
SYMBOLIC REGRESSION USING TABU SEARCH IN A NEIGHBORHOOD OF
SEMANTICALLY SIMILAR SOLUTIONS

Gabriel Kronberger(a), Andreas Beham(b)

(a,b) University of Applied Sciences Upper Austria, School of Informatics, Communications and Media

(a)gabriel.kronberger@fh-hagenberg.at, (b)andreas.beham@fh-hagenberg.at

ABSTRACT
In this paper we describe for the first time a tabu search
algorithm for symbolic regression. The novel
contribution presented in this work is the idea to use a
metric for semantic similarity to generate moves in such
a way that branches are only replaced with semantically
similar branches. In symbolic regression separate parts
of the solution are linked strongly; often a small random
change of one part might disrupt a link and thus, can
completely change the semantics of the solution. We
hypothesize that by introducing the semantic similarity
constraint, the fitness landscape for tabu search
becomes smoother as each move can only change the
fitness of the solution slightly. However, empirical
evaluation on a set of simple benchmark instances
shows that the approach described in this paper does not
perform as well as genetic programming with offspring
selection and there is no big difference between random
and semantic move generation.

Keywords: symbolic regression, tabu search, genetic
programming, semantic similarity

1. INTRODUCTION
Symbolic regression is a data-modeling approach for
regression analysis where the structure of the model is
not specified explicitly but must be discovered
automatically. Thus, it can also be used in situations
where no or only limited information about the modeled
system is available and it would be hard to specify a
fitting model structure manually. Symbolic regression
has first been described in the context of genetic
programming (Koza 1992) and has since become a
popular benchmark task for genetic programming.
However, symbolic regression has also been used
successfully to solve real-world problems occurring for
instance in industry, medicine and finance.

Tabu search is a trajectory-based meta-heuristic for
solving difficult, usually combinatorial, optimization
problems (Glover 1999). To avoid getting stuck in local
optima, it uses the concept of short-term and long-term
memory to achieve a good balance between
diversification and intensification stages of the search
process.

In this contribution we present a new approach for
symbolic regression which is based on tabu search

instead of an evolutionary algorithm. We describe the
motivation for the algorithm and also discuss details of
the implementation and necessary parameters.
Additionally, we also describe the difficulties we had
when transforming the initial concept into a working
implementation and highlight the problems of finding
good parameter values for the algorithm. An empirical
evaluation of the proposed approach on a set of
symbolic regression benchmark instances is also given
to facilitate comparison with a genetic programming
approach. The main contribution of this article is the
description of a neighborhood function which produces
semantically similar neighbors to improve the
smoothness of the tabu search trajectory and a new
semantic aspiration criterion for tabu search.

2. MOTIVATION
Symbolic regression based on genetic programming is
an idea that is already more than 20 years old. However,
there are still several open topics that are actively
researched. These open topics are probably one of the
reasons that symbolic regression still has not matured to
a technology that can be used easily and routinely in
practical applications. The list of open topics includes
performance, overfitting, extrapolation capabilities,
model complexity, and a workable theory for
evolutionary operators, to name some examples. The
recently proposed fast function extraction (FFX)
(McConaghy 2011) side steps some of the above
mentioned issues and demonstrates that symbolic
regression does not necessarily have to be solved with
an evolutionary algorithm. Instead it uses an approach
based on regularization and coordinate descent (Hastie
2009) to search for parsimonious models by combining
only relevant features from a large set of features
including the original variables and (non-linear)
transformations of the original variables. The advantage
of this approach is its efficiency and, thus, can also be
applied to large datasets and in a semi-automatic matter.
Additionally, it is not necessary to tune a large number
of parameters. McConaghy argues that because of these
advantages it is much closer to a usable technology than
genetic programming. A drawback is that the space of
model structures considered by FFX is smaller than the
space typically considered by GP, which also includes
deeply nested functions.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 379

mailto:gabriel.kronberger@fh-hagenberg.at
mailto:andreas.beham@fh-hagenberg.at

FFX is a new algorithmic approach to symbolic
regression that is not rooted in the evolutionary
computation framework and, thus, can be advantageous
in comparison to traditional GP approaches. It certainly
allows a new perspective and can lead to better insights
into the characteristics of the problem domain. This last
aspect in particular has motivated us to look at yet
another different approach based on tabu search which
manipulates an initial solution using iterative moves to
improve the solution step by step.

An important issue for trajectory-based algorithms
is the design of a move operator for generating potential
alterations of the solution that allow to efficiently walk
towards a local optimum in the fitness landscape. For
this it is necessary to understand the potential effects of
solution alterations regarding the semantics of the
whole solution. The mapping of syntactic and semantic
similarity of GP solutions is generally rather chaotic
and not well understood. One major issue is that
disconnected parts of the solution can be strongly
linked, and thus, the alteration of one branch can have a
big effect on the global semantics of the whole solution
even for small local alterations. Getting a better
understanding of the semantic consequences of
evolutionary operators is still an open research topic and
recently a number of operators which try to include
semantic information into the evolutionary process have
been described (Nguyen 2010, Nguyen 2011, Krawiec
2011, Krawiec 2012). This has lead us to consider a
semantically constrained move operator which should
lead to a smoother fitness landscape.

In the following we first describe the general
algorithm conceptually and then discuss the necessary
details for the implementation of the algorithm. The aim
is to find an efficient algorithm that is able to find
accurate solutions also for hard problem instances. The
main hypothesis is that tabu search using semantically
similar moves improves the search, so that solutions for
hard problems can be found. We do not yet discuss the
generalization capabilities and parsimony of solutions
in this paper.

3. PREVIOUS WORK
Variants of tabu programming that are similar to the
approach discussed in this contribution have been
described previously (Abdel-Rahman 2011,
Balicki 2007, Balicki 2009). However, these variants
use a different way to generate moves and in particular
do not use a neighborhood function that leads to
semantically similar neighbors and a smoother search
trajectory. This extension which can be implemented
rather easily for symbolic regression is described in this
contribution for the first time.

4. CONCEPTUAL DESCRIPTION
Solutions are represented as symbolic expression trees
in the same way as in tree-based GP. The internal nodes
of the tree contain symbols of operators and functions
and the leaf nodes contain input variables. The set of
symbols for functions and variables is a parameter of

the algorithm. Figure 1 shows an exemplary symbolic
regression model.

Figure 1: Example of a Symbolic Regression Model.

The proposed approach is based on the standard

formulation of tabu search (Glover 1999). We use only
a single tabu list for short-term memory and allow
aspiration of moves. Initially a random solution is
generated as a starting point. This solution is iteratively
manipulated by applying the best move from a set of
possible moves after checking a tabu criterion. In one
move a branch of the tree is removed and replaced by a
valid branch from a pool of branches. The pool of
branches for replacement is filled with small random
branches in the initialization step of the algorithm. We
chose to use a pool of pre-generated branches to prevent
continuously generating and evaluating random
branches in the main loop of the algorithm. The main
loop involves: generating moves, checking the tabu list,
applying the best move, and updating the tabu list.

Two different modes are possible for move
generation, random mode and semantic mode. In
random mode, a number of cut points in the current
solution are selected randomly and for each cut point a
random replacement branch is selected randomly from
the pool. In semantic mode, the cut points in the current
solution are also selected randomly, however, then for
each cut-point the semantically most similar branches
from the replacement pool are selected. The semantic
similarity of a branch in the current solution and a
branch from the pool is determined by the squared
Pearson’s correlation coefficient of the output of the
branch and the replacement branch. Branches with a
large R² have a similar output as the original branch that
is to be replaced and, thus, should only have a small
effect on the overall quality of the model. By iteratively
replacing branches with semantically similar branches
the algorithm can walk on a smooth trajectory to more
accurate solutions. To facilitate exploration of worse
solutions the algorithm uses the tabu-list to guide search
to different regions of the hypotheses space.

When a move is applied the exact point where the
root of the new branch has been inserted is added to the
tabu list and is thus locked and must not be changed for
some time. Several aspiration criteria are used to allow
certain moves that would otherwise be tabu for instance
if a new best-of-run solution would be found.

A maximal size and depth limit is used to prevent
uncontrolled growth of the solution.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 380

5. DETAILED DESCRIPTION
5.1. Parameters
Based on the conceptual description of the algorithm a
number of parameters can be derived. The most
important parameters are the number k of randomly
selected cut-points M and the number n of replacement
branches for each cut-point. The total number of moves
|N| generated in each iteration results as the product of
these two parameters. A parameter for the maximal
number of iterations is necessary to stop the algorithm.
The size of the tabu list determines how long a
manipulated point in the tree is protected against
manipulations. The size of the solution is limited by two
parameters for the maximal solution length and solution
depth. Additionally, the two additional parameters limit
the length and depth of the replacement branches in the
pool and another parameter is necessary for the size p of
the pool F.

5.2. Algorithm Description

1. Create an initial solution (tree) randomly.
2. Create a vector of p branches F = (f1,…,fp)

with a maximal length of fmax_length and a
maximal depth of fmax_depth.

3. Evaluate all branches to create a vector of
outputs O = (o1,…,op) for each of the p
fragments.

4. Create a set of k cut-points M = {m1,…,mk}
randomly, where a manipulation point is a
node (internal or external) of the solution
candidate.

5. Initialize the set of moves N={}.
6. If mode is semantic then continue at 7.

else continue at 8.
7. For each manipulation point (semantic):

(a) Calculate the output outm of the branch.
(b) Calculate the R² value of the output outm

of the branch and all outputs of the
fragments O.

(c) Select n fragments with the highest R²
value (< 1) and create n moves from the
solution candidate replacing the branch at
the manipulation point with each of the
selected fragments and add the new moves
to N.

(d) Goto 9.
8. For each manipulation point (random):

(a) Select n fragments from the pool F
randomly and create n moves from the
solution candidate replacing the branch at
the manipulation point with each of the
selected fragments and add the new moves
to N.

9. Remove all moves from N which do not fulfill
the aspiration criterion and would manipulate a
node which is in the tabu-list. If all moves are
tabu then keep one randomly chosen move.

10. Evaluate the fitness of all moves by
temporarily applying each move and
evaluating the accuracy of the resulting model.

11. Select the move that leads to the best accuracy
(might be smaller than the accuracy of the
current solution candidate).

12. Apply the move to the solution candidate to
produce the current solution of the next
iteration and add the manipulated point to the
tabu-list.

13. Update the best-of-run solution if the current
solution candidate has a better accuracy.

14. If the stopping criterion is true then stop and
return the best-of-run solution, otherwise go to
step 4.

In the move generation steps the maximal depth
and length of the tree is restricted by generating only
moves that produce trees smaller than the given limits.
In semantic mode the most similar branches are
selected, however, perfectly similar replacement
branches (R²=1) are not considered because such a
move would have no effect on the output of the
solution.

When a move is applied to the solution the existing
branch is not simple replaced with the branch from the
pool, but instead a swap operation is performed. The
existing branch is added to the pool instead of the just
inserted branch.

5.3. Tabu Criterion
Moves that would manipulate a node that has recently
been replaced in another move are tabu. The length of
the tabu list determines how long a manipulated node is
locked. For comparing two moves we calculate the path
to the manipulated node starting from the root node.
This path can be represented as a list of integers where
each element is the index of the sub-tree that leads to
the manipulated node. For instance in Figure 2 the path
[1,0] leads to the red node which is a new node that has
been inserted in a previous move. The path must match
exactly with the path of a previous move to make a
move tabu, i.e. changing a sub-branch below a
previously inserted branch is allowed.

Figure 2: Example for a Path to a Manipulated Position
in the Tree.

5.4. Aspiration
Several aspiration criteria are used to allow moves that
would otherwise be tabu. The first aspiration criterion
allows moves which would lead to a new best-of-run
quality.

The second aspiration criterion is necessary to
allow moves that manipulate a path that has recently
been manipulated in an earlier move, when a more
recent move replaced a larger branch containing the
previously inserted branch. Figure 3 shows the solution

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 381

and the tabu manipulation points for three consecutive
moves. First the single red node is replaced and the
point is locked. In the second move the first move is
undone because the whole right branch is replaced. As
stated above only the manipulated point is set to tabu.
The newly added nodes below the manipulation points
can be changed immediately in consecutive moves. In
particular the point replaced in the first move which is
still in the tabu list can be manipulated again. This is
accomplished through the aspiration criterion. In the
third step the whole left branch is replaced. Now both,
the direct left and right children of the root node are
locked. All other nodes might be manipulated in
consecutive moves.

Figure 3: Aspiration Criterion for Moves That Are
Undone with a Later Move.

The third aspiration criterion incorporates semantic
information. The underlying idea is that moves should
be aspired when the solution is changed in the same
location, but in such a way that the solution is less
similar to a previous solution than the current solution
(i.e. semantically walking backwards). In particular, it is
allowed to make moves that lead to a new solution
when it is less similar to a previous solution than the
current solution, even when the manipulation point
would be tabu. Figure 4 shows the relevant similarities
for two visited solutions (with branches A and B) and a
potential new solution with a branch C, where A, B and
C are all on the same location of the solution. First the
semantic similarity of the two branches of the previous
move (R²(A,B)) is determined. If the semantic similarity
of the original branch and the replacement branch of the
current move (R²(A,C)) is smaller than R²(A,B) the
move is allowed. A move that would insert a branch C
that is again more similar to the original branch A is not
allowed.

Figure 4: The semantic aspiration criterion allows tabu
moves (C) if the result is less similar to the original (A)
than the previously inserted branch (B).

5.5. Application of Moves
Because semantic similarity of branches is determined
using the squared correlation coefficient which is
invariant to changes in scale and location it is necessary
to linearly scale a branch before inserting it into the
solution. This has the negative effect that four
additional tree nodes are necessary for each inserted
branch (two constants and an addition and
multiplication operator). Especially, the constant nodes
are problematic because the correlation is zero for all
possible replacements. This has the effect that constant
nodes are replaced with a random branch from the pool
which is then scaled in such a way to produce a constant
output (multiplication with zero). In order to prevent
such manipulations we check this special case and
replace constant nodes only with unscaled branches.
This is a rather uncomfortable workaround and should
be addressed in a better way future work. An alternative
would be to use the mean of squared errors as the metric
for semantic similarity, but then the pool size should be
much larger to increase the likelihood to find similar
replacement branches.

Another important aspect of move application is
that the replaced branch in the solution is added to the
pool of replacement branches. This is necessary to
prevent losing already well fitted branches because of a
bad random manipulation. If the replaced branch is
instead added to the pool, this branch can later be
reused in a different, or even the same position in the
solution.

5.6. Model Size Limits
Interestingly, without limiting the size of the model we
also observed a steady growth of the model in initial
experiments. This growth resulted from the fact that
small fragments were replaced by on average larger
fragments. Inserting a new branch instead of a terminal
node leads to a set of new docking points which are
definitely not in the tabu list and the algorithm can then
easily find another move leading to a minor quality
improvement replacing one of the newly introduced
terminal nodes.

To prevent this growth of solutions we introduced
limits for the maximal tree size and depth that are
checked when generating possible moves.

6. DISCUSSION
A major issue in the configuration of the algorithm
proofed to be finding good parameter values for the
number of cut-points and the number of replacement
branch for each cut-point. If the number of cut-points is
small then it is very likely that a move replaces a branch
near the root of the solution which leads to a deleterious
move that destroys the already well fitted solution
frequently. On the other hand if the number of cut-
points is large then it is very easy to find a move that
has only a minor positive or negative effect on the
solution fitness by replacing a node deep down in the
tree with a similar node. This leads to the unwanted
behavior where tabu search plateaus on a sub-optimal

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 382

solution without any significant changes until a
deleterious manipulation occurs.

Initial experiments showed that the performance of
the algorithm depends very strongly on the balance of
these two parameter values; however, we have not yet
executed experiments to determine good general
parameters and instead rely on a reasonable default
setting.

Another difficulty for the algorithm are constants
in the solution and in the branches in the replacement
pool. As constants have zero correlation with all
possible outputs, the semantic similarity of all branches
to constants is very low. This makes it necessary to
handle constants specifically in the algorithm. In the
experiments we have not allowed constants in the initial
branches in the replacement pool; however, through the
linear scaling of branches constants are automatically
introduced into the solution over the run. We leave the
analysis of the effects of constants and the development
of a better way of handling constants for future work.

One advantage of trajectory-based algorithms is
that changes to solutions can often be calculated
incrementally. For symbolic regression solutions this is
principally also possible because only the parents of the
newly inserted branch have to be re-evaluated. The
outputs of all other branches can be cached as they are
not affected by the insertion of a new branch. This
would also be possible for sub-tree crossover in genetic
programming; however, because tabu search only uses a
single solution at any time instead of a whole
population, caching becomes feasible.

The calculation of semantic similarity leads to a
rather large overhead as for each move the output of the
original branch has to be compared to the output of all
fragments in the pool and thus the asymptotic runtime
complexity is O(kp). Additionally, the calculation of the
squared Pearson’s correlation coefficient grows linearly
with the number of observations.

7. EMPIRICAL EVALUATION
For the empirical evaluation of the proposed approach
we used two sets of relatively easy benchmark instances
defined by Keijzer and Nguyen as described in
(McDermott et al., 2012). We compared three different
algorithms: symbolic regression based on genetic
programming and the proposed approach using
semantic move generation and random move
generation. The parameter settings for genetic
programming and tabu search are shown in Table 1 and
Table 2. Because the benchmark instances are relatively
easy we used only a small number of iterations for tabu
search and the number of evaluated solutions for GP
was set in such a way to allow the at least the same
number of evaluated solutions as for tabu search.

Table 1: Genetic Programming Parameter Settings
Parameter Value

Population size 100
Offspring selection Success ratio = 1

Comparison factor = 1

Parent selection Gender-specific
(random/proportional)

Max. evaluated solutions 50,000
Max. selection pressure 100
Tree creation PTC2
Size limits Length=80, Depth = 12
Function set +,*,%, variables

(no random constants)

Table 2: Tabu Search Parameter Settings
Parameter Value

Iterations 1,000
Number of cut-points (k) 1
Number of fragments (n) 100
Size limits Length=80, Depth = 12
Fragment size limits Length=8, Depth=4
Pool size (|F|) 1,000
Function set +,*,%, variables

(no random constants)

We executed ten independent repetitions for each
algorithm configuration and benchmark instance.

8. RESULTS
The results of the empirical evaluation on the simple
benchmark problems are shown in Table 3. It can be
clearly seen that the genetic programming configuration
works best for almost all instances and finds the
solution for about half of the instances. There is no clear
difference between tabu search with random move
generation in comparison to tabu search with semantic
move generation. In both tabu search configurations the
semantic aspiration criterion has been used.

Table 3: Result Comparison
Instance OSGP TS

random
TS

semantic
Keijzer-1 0.9552 0.7141 0.7594
Keijzer-4 0.1612 0.0678 0.1183
Keijzer-5 1.0000 0.9931 0.9966
Keijzer-6 1.0000 0.4901 0.5911
Keijzer-7 0.9999 0.2867 0.1849
Keijzer-8 0.9732 0.9726 0.9789
Keijzer-10 0.9990 0.9768 0.9784
Keijzer-11 0.9787 0.9581 0.9435
Keijzer-12 0.9995 0.9692 0.9534
Keijzer-13 0.8976 0.7491 0.6763
Keijzer-14 0.9793 0.8000 0.8206
Keijzer-15 0.9771 0.9449 0.9397
Nguyen-1 1.0000 0.9879 0.9975
Nguyen-2 1.0000 0.9504 0.9929
Nguyen-3 1.0000 0.9903 0.9963
Nguyen-4 1.0000 0.9909 0.9925

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 383

Nguyen-5 1.0000 0.9726 0.9598
Nguyen-6 1.0000 0.9780 0.9522
Nguyen-7 1.0000 0.9863 0.9717
Nguyen-8 0.9999 0.9877 0.9602
Nguyen-9 0.9993 0.9961 0.9962
Nguyen-10 0.9998 0.9960 0.9962

9. DISCUSSION OF RESULTS
The result of the algorithm comparison is rather
devastating and clearly indicates that the described
approach for tabu search based symbolic regression is
still rather immature, as it fails to find good solutions
even for easy benchmark instances. Detailed analysis of
the results for the Keijzer-6 and Keijzer-7 instances
where TS performed a lot worse than GP showed that in
these runs a scaling problem occurred. The algorithm
found almost correct solutions, but they were at the
bottom of a deep tree where the upper layers scaled and
re-scaled the output multiple times. This has lead to
numeric instabilities which then reduced the accuracy of
the solutions.

Generally the solutions generated by TS often
contained deeply nested structures with many fragments
introduced by the linear scaling of replacement
branches. In particular, solutions often contained many
constants. This issue should be analyzed in more detail
in future work as constants are particular bad for the
semantic move generation as mentioned above.

Another aspect that should be researched in more
detail is the issue that replacing a branch near the root
leads to a complete disruption of the solution while
replacing branches deep down in the tree often have
only a minor effect on the solution output. This is a
direct consequence of the tree-based representation and
makes design of useful move operators very difficult.
Future work should consider different move operators
than just simply replacing branches as discussed in this
contribution.

Finally it could be helpful to add a form of
diversification strategy for instance through long-term
memory. In this paper we only used a tabu-list for short
term memory to facilitate exploration of the fitness
landscape in addition to the local improvement of the
semantic move operator.

ACKNOWLEDGMENTS
The work described in this chapter was done within the
Josef Ressel-Centre Heureka! for Heuristic
Optimization sponsored by the Austrian Research
Promotion Agency (FFG).

REFERENCES

Abdel-Rahman H., Emad Mabrouk, Masao
Fukushima, 2011, Tabu Programming: a New Problem
Solver through Adaptive Memory Programming over
Tree Data Structures, International Journal of
Information Technology and Decision Making
10(2):373 – 406.

Balicki, J., 2009, Some numerical experiments on
multi-criterion tabu programming for finding Pareto-
optimal solutions, WSEAS Transactions on Systems
8(1):241 – 250.

Balicki, J., 2007, Hierarchical Tabu Programming
for Finding the Underwater Vehicle Trajectory,
International Journal of Computer Science and
Network Security 8(11):32 – 37.

Glover, F., Laguna, M., 1999, Tabu Search,
Kluwer Academic Publishers.

Hastie, T., Tibshirani, R., Friedman, J., 2009, The
Elements of Statistical Learning, Springer.

Krawiec, K., 2011, Learnable Embeddings of
Program Spaces, Proceedings of the 14th European
Conference on Genetic Programming, LNCS (6621)
166 – 177, Springer Verlag.

Krawiec, K., 2012, Medial Crossovers for Genetic
Programming, Proceedings of the 15th European
Conference on Genetic Programming, LNCS (7244)
61 – 72, Springer Verlag.

Koza, J., 1992, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press

McConaghy, T., 2011, Fast, Scalable,
Deterministic Symbolic Regression Technology,
Genetic Programming Theory and Practice IX, Springer

McDermott, J., White, D.R., Luke, S., Manzoni,
L., Castelli, M., Vanneschi, L., Jaskowski, W.,
Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.-M.,
Genetic Programming Needs Better Benchmarks,
Proceedings of GECCO’2012, July 7-11, 2012,
Philadelphia, Pennsylvania, pp. 791 – 798, ACM.

Nguyen, Q.U., Nguyen, X.H., O’Neill, M., 2011,
Examining the landscape of semantic similarity based
mutation, Proceedings of the 13th annual conference on
genetic and evolutionary computation (GECCO’11),
ACM, 12-16 July 2011, pp. 1363 – 1370.

Nguyen, Q.U., Nguyen, T.H., Nguyen, X.H.,
O’Neill, M., 2010, Improving the Generalisation Ability
of Genetic Programming with Semantic Similarity
based Crossover, Proceedings of the 13th European
Conference on Genetic Programming (EuroGP2010),
LNCS (6021) 184 – 195, Springer

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 384

