
CUSTOMIZING CODE OF DEVS MODELS ACCORDING TO USER
REQUIREMENTS USING LSIS DME

M. HAMRI and R. MESSOUCI
LSIS UMR 7296- Aix-Marseille Université

Domaine universitaire de Saint Jérôme
Avenue Escadrille Normandie Niemen

13397 MARSEILLE Cedex 20
amine.hamri@lsis.org, rabah.messouci@lsis.org

Keywords: DEVS, design of atomic models, DEVS queuing
system

Abstract
In this paper, we discuss two ways to code DEVS atomic
models the first one is based on the switch-case statement
in which no phase is described for the atomic model to sim-
ulate. The second one is based DEVS-phase design pattern
in which we objectify phases and transitions. These ways of
coding are integrated into the LSIS DME tool to generate a
complete compilable code of the DEVS-phase model and a
partial code (template) that the user should complete in case
of a DEVS atomic model without phases.

1. INTRODUCTION
In last decade, many DEVS tools have been developed

to provide frameworks to model and simulate DEVS mod-
els. ADEVS (ADEVS, 2006), the oldest one, is a toolkit
that suggests to the user to design DEVS models in ob-
ject paradigm. DEVSJAVA (DEVSJAVA, 2012) provides a
friendly-user framework to the user to make graphical DEVS
coupled models and at his charge to design atomic models
by coding them. Other frameworks avoid the user a coding
step and propose to make both atomic and coupled models in
graphical way. A process insures the transformation of graph-
ical models into interpretable ones for the simulation process.
By analyzing DEVS frameworks of the literature, we identify
two categories:
1) DEVS frameworks in which the design of atomic models
is let to the user. Often he should extend an abstract class
or implement an interface to define the corresponding DEVS
atomic model, and
2) DEVS frameworks in which a standard design of atomic
models is defined to allow graphical or XML description.
However, we remark that there is no framework allowing dif-
ferent designs of atomic models in unique one. In our ap-
proach, we propose to catch different designs of atomic mod-
els inside a unified framework and provide to the user the
more adequate design to the current atomic model to code.
The paper is organized as follows: Section 2 gives a recall

on DEVS concepts and discusses the current LSIS DME ap-
proach. Section 3 proposes two ways of software designs to
help the user in coding atomic models. Section 4 integrates
the discussed designs in LSIS DME to make variable the pro-
cess of code automatic generation. An example of a queuing
system is shown and discussed in Section 5. Finally, we con-
clude on the proposed and future works.

2. RECALLS
2.1. DEVS Formalisms

A DEVS model (Zeigler et al., 2000) consists of DEVS
coupled and atomic models. An atomic model is structured
as follows:

Atomic = (X ,Y,S,δint ,δext ,D) where
X ,Y : sets of input and output ports respectively.
S: set of state variables
δint : S→ S, the internal transition function. It defines the set
of autonomous transitions.
δext : QxX → S such Q = {(s,e)|s ∈ S,0≤ e 6 D(s)}, the ex-
ternal transition function. It defines according to the occurring
event x and the elapsed time e on the current state s which
transition to fire.
D : S→ IR+, for each state the function D defines the max
duration in which the model still to fire an autonomous tran-
sition.
However, based on the encapsulation of atomic models, cou-
pled ones are made. This construction is in respect with the
following structure:

Coupled = (X ,Y,D,Md∈D, IC,EIC,EOC,select)
X ,Y : are sets of input and output ports respectively
D: names of component and Md : model of D component
IC,EIC and EOC: sets of internal, external input and external
output couplings respectively.
Select: function priority between components.

2.2. LSIS DME tool
LSIS DME tool (Hamri and Zacharewich, 2007) is a full

environment allowing DEVS and GDEVS modeling and sim-
ulation. The user defines DEVS and GDEVS in graphical way
using a bottom-up approach. Firstly, he starts with modeling

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 385



atomic models, and then he stores them in his library who
may share it with other users for further reuse. Secondly, he
reuses these basic models (both atomic and coupled models)
by drag and drop to build new coupled models. Also, these
new models are stored in a library for further reuse again.
The storage format of any DEVS, LSIS DME distinguishes
atomic models from coupled ones. Once, the user stores an
atomic model, the tool transforms this graphical description
into a Java code to express the pure DEVS (or GDEVS) be-
havior and a formatted file that contains structural and graph-
ical data of the concerned model. Still the coupled model is
transformed into a formatted structure according to definition
of DEVS coupled formalism.
To summarize, we recall the LSIS DME approach shown on
figure below. Firstly, the user describes an atomic or coupled
model by drag and drop necessary elements (state, transition
or basic model). Then, he checks the current model using
DEVS-Compiler to avoid logical errors (determinism, ambi-
guity, completeness and port coupling) before lunching simu-
lation. Once, the user saves its model he can start simulation.
Then an output simulation report is given to the user to ana-
lyze the corresponding behavior.

Figure 1. LSIS DME approach

LSIS DME allows modeling only DEVS-phase atomic
models i.e. DEVS models in which the behavior is specified
using phases (Praehofer and Pree, 1993). Sometimes, the user
may use an infinite state machine to describe a DEVS atomic
model, due to the fact he employs state variables with infi-
nite domain. However (Honig and Seck, 2012) propose an
approach based on DEVS-phase modeling called PhiDEVS.
So we can imagine that any DEVS or GDEVS atomic model
could be reduced to a DEVS-phase model. In addition, almost
DEVS models seen in the literature are phase-based models
and at least they are based on two phases: active and pas-
sive (Zeigler et al., 2000). Consequently, the DEVS-phase de-
sign stills valid to implement any DEVS models, by adopting
specific design for LSIS DME simulator. However to get an
architecture to take into account different designs of atomic

models, we update the communication between the simula-
tion process and model to simulate.
In the next section, we discuss how LSIS DME user may
choose between a DEVS-phase design and an ad-hoc design
based on the switchâcase statement.

3. A SOFTWARE DESIGN APPROACH
TO MODEL AND SIMULATE DEVS
ATOMIC COMPONENT

The abstract simulator of DEVS consists of a process that
manages messages to send out or to receive from an atomic
model. At design level, (Zeigler et al., 2000) define an inter-
face to make interaction between the simulator and the atomic
model to simulate. In fact, this is a contract between the user
who will design the atomic model and should implement this
interface. Next, the simulator acts on the model to simulate
through the implemented methods to create DEVS behaviors.
This strategy is employed in DEVSJAVA.

Figure 2. DEVS interface of atomic models

In LSIS DME, we reuse this advanced design to make
a structured communication between each atomic model to
simulate and the simulator. In fact using such an interface,
we give to the user a great freedom to design its atomic mod-
els and we guaranty interoperability between them. However
two constraints are necessary to correctly build atomic mod-
els: i) the atomic model should hold a reference on the current
state of the model; and ii) the DEVS atomic model should im-
plement all methods of DEVS interface. In the following, we
discuss two possible designs of DEVS atomic models.

Figure 3. Communication between LSIS DME simulator
and different designs of atomic models

This architecture that distinguishes the interface of the model

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 386



to simulate from the model itself provides the possibility to
integrate atomic models with new designs.

3.1. Ad-hoc design of DEVS atomic models
The ad-hoc design of DEVS atomic models consists on im-

plementing the DEVS interface to define a DEVS component.
The user may define infinite or enumerated state variables.
Then based on these variables, the user defines the evolu-
tion of the model from a state to another through the methods
delta ext() and delta int(). This design is useful to implement
models like DEVS SISO models in which only an input and
an output ports, both expressed with real (Zeigler and Sar-
joughian, 2005).

Figure 4. DEVS behavior of a ramp

However, designing complex behavior of atomic models
with different phases and ports, still difficult due to the fact
the user will employ the switch-case or if-else statement to
implement such a behavior. In this case, the code is less struc-
tured, less readable and hard to maintain. In fact, once the
user makes changes on the model, he should reflect them on
the code. Unfortunately, this will take much time due to in-
flexibility of such a code.

3.2. DEVS-Phase pattern to design atomic
models

To remind to the ad-hoc design of atomic models, we pro-
pose the DEVS-phase design pattern. In this pattern we objec-
tify phases and transitions to make the code of atomic models
object-oriented. We recall briefly this design pattern accord-
ing to the following structure:
Name: DEVS-Phase design pattern
Context: this pattern is useful to design DEVS behaviors ex-
pressed with phases to obtain a corresponding object-oriented
code.
Solution: the AtomicPhase class holds a reference on the
current phase of the model. It also holds the input and out-
put ports vectors and concrete phase and transition classes
inside vectors. This class has the responsibility to make

state changes according to the received event via the method
delta ext() or delta int(). It identifies the concrete ExtTran-
sition or IntTransition object to fire. These transition classes
hold a reference on their future phase and the simulator will
act the state change by updating the current phase reference.
In addition, this pattern encapsulates through transition
classes the following methods:
i) action(): this abstract method computes the new values of
state variables outside the phase variable, and
ii) per f ormOut put(): this abstract method identify the out-
port and computes the output event to send out of the internal
transition to fire.
iii) guard(): a Boolean method that decides whether or not
the transition may be fired.

Figure 5. Class diagram of the DEVS-phase pattern

Advantages: +) well-structured code
+) easy code to maintain
+) flexible structure to add new DEVS behaviors at run-time
(adding new phases and transitions, or modifying the target
of a transition, etc.).

Lacks: -) skills on object programming are necessary to
manipulate directly the code of this design pattern.
-) no mechanism to check if the updated model at run-time
stills correct.

4. CODE AUTOMATIC GENERATION
FROM DEVS ATOMIC MODELS

The field of code automatic generation is promoted by
Model Driven Architecture. It consists on transforming a
model expressed with some language into a different lan-
guage or a programming language. The benefits of such an
approach are: i) avoiding coding errors and speeding-up the
implementation process; and ii) providing a direct mapping
from the atomic models to designed ones.
The DEVS standardization group recognizes that automatic
code generation is in progress for DEVS field and should be
more developed to get significant advances. In fact the cur-
rent works are focused on transforming DEVS atomic and
coupled models written in Java and C++ into DEVS XML
files (and vice-versa) through the DEVSML language. The
main advantage of this language is to allow interoperability

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 387



between various models.
Obviously, we integrate code automatic generation in
LSIS DME approach by proposing to the user to choose
which kind of generated code is useful for him. According
to the atomic model type (SISO or phase-based model) the
user may customize the generated code through the tool.

4.1. Partial code automatic generation from
Ad-hoc models

Such models are not phase-based models. Consequently,
the DEVS-phase pattern is not applied. However we make
only automatic the generation of the model interface; that
means the port sets and domain of each port in addition to the
DEVS methods are generated automatically. Then the user
completes the body of each DEVS method to implement the
expected behavior and to define the set of state variables.

Figure 6. DEVS template of an atomic model generated
from LSIS DME tool

Unfortunately, the consistence of the code is not insured
and the user should take care to avoid undesired scenarios.

4.2. Code automatic generation from DEVS-
phase based models

Once a DEVS-phase based model description is estab-
lished by the user, the tool generates a Java code from the
graphical. The code is object-oriented and its architecture is
designed according to the DEVS-phase pattern.

Figure 7. A phase class generated with LSIS DME

Figure 8. An external transition class generated with
LSIS DME

The generated code is open to hand-modification. The user
may introduce pieces of code that are not supported by the
graphical description due to grammar syntax limitation of
LSIS DME.

5. QUEUING SYSTEM
5.1. Example

Let us consider a queuing system consisting of one queue
and one resource. Jobs arrive at any time, they are served ac-
cording to their arrival date i.e. first in queue first out. To
note that jobs arrive with a Poisson distribution (λ = 1). In
addition, jobs occupy the resource for some units of time
(u.t). The inter-departures from the resource are exponentially
distributed (µ = 2). With this analytical model, we compute
mathematically some indicators like average waiting time us-
ing the following equation:

Average waiting time = (µ−λ)/µ(µ−λ) = 0.5 u.t
The simulation that we propose to simulate such a system is
well-known in the literature of DEVS. Three DEVS compo-
nents are necessary: Generator, Queue and Resource.

Figure 9. DEVS coupled model of queuing system

The generator, as the name indicates, generates jobs with
a Poisson distribution. In addition it computes the number of
generated jobs. Each job remains in the queue until the re-
source is released. The queue model consists of two phases
“active”and “passive”. In passive phase, the length of the

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 388



queue is zero (there is no job waiting) and the resource is
free. Once a new job arrives, it is immediately sent out to the
resource and the queue model changes phase from passive
to active. To note that the generator is a DEVS ad-hoc de-
sign, the other models Queue, Resource and Dispose follow
a DEVS-phase design.

5.2. Simulation results
The table 1 shows simulation results of the model of the

queuing system example.
Based on the table 1, the average waiting time (AWT) is

compared to that provided by the model M/M/1. This com-
parison shows that the waiting time of the simulation result
converges to the result of mathematical one when simulation
duration (the replication length) increases. So we can suppose
that the model is valid.

Table 1. Simulation results
Replication Average Waiting Time (u.t)

Simulation duration (u.t)
104 105 106

1 0,7210 0,7205 0,5572
2 0,7211 0,7204 0,5572
3 0,7213 0,7206 0,5572
4 0,7214 0,7206 0,5573
5 0,7215 0,7207 0,5573
6 0,7215 0,7211 0,5573
7 0,7220 0,7211 0,5573
8 0,7217 0,7211 0,5573
9 0,7216 0,7213 0,5575

10 0,7216 0,7215 0,5579
Average waiting

time of
replications (u.t) 0,7215 0,7209 0,5573

Complex scenarios may be defined through the simulation
model of queuing system like the resource fails, customizing
the service time of jobs, etc. for which it is difficult to define
a mathematical model.

6. CONCLUSION
This paper proposes different forms of DEVS atomic de-

signs. The most used one consists on using a DEVS behavior
using the switch-case statement. However, this design suffers
from the following lacks: the corresponding code is difficult
to read and not well-structured. In addition it is difficult (in
some cases impossible) to make further modifications or ex-
tensions. From that, we propose an alternative way to design
atomic models based on DEVS-phase pattern. These two de-
signs are integrated into a unique framework that supports
new designs of atomic models. Consequently DEVS models
implemented differently are simulated by the same simulator.

In the near future, we will develop experimental studies to
compare the proposed designs and to show which one may
be useful according to the user requirements. In other works,
we will define software metrics to evaluate indicators like
time execution, heap memory size, etc. to help user to choose
which design is more suitable to implement his atomic mod-
els.

7. REFERENCES
ADEVS, 2006 software site:

http://sourceforge.net/projects/adevs. Last accessed March
2012.

DEVSJAVA, 2012. ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.html
Last accessed March 2012.

Hamri, M. and G. Zacharewicz. 2007 LSIS-DME: An en-
vironment for modeling and simulation of DEVS specifica-
tions. in: AIS-CMS International modeling and simulation
multiconference, Buenos Aires - Argentina, February 8-10
2007, pp. 55-60, ISBN 978-2-9520712-6-0. Honig and M.
Seck, 2012. PHI-DEVS: Phase Based Discrete Event Model-
ing. Symposium on Theory of Modeling Simulation - DEVS
Integrative MS Symposium (DEVS). SpringSimâ12, Florida-
USA March 26-29 2012.

Praehofer H. and D. Pree Visual Modeling Modeling of
DEVS-based Multi-Formalism Systems based on Higraphs
Proceedings of the 1993 Winter G. W. Evans, M. Mol-
laghasemi, Simulation Conference pp 595 â 603.

Zeigler, B., H. Praehofer and T. G. Kim. 2000. Theory of
modeling and simulation. Second edition Academic Press.

Zeigler B and H. Sarjoughian, 2005. Introduc-
tion to DEVS Modeling and Simulation with JAVA:
Developing Component-Based Simulation Models.
http://www.acims.arizona.edu/PUBLICATIONS/publications.shtml.
Last accessed March 2012.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 389


