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ABSTRACT 
In this paper we describe for the first time a tabu search 
algorithm for symbolic regression. The novel 
contribution presented in this work is the idea to use a 
metric for semantic similarity to generate moves in such 
a way that branches are only replaced with semantically 
similar branches. In symbolic regression separate parts 
of the solution are linked strongly; often a small random 
change of one part might disrupt a link and thus, can 
completely change the semantics of the solution. We 
hypothesize that by introducing the semantic similarity 
constraint, the fitness landscape for tabu search 
becomes smoother as each move can only change the 
fitness of the solution slightly. However, empirical 
evaluation on a set of simple benchmark instances 
shows that the approach described in this paper does not 
perform as well as genetic programming with offspring 
selection and there is no big difference between random 
and semantic move generation. 
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1. INTRODUCTION 
Symbolic regression is a data-modeling approach for 
regression analysis where the structure of the model is 
not specified explicitly but must be discovered 
automatically. Thus, it can also be used in situations 
where no or only limited information about the modeled 
system is available and it would be hard to specify a 
fitting model structure manually. Symbolic regression 
has first been described in the context of genetic 
programming (Koza 1992) and has since become a 
popular benchmark task for genetic programming. 
However, symbolic regression has also been used 
successfully to solve real-world problems occurring for 
instance in industry, medicine and finance.  

Tabu search is a trajectory-based meta-heuristic for 
solving difficult, usually combinatorial, optimization 
problems (Glover 1999). To avoid getting stuck in local 
optima, it uses the concept of short-term and long-term 
memory to achieve a good balance between 
diversification and intensification stages of the search 
process. 

In this contribution we present a new approach for 
symbolic regression which is based on tabu search 

instead of an evolutionary algorithm. We describe the 
motivation for the algorithm and also discuss details of 
the implementation and necessary parameters. 
Additionally, we also describe the difficulties we had 
when transforming the initial concept into a working 
implementation and highlight the problems of finding 
good parameter values for the algorithm. An empirical 
evaluation of the proposed approach on a set of 
symbolic regression benchmark instances is also given 
to facilitate comparison with a genetic programming 
approach. The main contribution of this article is the 
description of a neighborhood function which produces 
semantically similar neighbors to improve the 
smoothness of the tabu search trajectory and a new 
semantic aspiration criterion for tabu search. 
 
2. MOTIVATION 
Symbolic regression based on genetic programming is 
an idea that is already more than 20 years old. However, 
there are still several open topics that are actively 
researched. These open topics are probably one of the 
reasons that symbolic regression still has not matured to 
a technology that can be used easily and routinely in 
practical applications. The list of open topics includes 
performance, overfitting, extrapolation capabilities, 
model complexity, and a workable theory for 
evolutionary operators, to name some examples. The 
recently proposed fast function extraction (FFX) 
(McConaghy 2011) side steps some of the above 
mentioned issues and demonstrates that symbolic 
regression does not necessarily have to be solved with 
an evolutionary algorithm. Instead it uses an approach 
based on regularization and coordinate descent (Hastie 
2009) to search for parsimonious models by combining 
only relevant features from a large set of features 
including the original variables and (non-linear) 
transformations of the original variables. The advantage 
of this approach is its efficiency and, thus, can also be 
applied to large datasets and in a semi-automatic matter. 
Additionally, it is not necessary to tune a large number 
of parameters. McConaghy argues that because of these 
advantages it is much closer to a usable technology than 
genetic programming. A drawback is that the space of 
model structures considered by FFX is smaller than the 
space typically considered by GP, which also includes 
deeply nested functions. 
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FFX is a new algorithmic approach to symbolic 
regression that is not rooted in the evolutionary 
computation framework and, thus, can be advantageous 
in comparison to traditional GP approaches. It certainly 
allows a new perspective and can lead to better insights 
into the characteristics of the problem domain. This last 
aspect in particular has motivated us to look at yet 
another different approach based on tabu search which 
manipulates an initial solution using iterative moves to 
improve the solution step by step. 

An important issue for trajectory-based algorithms 
is the design of a move operator for generating potential 
alterations of the solution that allow to efficiently walk 
towards a local optimum in the fitness landscape. For 
this it is necessary to understand the potential effects of 
solution alterations regarding the semantics of the 
whole solution. The mapping of syntactic and semantic 
similarity of GP solutions is generally rather chaotic 
and not well understood. One major issue is that 
disconnected parts of the solution can be strongly 
linked, and thus, the alteration of one branch can have a 
big effect on the global semantics of the whole solution 
even for small local alterations. Getting a better 
understanding of the semantic consequences of 
evolutionary operators is still an open research topic and 
recently a number of operators which try to include 
semantic information into the evolutionary process have 
been described (Nguyen 2010, Nguyen 2011, Krawiec 
2011, Krawiec 2012). This has lead us to consider a 
semantically constrained move operator which should 
lead to a smoother fitness landscape. 

In the following we first describe the general 
algorithm conceptually and then discuss the necessary 
details for the implementation of the algorithm. The aim 
is to find an efficient algorithm that is able to find 
accurate solutions also for hard problem instances. The 
main hypothesis is that tabu search using semantically 
similar moves improves the search, so that solutions for 
hard problems can be found. We do not yet discuss the 
generalization capabilities and parsimony of solutions 
in this paper. 
 
3. PREVIOUS WORK 
Variants of tabu programming that are similar to the 
approach discussed in this contribution have been 
described previously (Abdel-Rahman 2011, 
Balicki 2007, Balicki 2009). However, these variants 
use a different way to generate moves and in particular 
do not use a neighborhood function that leads to 
semantically similar neighbors and a smoother search 
trajectory. This extension which can be implemented 
rather easily for symbolic regression is described in this 
contribution for the first time. 
 
4. CONCEPTUAL DESCRIPTION 
Solutions are represented as symbolic expression trees 
in the same way as in tree-based GP. The internal nodes 
of the tree contain symbols of operators and functions 
and the leaf nodes contain input variables. The set of 
symbols for functions and variables is a parameter of 

the algorithm. Figure 1 shows an exemplary symbolic 
regression model. 
 

 
Figure 1: Example of a Symbolic Regression Model. 

 
The proposed approach is based on the standard 

formulation of tabu search (Glover 1999). We use only 
a single tabu list for short-term memory and allow 
aspiration of moves. Initially a random solution is 
generated as a starting point. This solution is iteratively 
manipulated by applying the best move from a set of 
possible moves after checking a tabu criterion. In one 
move a branch of the tree is removed and replaced by a 
valid branch from a pool of branches. The pool of 
branches for replacement is filled with small random 
branches in the initialization step of the algorithm. We 
chose to use a pool of pre-generated branches to prevent 
continuously generating and evaluating random 
branches in the main loop of the algorithm. The main 
loop involves: generating moves, checking the tabu list, 
applying the best move, and updating the tabu list.  

Two different modes are possible for move 
generation, random mode and semantic mode. In 
random mode, a number of cut points in the current 
solution are selected randomly and for each cut point a 
random replacement branch is selected randomly from 
the pool. In semantic mode, the cut points in the current 
solution are also selected randomly, however, then for 
each cut-point the semantically most similar branches 
from the replacement pool are selected. The semantic 
similarity of a branch in the current solution and a 
branch from the pool is determined by the squared 
Pearson’s correlation coefficient of the output of the 
branch and the replacement branch. Branches with a 
large R² have a similar output as the original branch that 
is to be replaced and, thus, should only have a small 
effect on the overall quality of the model. By iteratively 
replacing branches with semantically similar branches 
the algorithm can walk on a smooth trajectory to more 
accurate solutions. To facilitate exploration of worse 
solutions the algorithm uses the tabu-list to guide search 
to different regions of the hypotheses space. 

When a move is applied the exact point where the 
root of the new branch has been inserted is added to the 
tabu list and is thus locked and must not be changed for 
some time. Several aspiration criteria are used to allow 
certain moves that would otherwise be tabu for instance 
if a new best-of-run solution would be found.  

A maximal size and depth limit is used to prevent 
uncontrolled growth of the solution. 
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5. DETAILED DESCRIPTION 
5.1. Parameters 
Based on the conceptual description of the algorithm a 
number of parameters can be derived. The most 
important parameters are the number k of randomly 
selected cut-points M and the number n of replacement 
branches for each cut-point. The total number of moves 
|N| generated in each iteration results as the product of 
these two parameters. A parameter for the maximal 
number of iterations is necessary to stop the algorithm. 
The size of the tabu list determines how long a 
manipulated point in the tree is protected against 
manipulations. The size of the solution is limited by two 
parameters for the maximal solution length and solution 
depth. Additionally, the two additional parameters limit 
the length and depth of the replacement branches in the 
pool and another parameter is necessary for the size p of 
the pool F. 
 
5.2. Algorithm Description 

1. Create an initial solution (tree) randomly. 
2. Create a vector of p branches F = (f1,…,fp) 

with a maximal length of fmax_length and a 
maximal depth of fmax_depth. 

3. Evaluate all branches to create a vector of 
outputs O = (o1,…,op) for each of the p 
fragments. 

4. Create a set of k cut-points M = {m1,…,mk} 
randomly, where a manipulation point is a 
node (internal or external) of the solution 
candidate. 

5. Initialize the set of moves N={}. 
6. If mode is semantic then continue at 7.  

else continue at 8. 
7. For each manipulation point (semantic): 

(a) Calculate the output outm of the branch. 
(b) Calculate the R² value of the output outm 

of the branch and all outputs of the 
fragments O. 

(c) Select n fragments with the highest R² 
value (< 1) and create n moves from the 
solution candidate replacing the branch at 
the manipulation point with each of the 
selected fragments and add the new moves 
to N. 

(d) Goto 9. 
8. For each manipulation point (random): 

(a) Select n fragments from the pool F 
randomly and create n moves from the 
solution candidate replacing the branch at 
the manipulation point with each of the 
selected fragments and add the new moves 
to N. 

9. Remove all moves from N which do not fulfill 
the aspiration criterion and would manipulate a 
node which is in the tabu-list. If all moves are 
tabu then keep one randomly chosen move. 

10. Evaluate the fitness of all moves by 
temporarily applying each move and 
evaluating the accuracy of the resulting model. 

11. Select the move that leads to the best accuracy 
(might be smaller than the accuracy of the 
current solution candidate). 

12. Apply the move to the solution candidate to 
produce the current solution of the next 
iteration and add the manipulated point to the 
tabu-list. 

13. Update the best-of-run solution if the current 
solution candidate has a better accuracy. 

14. If the stopping criterion is true then stop and 
return the best-of-run solution, otherwise go to 
step 4. 

In the move generation steps the maximal depth 
and length of the tree is restricted by generating only 
moves that produce trees smaller than the given limits. 
In semantic mode the most similar branches are 
selected, however, perfectly similar replacement 
branches (R²=1) are not considered because such a 
move would have no effect on the output of the 
solution.  

When a move is applied to the solution the existing 
branch is not simple replaced with the branch from the 
pool, but instead a swap operation is performed. The 
existing branch is added to the pool instead of the just 
inserted branch.  
 
5.3. Tabu Criterion 
Moves that would manipulate a node that has recently 
been replaced in another move are tabu. The length of 
the tabu list determines how long a manipulated node is 
locked. For comparing two moves we calculate the path 
to the manipulated node starting from the root node. 
This path can be represented as a list of integers where 
each element is the index of the sub-tree that leads to 
the manipulated node. For instance in Figure 2 the path 
[1,0] leads to the red node which is a new node that has 
been inserted in a previous move. The path must match 
exactly with the path of a previous move to make a 
move tabu, i.e. changing a sub-branch below a 
previously inserted branch is allowed. 

 

 
Figure 2: Example for a Path to a Manipulated Position 
in the Tree. 
 
5.4. Aspiration 
Several aspiration criteria are used to allow moves that 
would otherwise be tabu. The first aspiration criterion 
allows moves which would lead to a new best-of-run 
quality. 

The second aspiration criterion is necessary to 
allow moves that manipulate a path that has recently 
been manipulated in an earlier move, when a more 
recent move replaced a larger branch containing the 
previously inserted branch. Figure 3 shows the solution 
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and the tabu manipulation points for three consecutive 
moves. First the single red node is replaced and the 
point is locked. In the second move the first move is 
undone because the whole right branch is replaced. As 
stated above only the manipulated point is set to tabu. 
The newly added nodes below the manipulation points 
can be changed immediately in consecutive moves. In 
particular the point replaced in the first move which is 
still in the tabu list can be manipulated again. This is 
accomplished through the aspiration criterion. In the 
third step the whole left branch is replaced. Now both, 
the direct left and right children of the root node are 
locked. All other nodes might be manipulated in 
consecutive moves. 
 

 
Figure 3: Aspiration Criterion for Moves That Are 
Undone with a Later Move. 
 
The third aspiration criterion incorporates semantic 
information. The underlying idea is that moves should 
be aspired when the solution is changed in the same 
location, but in such a way that the solution is less 
similar to a previous solution than the current solution 
(i.e. semantically walking backwards). In particular, it is 
allowed to make moves that lead to a new solution 
when it is less similar to a previous solution than the 
current solution, even when the manipulation point 
would be tabu. Figure 4 shows the relevant similarities 
for two visited solutions (with branches A and B) and a 
potential new solution with a branch C, where A, B and 
C are all on the same location of the solution. First the 
semantic similarity of the two branches of the previous 
move (R²(A,B)) is determined. If the semantic similarity 
of the original branch and the replacement branch of the 
current move (R²(A,C)) is smaller than R²(A,B) the 
move is allowed. A move that would insert a branch C 
that is again more similar to the original branch A is not 
allowed.  

 

 
Figure 4: The semantic aspiration criterion allows tabu 
moves (C) if the result is less similar to the original (A) 
than the previously inserted branch (B). 

5.5. Application of Moves 
Because semantic similarity of branches is determined 
using the squared correlation coefficient which is 
invariant to changes in scale and location it is necessary 
to linearly scale a branch before inserting it into the 
solution. This has the negative effect that four 
additional tree nodes are necessary for each inserted 
branch (two constants and an addition and 
multiplication operator). Especially, the constant nodes 
are problematic because the correlation is zero for all 
possible replacements. This has the effect that constant 
nodes are replaced with a random branch from the pool 
which is then scaled in such a way to produce a constant 
output (multiplication with zero). In order to prevent 
such manipulations we check this special case and 
replace constant nodes only with unscaled branches. 
This is a rather uncomfortable workaround and should 
be addressed in a better way future work. An alternative 
would be to use the mean of squared errors as the metric 
for semantic similarity, but then the pool size should be 
much larger to increase the likelihood to find similar 
replacement branches. 

Another important aspect of move application is 
that the replaced branch in the solution is added to the 
pool of replacement branches. This is necessary to 
prevent losing already well fitted branches because of a 
bad random manipulation. If the replaced branch is 
instead added to the pool, this branch can later be 
reused in a different, or even the same position in the 
solution. 
 
5.6. Model Size Limits 
Interestingly, without limiting the size of the model we 
also observed a steady growth of the model in initial 
experiments. This growth resulted from the fact that 
small fragments were replaced by on average larger 
fragments. Inserting a new branch instead of a terminal 
node leads to a set of new docking points which are 
definitely not in the tabu list and the algorithm can then 
easily find another move leading to a minor quality 
improvement replacing one of the newly introduced 
terminal nodes. 

To prevent this growth of solutions we introduced 
limits for the maximal tree size and depth that are 
checked when generating possible moves.  
 
6. DISCUSSION 
A major issue in the configuration of the algorithm 
proofed to be finding good parameter values for the 
number of cut-points and the number of replacement 
branch for each cut-point. If the number of cut-points is 
small then it is very likely that a move replaces a branch 
near the root of the solution which leads to a deleterious 
move that destroys the already well fitted solution 
frequently. On the other hand if the number of cut-
points is large then it is very easy to find a move that 
has only a minor positive or negative effect on the 
solution fitness by replacing a node deep down in the 
tree with a similar node. This leads to the unwanted 
behavior where tabu search plateaus on a sub-optimal 
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solution without any significant changes until a 
deleterious manipulation occurs. 

Initial experiments showed that the performance of 
the algorithm depends very strongly on the balance of 
these two parameter values; however, we have not yet 
executed experiments to determine good general 
parameters and instead rely on a reasonable default 
setting.  

Another difficulty for the algorithm are constants 
in the solution and in the branches in the replacement 
pool. As constants have zero correlation with all 
possible outputs, the semantic similarity of all branches 
to constants is very low. This makes it necessary to 
handle constants specifically in the algorithm. In the 
experiments we have not allowed constants in the initial 
branches in the replacement pool; however, through the 
linear scaling of branches constants are automatically 
introduced into the solution over the run. We leave the 
analysis of the effects of constants and the development 
of a better way of handling constants for future work. 

One advantage of trajectory-based algorithms is 
that changes to solutions can often be calculated 
incrementally. For symbolic regression solutions this is 
principally also possible because only the parents of the 
newly inserted branch have to be re-evaluated. The 
outputs of all other branches can be cached as they are 
not affected by the insertion of a new branch. This 
would also be possible for sub-tree crossover in genetic 
programming; however, because tabu search only uses a 
single solution at any time instead of a whole 
population, caching becomes feasible.  

The calculation of semantic similarity leads to a 
rather large overhead as for each move the output of the 
original branch has to be compared to the output of all 
fragments in the pool and thus the asymptotic runtime 
complexity is O(kp). Additionally, the calculation of the 
squared Pearson’s correlation coefficient grows linearly 
with the number of observations. 
 
7. EMPIRICAL EVALUATION 
For the empirical evaluation of the proposed approach 
we used two sets of relatively easy benchmark instances 
defined by Keijzer and Nguyen as described in 
(McDermott et al., 2012). We compared three different 
algorithms: symbolic regression based on genetic 
programming and the proposed approach using 
semantic move generation and random move 
generation. The parameter settings for genetic 
programming and tabu search are shown in Table 1 and 
Table 2. Because the benchmark instances are relatively 
easy we used only a small number of iterations for tabu 
search and the number of evaluated solutions for GP 
was set in such a way to allow the at least the same 
number of evaluated solutions as for tabu search.  
 

Table 1: Genetic Programming Parameter Settings 
Parameter Value 

Population size 100 
Offspring selection Success ratio = 1 

Comparison factor = 1 

Parent selection Gender-specific 
(random/proportional) 

Max. evaluated solutions 50,000 
Max. selection pressure 100 
Tree creation PTC2 
Size limits Length=80, Depth = 12 
Function set +,*,%, variables  

(no random constants) 
 

Table 2: Tabu Search Parameter Settings 
Parameter Value 

Iterations 1,000 
Number of cut-points (k) 1 
Number of fragments (n) 100 
Size limits Length=80, Depth = 12 
Fragment size limits Length=8, Depth=4 
Pool size (|F|) 1,000 
Function set +,*,%, variables  

(no random constants) 
 

We executed ten independent repetitions for each 
algorithm configuration and benchmark instance. 
 
8. RESULTS 
The results of the empirical evaluation on the simple 
benchmark problems are shown in Table 3. It can be 
clearly seen that the genetic programming configuration 
works best for almost all instances and finds the 
solution for about half of the instances. There is no clear 
difference between tabu search with random move 
generation in comparison to tabu search with semantic 
move generation. In both tabu search configurations the 
semantic aspiration criterion has been used. 
 

Table 3: Result Comparison 
Instance OSGP TS 

random 
TS 

semantic 
Keijzer-1 0.9552 0.7141 0.7594 
Keijzer-4 0.1612 0.0678 0.1183 
Keijzer-5 1.0000 0.9931 0.9966 
Keijzer-6 1.0000 0.4901 0.5911 
Keijzer-7 0.9999 0.2867 0.1849 
Keijzer-8 0.9732 0.9726 0.9789 
Keijzer-10 0.9990 0.9768 0.9784 
Keijzer-11 0.9787 0.9581 0.9435 
Keijzer-12 0.9995 0.9692 0.9534 
Keijzer-13 0.8976 0.7491 0.6763 
Keijzer-14 0.9793 0.8000 0.8206 
Keijzer-15 0.9771 0.9449 0.9397 
Nguyen-1 1.0000 0.9879 0.9975 
Nguyen-2 1.0000 0.9504 0.9929 
Nguyen-3 1.0000 0.9903 0.9963 
Nguyen-4 1.0000 0.9909 0.9925 
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Nguyen-5 1.0000 0.9726 0.9598 
Nguyen-6 1.0000 0.9780 0.9522 
Nguyen-7 1.0000 0.9863 0.9717 
Nguyen-8 0.9999 0.9877 0.9602 
Nguyen-9 0.9993 0.9961 0.9962 
Nguyen-10 0.9998 0.9960 0.9962 

 
9. DISCUSSION OF RESULTS  
The result of the algorithm comparison is rather 
devastating and clearly indicates that the described 
approach for tabu search based symbolic regression is 
still rather immature, as it fails to find good solutions 
even for easy benchmark instances. Detailed analysis of 
the results for the Keijzer-6 and Keijzer-7 instances 
where TS performed a lot worse than GP showed that in 
these runs a scaling problem occurred. The algorithm 
found almost correct solutions, but they were at the 
bottom of a deep tree where the upper layers scaled and 
re-scaled the output multiple times. This has lead to 
numeric instabilities which then reduced the accuracy of 
the solutions. 

Generally the solutions generated by TS often 
contained deeply nested structures with many fragments 
introduced by the linear scaling of replacement 
branches. In particular, solutions often contained many 
constants. This issue should be analyzed in more detail 
in future work as constants are particular bad for the 
semantic move generation as mentioned above.  

Another aspect that should be researched in more 
detail is the issue that replacing a branch near the root 
leads to a complete disruption of the solution while 
replacing branches deep down in the tree often have 
only a minor effect on the solution output. This is a 
direct consequence of the tree-based representation and 
makes design of useful move operators very difficult. 
Future work should consider different move operators 
than just simply replacing branches as discussed in this 
contribution.  

Finally it could be helpful to add a form of 
diversification strategy for instance through long-term 
memory. In this paper we only used a tabu-list for short 
term memory to facilitate exploration of the fitness 
landscape in addition to the local improvement of the 
semantic move operator.  
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