

arbitrary objects including nonnumeric objects like
linguistic terms {hot, cold, dark…}, logic terms (True,
False) or other user defined functions. In the AP, DSH
is used to map an individual into GFS and together with
security procedures creates the above-mentioned
mapping, which transforms arbitrary individual into a
program.

AP needs some EA (Zelinka et al. 2005) that
consists of a population of individuals for its run.
Individuals in the population consist of integer
parameters, i.e. an individual is an integer index
pointing into GFS. The creation of the program can be
schematically observed in Figure 3. The individual
contains numbers which are indices into GFS. The
detailed description is represented in (Zelinka et al.
2005, Zelinka et al. 2008, Oplatkova et al. 2009).

AP exists in 3 versions – basic without constant
estimation, APnf – estimation by means of nonlinear
fitting package in Mathematica environment and APmeta
– constant estimation by means of another evolutionary
algorithms; meta implies metaevolution.

4. USED EVOLUTIONARY ALGORITHMS
This research used two evolutionary algorithms: Self-
Organizing Migrating Algorithm (Zelinka 2004) and
Differential Evolution (Price and Storn 2001, Price
2005). Future simulations expect a usage of soft
computing GAHC algorithm (modification of HC12)
(Matousek 2007) and a CUDA implementation of HC12
algorithm (Matousek 2010).

4.1. Self Organizing Migrating Algorithm – SOMA
SOMA is a stochastic optimization algorithm that is
modelled on the social behaviour of cooperating
individuals (Zelinka 2004). It was chosen because it has
been proven that the algorithm has the ability to
converge towards the global optimum (Zelinka 2004)
and due to the successful applications together with AP
(Varacha and Zelinka 2008, Varacha and Jasek 2011).

SOMA works with groups of individuals
(population) whose behavior can be described as a
competitive – cooperative strategy. The construction of
a new population of individuals is not based on
evolutionary principles (two parents produce offspring)
but on the behavior of social group, e.g. a herd of

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 460

animals looking for food. This algorithm can be
classified as an algorithm of a social environment. To
the same group of algorithms, Particle Swarm
Optimization (PSO) algorithm can also be classified
sometimes called swarm intelligence. In the case of
SOMA, there is no velocity vector as in PSO, only the
position of individuals in the search space is changed
during one generation, referred to as ‘migration loop’.

The rules are as follows: In every migration loop
the best individual is chosen, i.e. individual with the
minimum cost value, which is called the Leader. An
active individual from the population moves in the
direction towards the Leader in the search space. At the
end of the crossover, the position of the individual with
minimum cost value is chosen. If the cost value of the
new position is better than the cost value of an
individual from the old population, the new one appears
in new population. Otherwise the old one remains there.
The main principle is depicted in Figures 4 and 5.

Figure 4: Principle of SOMA, movement in the
direction towards the Leader

Figure 5: Basic principle of crossover in SOMA,
PathLength is replaced here by Mass

4.2. Differential Evolution
DE is a population-based optimization method that
works on real-number-coded individuals (Price, 2005).
A schematic is given in Figure 6. There are essentially
five sections to the code. Section 1 describes the input
to the heuristic. D is the size of the problem, Gmax is the
maximum number of generations, NP is the total
number of solutions, F is the scaling factor of the
solution and CR is the factor for crossover. F and CR
together make the internal tuning parameters for the
heuristic.

Section 2 outlines the initialization of the heuristic.
Each solution xi,j,G=0 is created randomly between the
two bounds x(lo) and x(hi). The parameter j represents the
index to the values within the solution and i indexes the
solutions within the population. So, to illustrate, x4,2,0
represents the fourth value of the second solution at the
initial generation.

After initialization, the population is subjected to
repeated iterations in section 3.

Section 4 describes the conversion routines of DE.
Initially, three random numbers r1, r2, r3 are selected,
unique to each other and to the current indexed solution
i in the population in 4.1. Henceforth, a new index jrand
is selected in the solution. jrand points to the value being
modified in the solution as given in 4.2. In 4.3, two
solutions, xj,r1,G and xj,r2,G are selected through the index
r1 and r2 and their values subtracted. This value is then
multiplied by F, the predefined scaling factor. This is
added to the value indexed by r3.

However, this solution is not arbitrarily accepted in
the solution. A new random number is generated, and if
this random number is less than the value of CR, then
the new value replaces the old value in the current
solution. The fitness of the resulting solution, referred
to as a perturbed vector uj,i,G., is then compared with the
fitness of xj,i,G. If the fitness of uj,i,G is greater than the
fitness of xj,i,G., then xj,i,G. is replaced with uj,i,G;
otherwise, xj,i,G. remains in the population as xj,i,G+1.
Hence the competition is only between the new child
solution and its parent solution.

Figure 6: DE Schematic

DE is quite robust, fast, and effective, with global
optimization ability. It does not require the objective
function to be differentiable, and it works well even

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 461

with noisy and time-dependent objective functions.
Description of used DERand1Bin strategy is presented
in (7). Please refer to (Price and Storn 2001, Price 2005)
for the description of all other strategies. These
strategies differ in the way of calculating the perturbed
vector uj,i,G.

()GrGrGrGi xxFxu ,3,2,11, −⋅+=+ (7)

5. SIMULATION RESULTS
As described in section about Analytic Programming,
AP requires some EA for its run. In this paper APmeta
version was used. Meta-evolutionary approach means
usage of one main evolutionary algorithm for AP
process and second algorithm for coefficient estimation,
thus to find optimal values of constants in the
evolutionary synthesized control law.

SOMA algorithm was used for main AP process
and DE was used in the second evolutionary process.
Settings of EA parameters for both processes were
based on performed numerous experiments with chaotic
systems and simulations with APmeta (Table 1 and Table
2).

Table 1: SOMA settings for AP

PathLength 3
Step 0.11
PRT 0.1
PopSize 50
Migrations 4
Max. CF Evaluations (CFE) 5345

Table 2: DE settings for meta-evolution
PopSize 40
F 0.8
CR 0.8
Generations 150
Max. CF Evaluations (CFE) 6000

Compared to previous research with stabilization
of stable state - p-1 orbit, the data set for AP required
only constants, operators like plus, minus, power and
output values nx and 1−nx . Due to the recursive
attributes of delay equation S utilizing previous states of
the system in discrete ETDAS (3), the data set for AP
had to be expanded and cover longer system output

history, thus to imitate inspiring control method for the
successful synthesis of control law securing the
stabilization of higher periodic orbits.

Basic set of elementary functions for AP:

 GFS2arg= +, -, /, *, ^
GFS0arg= datan-11 to datan, K

Total number of 200 simulations was carried out.
The most simulations were successful and have given
new synthesized control law, which was able to
stabilize the system at required behaviour (p-4 orbit)
within short simulation interval of 200 iterations.

Total number of cost function evaluations for AP
was 5345, for the second EA it was 6000, together
32.07 millions per each simulation. All experiments
were performed in the Wolfram Mathematica
environment. One experiment (simulation) took approx.
72 hours. See Table 3 for simple CF values statistic.

Table 3: Cost Function values

Min 0.0314
Max 8.9088
Average 0.6178

The novelty of this approach represents the

synthesis of feedback control law Fn (8) (perturbation)
for the Logistic equation inspired by original ETDAS
control method.

() nnnn Fxrxx +−=+ 11 (8)

Following Table 4 and Figure 7 contains examples
of synthesized control laws. Obtained simulation results
can be classified into 2 groups, based on the quality and
durability of stabilization at real p-4 UPO, which for
unperturbed Logistic equation has following values:
x1 = 0.3038, x2 = 0.8037, x3 = 0.5995, x4 = 0.9124. More
about this phenomenon is written in the conclusion
section.

Table 4 covers direct output from AP – synthesized
control law without coefficients estimated, further the
notation with simplification after estimation by means
of second algorithm DE, corresponding CF value,
average error between actual and required system
output, and identification of figure with simulation
results.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 462

Table 4: Simulation results

Control Law Control Law with coefficients CF Value
Avg.

output
error

Figure

()13

4
2 KxK

xF K
n

n
n −

−= −
1071.92

0200224.0

5239.50
1

4

−
= −

n

n
n

x

xF 0.0314 0.0006 7a

1

2

K
nx

nn xF −=
6383.34

2
nx

nn xF −= 0.1007 0.0020 7b

() ()1112
225

−− −
−−− += n
K
nn xx

nn
x
nn xxxF () ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−−

−

− +=
115805.35

1

2
225

nn

n

xx

nn
x
nn xxxF

0.1139 0.0023 7c

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−=
−−

−

−

n
nn

n

n
n

xKK
K

xxxK

xF

42
3

15
11

3

() 0758.70295.325017878.0 151

3

−−−
−=

−−−

−

nnnn

n
n xxxx

xF 0.4814 0.0096 7d

Figure 7a Figure 7b

Figure 7c

Figure 7d

Figure 7: Examples of results – stabilization of p-4 orbit for Logistic equation by means of control laws given in Table 4.

6. CONCLUSION
This paper deals with a synthesis of a control law by
means of AP for stabilization of selected chaotic system
at high periodic orbit. Logistic equation as an example
of one-dimensional discrete chaotic system was used in
this research.

In this presented approach, the analytic programming
was used instead of tuning of parameters for existing
control technique by means of EA’s as in the previous
research.

Obtained results reinforce the argument that AP is
able to solve this kind of difficult problems and to
produce a new synthesized control law in a symbolic

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 463

way securing desired behaviour of chaotic system and
stabilization.

Presented four simulation examples show two
different results. Low CF values indicating precise, but
unfortunately sometimes unstable and only temporary
stabilization, together with simple control law in the
first two cases. And according to the higher CF values
not very precise, but very stable and relatively complex
notation of chaotic controller in the next two cases. This
phenomenon is caused by the design of CF, which was
borrowed from the previous research focused on the
simpler cases, which were stabilization of stable state
and p-2 orbit, and it has given satisfactory results
Nevertheless this fact lends weight to the argument, that
AP is a powerful symbolic regression tool, which is
able to strictly and precisely follow the rules given by
cost function and synthesizes any symbolic formula, in
the case of this research – the feedback controller for
chaotic system.

The question of energy costs and more precise and
faster stabilization will be included into future research
together with development of better cost functions,
different AP data set, and performing of numerous
simulations to obtain more results and produce better
statistics, thus to confirm the robustness of this
approach.

Future research will be also aimed at the time-
continuous systems, not only discrete chaotic maps.

ACKNOWLEDGMENTS
This work was supported by the European Regional
Development Fund under the project CEBIA-Tech No.
CZ.1.05/2.1.00/03.0089 and project IT4Innovations
Centre of Excellence No. CZ.1.05/1.1.00/02.0070 and
and by Internal Grant Agency of Tomas Bata University
under the project No.IGA/FAI/2012/037.

REFERENCES
Hilborn R.C., 2000. Chaos and Nonlinear Dynamics: An

Introduction for Scientists and Engineers, Oxford
University Press, 2000, ISBN: 0-19-850723-2.

Just W., 1999, “Principles of Time Delayed Feedback
Control”, In: Schuster H.G., Handbook of Chaos
Control, Wiley-Vch, ISBN 3-527-29436-8.

Kwon O. J., 1999. “Targeting and Stabilizing Chaotic
Trajectories in the Standard Map”, Physics Letters A.
vol. 258, 1999, pp. 229-236.

Lampinen J., Zelinka I., 1999, “New Ideas in Optimization –
Mechanical Engineering Design Optimization by
Differential Evolution”, Volume 1, London: McGraw-
hill, 1999, 20 p., ISBN 007-709506-5.

Matousek R., 2007, „GAHC: Improved GA with HC station“,
In WCECS 2007, San Francisco, pp. 915‐920. ISBN:
978‐988‐98671‐6‐4.

Matousek R., 2010, „HC12: The Principle of CUDA
Implementation“. In MENDEL 2010, Mendel Journal
series, pp. 303‐308. ISBN: 978‐80‐214‐4120‐ 0. ISSN:
1803‐ 3814.

May R.M., 2001, “Stability and Complexity in Model
Ecosystems”, Princeton University Press, ISBN: 0-691-
08861-6.

Oplatková, Z., Zelinka, I.: 2009. Investigation on
Evolutionary Synthesis of Movement Commands,

Modelling and Simulation in Engineering, Volume 2009
(2009), Article ID 845080, 12 pages, Hindawi
Publishing Corporation, ISSN: 1687-559.

Oplatkova Z., Senkerik R., Zelinka I., Holoska J., 2010a,
Synthesis of Control Law for Chaotic Henon System -
Preliminary study, ECMS 2010, Kuala Lumpur,
Malaysia, p. 277-282, ISBN 978-0-9564944-0-5.

Oplatkova Z., Senkerik R., Belaskova S., Zelinka I., 2010b,
Synthesis of Control Rule for Synthesized Chaotic
System by means of Evolutionary Techniques, Mendel
2010, Brno, Czech Republic, p. 91 - 98, ISBN 978-80-
214-4120-0.

Ott E., C. Greboki, J.A. Yorke, 1990. “Controlling Chaos”,
Phys. Rev. Lett. vol. 64, 1990, pp. 1196-1199.

Price, K. and Storn, R. (2001), Differential evolution
homepage, [Online]:
http://www.icsi.berkeley.edu/~storn/code.html,
[Accessed 29/02/2012].

Price K., Storn R. M., Lampinen J. A., 2005, “Differential
Evolution : A Practical Approach to Global
Optimization”, (Natural Computing Series), Springer; 1
edition.

Pyragas K., 1992, “Continuous control of chaos by self-
controlling feedback”, Physics Letters A, 170, 421-428.

Pyragas K., 1995. “Control of chaos via extended delay
feedback”, Physics Letters A, vol. 206, 1995, pp. 323-
330.

Senkerik R., Zelinka I., Davendra D., Oplatkova Z., 2010a,
“Utilization of SOMA and differential evolution for
robust stabilization of chaotic Logistic equation”,
Computers & Mathematics with Applications, Volume
60, Issue 4, pp. 1026-1037.

Senkerik R., Oplatkova Z., Zelinka I., Davendra D.,Jasek R.,
2010b, “Synthesis Of Feedback Controller For Chaotic
Systems By Means Of Evolutionary Techniques,”,
Proceeding of Fourth Global Conference on Power
Control and Optimization, Sarawak, Borneo, 2010.

Varacha P; Jasek, R., “ANN Synthesis for an Agglomeration
Heating Power Consumption Approximation“. In:
Recent Researches in Automatic Control. Montreux :
WSEAS Press, p. 239-244. ISBN 978-1-61804-004-6.

Varacha P., Zelinka I., 2008, “Distributed Self-Organizing
Migrating Algorithm Application and Evolutionary
Scanning”. In: Proceedings of the 22nd European
Conference on Modelling and Simulation ECMS 2008,
p. 201-206. ISBN 0-9553018-5-8.

Zelinka I., 2004. “SOMA – Self Organizing Migrating
Algorithm”, In: New Optimization Techniques in
Engineering, (B.V. Babu, G. Onwubolu (eds)), chapter
7, 33, Springer-Verlag, 2004, ISBN 3-540-20167X.

Zelinka I.,Oplatkova Z, Nolle L., 2005. Boolean Symmetry
Function Synthesis by Means of Arbitrary Evolutionary
Algorithms-Comparative Study, International Journal of
Simulation Systems, Science and Technology, Volume
6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-
8031.

Zelinka I., Senkerik R., Navratil E., 2009, “Investigation on
evolutionary optimization of chaos control”, Chaos,
Solitons & Fractals, Volume 40, Issue 1, pp. 111-129.

Zelinka, I., Guanrong Ch., Celikovsky S., 2008. Chaos
Synthesis by Means of Evolutionary algorithms,
International Journal of Bifurcation and Chaos, Vol. 18,
No. 4 (2008) 911–942

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 464

TRANSFORMATION ALGORITHM FROM AN ALTERNATIVES AGGRE GATION
PETRI NET TO A COMPOUND PETRI NET. TWO REPRESENTATI ONS OF AN

UNDEFINED PETRI NET WITH A NON-EMPTY SET OF EXCLUSI VE ENTITIES

Juan Ignacio Latorre-Biel(a), Emilio Jiménez-Macías (b)

(a) Public University of Navarre. Deptartment of Mechanical Engineering, Energetics and Materials.
Campus of Tudela, Spain

(b) University of La Rioja. Industrial Engineering Technical School.
Department of Electrical Engineering. Logroño, Spain

(a)juanignacio.latorre@unavarra.es, (b)emilio.jimenez@unirioja.es

ABSTRACT
Simulation, analysis, decision making, and control of
discrete event systems, are examples of very common
applications in industrial and technological fields. All
these operations require the representation of the
discrete event system in an appropriate formal language,
that is to say obtaining the best suited model for the
current application. A very common family of
formalisms is the paradigm of the Petri nets. Different
Petri net-based formalisms present different modelling
power and diverse features, which make them especially
suited for a given operation. In the field of decision
making, where there exist a number of alternative
structural configurations, the alternatives aggregation
Petri nets and the compound Petri nets, lead to compact
models for describing a discrete event system. This
paper describes a transformation algorithm between
them and an example to illustrate the application of the
different steps. This transformation algorithm allows a
fast transformation between both formalisms for
applications related to decision making, since it is not
necessary to perform a previous transformation to an
intermediate set of alternative Petri nets to afford the
construction of a compound Petri net from an
alternatives aggregation Petri net.

Keywords: Petri nets, transformation, alternatives
aggregation Petri nets, compound Petri nets, decision
making

1. INTRODUCTION
Petri nets constitute one of the best suited formalisms
for representing discrete event systems with complex
behaviour. Petri nets (PN) are in fact a family of
formalisms, each one of which have been developed for
being more suited for a given application. The
expressiveness and modelling power of the different
formalisms may be related to the constraints imposed to
their definitions. Some of the formalisms introduce
exogenous elements such as time, in interpreted Petri
nets, or random variables, in generalized stochastic Petri

nets, while others transfer information of the static
structure from the elements of the incidence matrices,
weight of the arcs, to features of the tokens, in coloured
Petri nets (Jensen and Kristensen, 2009; David and
Alla, 2005; Silva, 1993).

The applications of these particular Petri net-based
formalisms range from structural analysis to
performance analysis and the compact representation of
large systems with shared subsystems. The
transformation algorithms allow translating a model of a
discrete event system form a given formalism to a
different one or simplifying the representation of a
given model. This translation is useful for performing
certain operations in a model represented by a
formalism that is not suited for the aimed application.

Alternatives aggregation Petri nets (AAPN) and
compound Petri nets are two Petri net-based formalisms
that have been defined for decision making. Both of
them are well suited for representing in a compact way
a model of a system with alternative structural
configurations (Latorre et al. 2011b, Latorre et al.
2009). In real applications of decision making related to
discrete event systems with alternative structural
configurations it is common to represent the system by
means of a set of alternative Petri nets (Tsinarakis et al.
2005, Zimmerman et al. 2001). Algorithms have been
described to transform a set of alternative Petri nets into
an alternatives aggregation Petri net (Latorre et al.
2009) and into a compound Petri net (Latorre et al.
2011a). In this paper, an algorithm for transforming an
alternatives aggregation Petri net to a compound Petri
net is described, as well as an example of application to
illustrate the different steps. This algorithm is aimed to
allow a direct and fast transformation of a model
between these two formalisms for applications such as
the comparison of the performance of a given model
represented in both formalisms when integrated in a
decision problem.

In section 2, the definitions that are relevant for the
application of the transformation algorithm are given.
The section 3 is focussed on the transformation

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 465

algorithm itself. Some considerations on a reduction
rule to simplify the compound Petri net obtained from
the algorithm are presented in the section 4. One
important step in the transformation algorithm is
explained in the section 5: the translation of the set of
exclusive entities associated to the model of the discrete
event system from their representation as a set of choice
variables to a set of feasible combinations of values for
the undefined structural parameters of the resulting
compound Petri net. An example of application is
detailed in the section 6, while the following section is
devoted to the conclusions and future research lines.
Finally, the last section lists the bibliographical
references of this paper.

2. DEFINITIONS
An alternatives aggregation Petri net can be defined in
the following way:
Definition 1. Alternatives aggregation Petri net system.

An alternatives aggregation Petri net system, RA, is
defined as the 8-tuple:

RA = 〈P, T, pre, post, m0, Sα, Svalα, SA , fA〉
where,

• P is the set of places.
• T is the set of transitions.
• pre is the pre-incidence matrix, also called

input incidence matrix.
• post is the post-incidence matrix, also called

output incidence matrix.
• m0 is the initial marking that represents the

initial vector of state and is usually a function
of the choice variables.

• Sα is a set of undefined parameters.
• Svalα is the set of feasible combination of

values for the undefined parameters in Sα .
• SA is a set of choice variables such that SA ≠ ∅

and |SA| = n.
• fA: T → f(a1, …, an) assigns a function of the

choice variables to each transition t such that
type[fA(t)] = Boolean.

□
Where a set of choice variables is given by:
Let cstr ∈ Cstr = {1, 2, …, mstrq} ⊆ Ν*.
A set of choice variables can be defined as SA = {a1,

a2, …, amstrq | ∃∃∃∃! ai=1, i ∈ Cstr ∧ aj=0 ∀ j≠i, j ∈ Cstr }
Furthermore, the dynamic behaviour of an

alternatives aggregation Petri net is given by an
enabling rule that differs slightly from most of the
formalisms based on Petri nets. The firing rule is the
one of a generalized Petri net.

Definition 2. Enabled transition.

Given an alternatives aggregation Petri net RA with
an associated set of choice variables SA = { a1, a2, …, an
}, let us consider the following decision:

ai = 1 ⇒ ai = 0 ∀ j ∈ Ν* such that
1 ≤ j ≤ n ∧ j ≠ i

A transition tj ∈ T in an alternatives aggregation
Petri net is said to be enabled if

mi ≥ pre(pi, tj) ∀ pi ∈ ºtj ∧ fA(tj) = 1
□

On the other hand, a compound Petri net can be
defined from a parametric point of view, as in (Latorre
et al, 2011c).

Moreover, a more classic approach (Silva, 1993)
for the definition of a compound Petri net can be given
as stated below:
Definition 3. Compound Petri net.

A compound Petri net is a 7-tuple
Rc = 〈 P, T, F, w, m0, Sα, Svalα 〉, where

i) Sα is the set of undefined parameters of Rc.
ii) Sstrα ≠ ∅ is the set of undefined structural

parameters of Rc, such that Sstrα ⊆ Sα. Notice that Sα is
the set of undefined parameters of Rc.

iii) Svalα is the feasible combination of values for
the undefined parameters .

□
A compound Petri net can be considered as a

parametric Petri net with undefined structural
parameters.

The structural parameters refer to the elements of
the incidence matrix of a Petri net. If a Petri net has
undefined structural parameters it has a structure with
certain freedom degrees that should be specified by a
decision from the set of feasible combinations of values
for them.

In summary, the undefined structural parameters
are present in models that correspond with DES with
undefined structure, in process of being designed,
modified or controlled.

3. TRANSFORMATION FROM AN AAPN TO A

COMPOUND PN
In (Latorre et al. 2011b) it was described a
transformation algorithm to obtain an alternatives
aggregation Petri net from a compound Petri net. The
algorithm presented in this paper solves the opposite
transformation and verifies that it is possible to perform
a double transformation, using both algorithms
sequentially, to return to the initial representation of the
discrete event system. As a conclusion it is possible to
state that both transformations are reversible.

The algorithm to perform a direct and fast

transformation from an alternatives aggregation Petri
net RA to a compound Petri net is presented in the
following.

Algorithm.

Step 1.
Create a set of variables Svalstrα(Rc) = { cv1 , cv2 , …

,
rncv } such that |Svalstrα(Rc)| = |SA|,

where SA = { a1 , a2 , … ,
rna } is the set of choice

variables of RA.

Create a bijection between Svalstrα(Rc) and SA.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 466

This set Svalstrα(Rc) will contain the feasible
combinations of values for the undefined structural
parameters of the resulting compound Petri net.

Step 2.

Apply reduction rules to the columns of the
incidence matrix of the AAPN, RA, which have
elements in common and are associated to different
choice variables, aiming to obtain a more compact
matrix.

Step 3.

For every transition ti ∈ T(RA), with a function of
choice variables associated to it, fA(ti,aj) , transform this
function into the sets Sstrα(ti) and Svalstrα(ti).

Step 4.

Represent the resulting compound Petri net Rc.
□

4. TRANSFORMATION FROM AN AAPN TO A

COMPOUND PN
Reduction rules have been developed for the
simplification of Petri net models in order to perform
structural analysis or performance analysis in an easier
or more efficient way. See for example (Berthelot,
1987) and (Haddad and Pradat-Peyre, 2006). One of the
reduction rules is based on the reduction of several
identical transitions to a single one (Berthelot, 1987)
and (Silva, 1993).

In order to apply this rule to an alternatives
aggregation Petri net, it is necessary to consider two or
more columns of the incidence matrix of the alternatives
aggregation Petri net associated to functions of choice
variables, which do not have any choice variable in
common. It is possible to merge the mentioned columns
by the creation of the appropriate undefined structural
parameters if there are elements belonging to different
columns but to the same row that are not equal and
modifying the function of choice variables.

Furthermore, a simplication rule can also be
applied, since according to the Boole algebra if the
function of choice variables includes every choice
variable in the form a1 + a2 + … + an, where |SA| = n,
then the function can be removed since it is true after
any decision that selects one of the choice variables.

5. TRANSFORMATION OF THE FUNCTIONS

OF CHOICE VARIABLES INTO UNDEFINED
STRUCTURAL PARAMETERS.

This step is complementary to the previous one. The
difference between both operations is that the previous
one merges columns of the incidence matrix of the
AAPN aiming to obtain a more compact incidence
matrix, while this operation manages to eliminate the
functions of choice variables and to convert the AAPN
into a compound alternative Petri net

In order to proceed as explained, this step develops
a reverse operation to a replication of the transitions
with associated function of choice variables. Taken a

column with a function of choice variables that does not
include a certain choice variable, a new isolated
transition is added (a columns of zeros) and associated
to this missing choice variable (Latorre et al. 2011b).
Then, both transitions are merged by the creation of the
appropriate choice variables and increasing the sets of
feasible values for the undefined structural parameters if
necessary.

On the other hand, the function of choice variables
acquires the choice variable of the merged isolated
transition.

The resulting function of choice variables might
include all the choice variables. In this case, by the
application of the simplification rule mentioned in the
section 4, the function can be removed. Otherwise,
another operation of creation of an isolated transition
associated to another missing choice variable and the
merge of it can be performed and so on.

As a consequence of the previous explanations it is
possible to see that the operation described in this
section 5 can be decomposed in the following steps:

a) Replication of the transition associated to
functions of choice variables to isolate the individual
choice variables. This operation is the opposite to the
reduction rule of the transformation described in the
previous section.

b) Addition of isolated transitions to complete the
choice variables in every transition of the original net.

c) Merging of the transitions with different choice
variables and with arcs to the same places and which
complete the set of choice variables SA.

Notice that all the operations described in this
section are the opposite operation to those applied in the
reverse transformation from a compound Petri net into
an alternatives aggregation Petri net (Latorre et al.
2011b). Due to the fact that the equivalence between the
nets before and after the operations are the same and
that they are reversible, their application can be
performed in this algorithm.

6. EXAMPLE OF APPLICATION.

This example will describe the application of the
different steps of the algorithm described in the section

p1

2

p2 p3

a1+a3 a2

a1 a2+a3

Fig. 1. Graphical representation of the
AAPN to be converted into a compound PN.

2

a3 t1 t2 t5

t3 t4

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 467

3 for the transformation of an alternatives aggregation
Petri net into a compound Petri net. The original
alternatives aggregation Petri net to be transformed is
shown in the figure 1 in its graphical form and its
matrix-based representation is given in the figure 2.

Step 1.
The set of choice variables of the AAPN is SA = {

a1, a2, a3 }.

As a consequence, the set of variables associated to
the feasible combination of values for the undefined
structural parameters of the resulting compound Petri
net, Rc, is created:

Svalstrα(Rc) = { cv1 , cv2 , cv3 } such that |Svalstrα(Rc)|
= |SA| = 3.

On the other hand, a bijection between Svalstrα(Rc)

and SA is defined and their elements are made
correspond, resulting in the following pairs:

(cv1 , a1), (cv2 , a2) and (cv3 , a3)

Step 2.
Apply reduction rules to the columns of the

incidence matrix of the AAPN, RA that have elements in
common and are associated to different choice
variables, aiming to obtain a more compact matrix.

The first couple of columns to be merged are the
1st and the 2nd ones. In the first case the associated
function of choice variables is fA(t1, ai) = a1 + a3.
Moreover, the second column is associated to
fA(t2, ai) = a2.

In order to merge both columns, the elements that
are placed in the same row are compared and if they are
different an undefined structural parameter is created:

Row 1: w11 = w12 = -1 ⇒ '
11w = -1

Row 2: w21 = 2, w22 = 1 ⇒ '
21w = α4, where

4αvalS = { 1, 2 }

Due to the fact that w21 = 2 was associated to

a1 + a3 and that there is a bijection that makes the pairs

(cv1 , a1) and (cv3 , a3), then α4 = 2 will be associated to
the following combinations of choice variables: cv1 and
cv3.

On the other hand, w22 = 1 was associated to a2 and
the bijection defines the pair (cv2 , a2), then α4 = 1 will
be associated to the combination of choice variables cv2.

Row 3: w31 = 0, w32 = 1 ⇒ '
31w = α7, where

7αvalS = { 0, 1 } and α7 = 0 is associated to cv1 and cv3,

whereas α7 = 1 is associated to cv2.

The result of this first merging of columns can be
seen in the figure 3.

Where Svalstrα = { cv1, cv2, cv3 } = { (…, α4 = 2 , …,

α7 = 0 , …) , (…,α4 = 1 , …, α7 = 1 , …) , (…,α4 = 2 ,
…, α7 = 0 , …) }

Furthermore, the function of choice variables
associated to the resulting transition, called t1 in the
figure 3, can be removed since it contains all the choice
variables, as it is justified in the section 4.

Another couple of columns in the incidence matrix
can be merged. They are the ones associated to the
transitions t3 and t4. In the first case the associated
function of choice variables is fA(t3, ai) = a1. Moreover,
the second column is associated to fA(t4, ai) = a2 + a3.

In order to merge both columns, the elements that
are placed in the same row are compared and if they are
different an undefined structural parameter is created:

Row 1: w12 = w13 = 1 ⇒ '
12w = 1

Row 2: w22 = w23 = -1 ⇒ '
22w = -1

Row 3: w32 = 0, w33 = -1 ⇒ '
32w = - α8, where

8αvalS = { 0, 1 } and α8 = 0 is associated to cv1, whereas

α8 = 1 is associated to cv2 and cv3.

The result of this second reduction of transitions
can be seen in the figure 4.

t1 t3 t4 t5
-1 1 1 -1 p1
α4 -1 -1 0 p2
α7 0 -1 2 p3

 a1 a3

W(AR1) =

Fig. 3. First reduction of transitions.

a1+a3+a3 a2+a3

t1 t2 t3 t4 t5
-1 -1 1 1 -1 p1
2 1 -1 -1 0 p2
0 1 0 -1 2 p3

 a2 a1 a3

W(RA) =

Fig. 2 Matrix-based representation of the
AAPN to be converted into a compound PN.

a1+a3 a2+a3

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 468

Where
 Svalstrα = { cv1, cv2, cv3 } = { (…, α4 = 2 , …, α7 = 0 , α8
= 0, …) ,
(…,α4 = 1 , …, α7 = 1 , α8 = 1 , …) , (…,α4 = 2 , …, α7
= 0 , α8 = 1 , …) }

Furthermore,
 the function of choice variables associated to the
resulting transition can be removed since it contains all
the choice variables, as it is justified in the section 4.

Step 3.

For every transition ti ∈ T(RA), transform the
function of choice variables associated to it, fA(ti,aj) ,
into the sets Sstrα(ti) and Svalstrα(ti).

In the case of t1 and t3, the associated function of
choice variables has been removed and the subsequent
sets Sstrα(ti) and Svalstrα(ti) have already been obtained.

On the contrary, t5 has an associated function of
choice variables, which is fA(t5,ai) = a3.

In order to develop this step, two new isolated

transitions will be added, associated to the choice
variables a1 and a2 respectively (Latorre et al. 2011a).
The result can be seen in the resulting incidence matrix
written in the figure 5.

At this stage, it is possible to reduce the transitions

t5, t6 and t7.

In order to merge the three columns of the
incidence matrix related to these transitions, the
elements that are placed in the same row are compared
and if they are different an undefined structural
parameter is created:

Row 1: w13 = -1 and w14 = w15 = 0 ⇒ '
13w = -α3, where

3αvalS = { 0, 1 } and α3 = 0 is associated to cv1 and cv2,

whereas α3 = 1 is associated to cv3.

Row 2: w23 = w24 = w25 = 0 ⇒ '
23w = 0.

Row 3: w33 = 2 and w34 = w35 = 0 ⇒ '
33w = α9, where

9αvalS = { 0, 2 } and α9 = 0 is associated to cv1 and cv2,

whereas α9 = 2 is associated to cv3.

The result of this step can be seen in the incidence
matrix given in the figure 6.

At this stage, it is possible to reduce the transitions

t5, t6 and t7.

In order to merge the three columns of the
incidence matrix related to these transitions, the
elements that are placed in the same row are compared
and if they are different an undefined structural
parameter is created:

Row 1: w13 = -1 and w14 = w15 = 0 ⇒ '
13w = -α3, where

3αvalS = { 0, 1 } and α3 = 0 is associated to cv1 and cv2,

whereas α3 = 1 is associated to cv3.

Row 2: w23 = w24 = w25 = 0 ⇒ '
23w = 0.

Row 3: w33 = 2 and w34 = w35 = 0 ⇒ '
33w = α9, where

9αvalS = { 0, 2 } and α9 = 0 is associated to cv1 and cv2,

whereas α9 = 2 is associated to cv3.

The result of this step can be seen in the incidence
matrix given in the figure 6.

t1 t3 t5
-1 1 -α3 p1
α4 -1 0 p2
α7 α8 α8 p3

 a3 a1 a2t1

W(AR4) =

Fig.6. Result of the reduction of the transitions t5,
t6 and t7 into a single transition named t5.

t1 t3 t5 t6 t7
-1 1 -1 0 0 p1
α4 -1 0 0 0 p2
α7 -α8 2 0 0 p3

 a3 a1 a2

W(AR3) =

Fig.5. Addition of isolated transitions to
remove of the function fA(t5,ai).

t3 t5 t6 t7
-1 1 -1 0 0 p1
α4 -1 0 0 0 p2
α7 -α8 2 0 0 p3

 a3 a1 a2

W(AR3) =

Fig.5. Addition of isolated transitions to
remove of the function fA(t5,ai).

t1 t3 t5
-1 1 -1 p1
α4 -1 0 p2
α7 -α8 2 p3

 a3

W(AR2) =

Fig. 4. Second reduction of transitions.

a1+a3+a3 a1+a3+a3

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 469

Where Sstrα = { α3 , α4 , α7 , α8 , α9 } and Svalstrα = { cv1,
cv2, cv3 } = { (0,2,0,0,0), (0,1,1,1,0), (1,2,0,1,2) }

Furthermore, the function of choice variables
associated to the resulting transition can be removed
since it contains all the choice variables, as it is justified
in the section 4.

Step 4.

Represent the resulting compound Petri net Rc.

The result of this transformation algorithm can be

seen in the graphical and matrix-based representations
of the resulting compound Petri net, which is equivalent
to the original alternatives aggregation Petri net. These
representations are shown in the figures 7 and 8
respectively.
|Svalstrα(Rc)| = |{ (0,2,0,0,0) , (0,1,1,1,0) , (1,2,0,1,2) }|=3

7. CONCLUSIONS
As a conclusion of this paper it can be stated that with
this algorithm it has been completed the set of
transformations between three common Petri net-based
formalisms to represent Petri nets with alternative
structural configurations for the main purpose of
developing automatic decision support systems: the set
of alternative Petri nets, the compound Petri net and the
alternatives aggregation Petri net. It is now possible to
perform any direct transformation between any pair of
formalisms belonging to the mentioned group.

As open research lines it can be considered the
analysis of the freedom degrees in these algorithms to
adjust them in order to obtain the most compact models
for the development of the most efficient optimization
problems to solve the original decision problems.

ACKNOWLEDGMENTS
This paper has been partially supported by the project of
the University of La Rioja and Banco Santander (grant
number API12-11) ‘Sustainable production and
productivity in industrial processes: integration of
energy efficiency and environmental impact in the
production model for integrated simulation and
optimization’.

REFERENCES
R., Alla. H., 2005. Discrete, Continuous and Hybrid

Petri nets, Springer.
Jensen, K., Kristensen, L.M., 2009. Coloured Petri nets.

Modelling and Validation of Concurrent Systems.
Springer.

Berthelot, G., 1987. Transformations and
decompositions of nets. In: Brauer, W., Reisig,
W., and Rozenberg, G., eds. PetriNets: Central
Models and Their Properties, Advances in Petri
Nets. Lecture Notes in Computer Science, vol.
254-I, pp. 359–376. Springer, 1987.

Haddad, S. and Pradat-Peyre, J.F., 2006. New Efficient
Petri Nets Reductions for Parallel Programs
Verification. Parallel Processing Letters, pages
101-116, World Scientific Publishing Company.

Silva, M., 1993. Introducing Petri nets. In: Di Cesare,
F., ed. Practice of Petri Nets in Manufacturing,
pp. 1-62. Ed. Chapman&Hall.

Latorre, J.I., Jiménez, E., Pérez, M., 2009. Decision
taking on the production strategy of a
manufacturing facility. An integrated
methodology. Proceedings of the 21st European
Modelling and Simulation Symposium (EMSS 09).
Puerto de la Cruz, Spain, vol. 2, pp. 1-7.

Latorre, J.I., Jiménez, E., Pérez, M., 2011. Matrix-based
operations and equivalence classes in alternative
Petri nets. Proceedings of the 23rd European
Modelling and Simulation Symposium (EMSS 11).
Rome, Italy, pp. 587-592.

Latorre, J.I., Jiménez, E., Pérez, M., 2011. Petri net
transformation for decision making: compound
Petri nets to alternatives aggregation Petri nets.
Proceedings of the 23rd European Modelling and
Simulation Symposium (EMSS 11). Rome, Italy,
pp. 613-618.

Latorre, J.I., Jiménez, E., Pérez, M., 2011. Petri nets
with exclusive entities for decision making.
International Journal of Simulation and Process
Modeling, Special Issue on the I3M 2011
Multiconference. Inderscience Publishers.

Tsinarakis, G. J., Tsourveloudis, N. C., and Valavanis,
K. P., 2005. Petri Net Modeling of Routing and
Operation Flexibility in Production Systems.
Proceedings of the 13th Mediterranean
Conference on Control and Automation, pages
352-357.

Zimmermann, A.; Freiheit, J.; Huck, A. 2001. A Petri
net based design engine for manufacturing
systems. International Journal of Production
Research, Vol. 39, No. 2, pages 225-253.

t1 t2 t3
-1 1 -α3 p1
α4 -1 0 p2
α7 -α8 α9 p3

W(Rc) =

Fig. 8. Matrix-based representation of the
resulting compound Petri net.

t3

α3

α4

p1

α7
α9

α8

p2 p3

t1

t2

Fig. 7.Graphical representation of
the resulting compound Petri net.

Rc

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 470

