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ABSTRACT 

Much effort has been put into understanding the 

artificial evolutionary dynamics within genetic 

programming (GP). However, the details are yet unclear 

so far, as to which elements make GP so powerful. This 

paper presents an attempt to study the evolution of a 

population of computer programs using HeuristicLab. A 

newly developed methodology for recording heredity 

information, based on a general conceptual framework 

of evolution, is employed for the analysis of algorithm 

behavior on a symbolic regression benchmark problem. 

In our example, we find the complex interplay between 

selection and crossover to be the cause for size increase 

in the population, as the average amount of genetic 

information transmitted from parents to offspring 

remains constant and independent of run constraints 

(i.e., tree size and depth limits). Empirical results reveal 

many interesting details and confirm the validity and 

generality of our approach, as a tool for understanding 

the complex aspects of GP.   

 

Keywords: genetic programming, tree fragments, 

evolutionary dynamics, schema theory, population 

diversity, bloat, introns 

 

1. INTRODUCTION 

A difficult task in genetic programming is to 

explain the evolutionary behavior of highly 

polymorphic, dynamic populations of computer 

programs. Evolution within GP is characterized by 

complex genotype-phenotype relations that make it 

difficult for researchers to identify the influential factors 

of emergent behavior and the underlying mechanisms 

behind phenomena such as loss of diversity, over-

fitting, bloat and introns.  

Although these phenomena have been correlated 

by scientists with different algorithmic components (run 

constraints, genetic operators, function and terminal 

set), the main reason a causal relationship could not be 

derived from the work is two-fold.  

On the one hand, on the theoretical level, problems 

arise from the inherent complexity of the Genotype-

Phenotype map, which is a mathematical function to 

describe the relationships between genotype and 

phenotype. Phenotypic innovation is the result of 

genetic modification mediated by the GP-map (Stadler 

and Stephens 2003, Stadler 2006). The notion of 

phenotypic neighborhood induced by the GP-map may 

differ fundamentally from any notion of “nearness” 

among phenotypes based solely on the comparison of 

their morphological features (Fontana and Schuster 

1998). Therefore, stronger metrics and measurements 

are required for describing fitness landscape topologies 

in the presence of many-to-one relationships, i.e., sets of 

genotypes folding into essentially the same (at least on 

the semantic level) phenotypic structure. Difficulties in 

fulfilling this particular requirement make it unclear 

how to determine the role of selection, crossover and 

mutation in genetic programming. 

On the other hand, the presence of representational 

bias (how genotypes are represented) or procedural bias 

(determined by genetic operators and fitness function) 

in the algorithm, varying across different problem 

domains, and the delicate balance between performance 

(training accuracy) and robustness (test accuracy) 

makes it unclear which innovations or algorithmic 

improvements are related to the underlying dynamics 

and which ones exploit particularities of a specific class 

of problems. Understanding the relationship between 

bias and generalization ability of genetic programming 

is crucial in designing algorithms with good 

generalization capabilities (Kushchu 2002).  

In this paper, we focus on the study of genetic 

algorithms under the framework of neo-Darwinian 

evolution. The suggested approach, based on the 

tracking of all genetic information that flows through 

the evolutionary graph, constitutes the first step in an 

attempt to analyze and explain the influence and 

interplay of genetic operators.  

The paper is organized as follows: Section 2 

provides a brief overview of the essential biological 

concepts of evolution at the base of this approach. A 

brief summary of other research in this area is described 

in Section 3. In Section 4, the implementation of the 

HeuristicLab tracking plugin is detailed. Section 5 

discusses some preliminary results concerning the 

distribution of tree and fragment lengths sampled by 

crossover, and Section 6 is devoted to conclusions.  
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2. CONCEPTS OF ARTIFICIAL EVOLUTION 

Evolution is the result of selection acting upon the 

genetic variation within a population. In other words, it 

requires variation in phenotype, differential 

reproduction on the basis of phenotype, and heredity of 

the traits associated with differential reproduction. 

Some traits associated with better fitness survive and 

propagate further while others – and their corresponding 

genes – become extinct in the population. 

In genetic programming, operators such as 

crossover and mutation act on genotypes, while fitness-

based selection acts on phenotypes. In this context, we 

take genes to be minimal fragments consisting of 

symbols (primitives) and terminals. 

The ability of the genetic operators to produce 

useful variation (i.e., new compositions of symbols, 

variables and constants) plays a crucial role in algorithm 

performance; this requirement, however, is not 

sufficient to guarantee algorithm convergence, as there 

are cases when a relevant gene becomes extinct before 

getting the chance to become useful. Moreover, the 

closure property of the GP function set makes it 

possible, in theory, for genetic operators to produce 

variation ad infinitum. In practice, this possibility is 

limited by size and depth constraints, but this does not 

prevent the occurrence of bloat (i.e., gradual increase in 

tree size), or the appearance of introns (“intragenic 

region” – segments of non-viable, inefficient or neutral 

code), as an effect of selection pressure. One of the key 

challenges in GP is to eliminate introns and bloat while 

at the same time maintaining just enough diversity in 

the population so that the search can succeed. 

 

3. RELATED WORK 

This section provides a summary of existing 

research on the topic of evolutionary dynamics, or, 

more generally, on how information from successive 

generations (genealogical information or otherwise 

significant indicators like size, fitness) can guide the 

search process or explain, predict or improve various 

aspects of artificial evolution. 

Burke et al. (2003) improve population diversity 

by taking into account lineage information in the 

selection phase. A genetic lineage is defined as the 

connection from the root parent to those individuals 

which were created, via crossover, from that individual. 

Lineage selection is implemented as an additional step 

to bias selection towards different lineages from the 

initial population. In effect, the selected parents are the 

results of tournament selection across lineages, so that 

the selection pressure is reduced from the fittest 

individuals to the fit and diverse (Burke et al. 2003). In 

terms of evolutionary dynamics, the authors conclude 

that adding diversity can worsen fitness on some 

problems that clearly benefit from elitism in a hill-

climbing environment, but may avoid local optima, 

when deception is embedded into the problem.  

In a subsequent paper, Gustafson et al. (2005) 

focus on the analysis of survival rates, mating success 

and dissimilarity between offspring and parents. They 

reach the conclusion that similar parents (with the same 

fitness) are unlikely to produce better offspring and they 

introduce a simple rule to prevent mating between 

solutions with the same fitness. Their work supports the 

idea that GP search may be improved by producing 

more differently fit solutions. 

Another work by Smart et al. (2007) suggests a 

methodology for investigating the building blocks 

hypothesis in GP, by aggregating statistical information 

of fragments and fragment schemas. A fragment is 

defined as a connected set of nodes from the program 

tree. A fragment schema is defined as the set of all 

programs containing a specified fragment at some point 

in the program tree. In their paper, Smart et al. use the 

concept of maximal fragment, defined as the largest 

fragment contained in all subtrees from some subset of 

the population. The set of maximal fragments can be 

analyzed in various ways to identify properties of the 

set of all fragments (Smart et al. 2007). The analysis 

relies on a subtree-mining algorithm called TRIPS 

(TRee mIning algorithm using Prüfer Sequences) 

capable of finding frequent subtrees (fragments) from a 

forest of tree structures. The TRIPS algorithm is 

explained in detail in Tatikonda et al. (2006). 

Finally, in a series of papers, Poli et al. detail the 

correlation between the mean program size at 

generation 0, the average arity of the primitive set and 

the internal node distributions of mixed arity trees. They 

develop a size evolution equation which is an exact 

formalization of average program size dynamics. It is 

shown that under standard subtree-swapping crossover 

(uniform selection of crossover points), the population 

converges to a limiting tree length distribution that will 

exponentially sample smaller programs (Poli and 

McPhee 2008, Dignum and Poli 2008).  For this reason, 

crossover depth and size limits are found to actually 

have a positive effect towards bloat, as small trees are 

more likely to be sampled, but are less likely to generate 

new programs. In Poli and McPhee (2008), an effective 

method for dynamically setting the parsimony 

coefficient, and thus controlling the average program 

length in the population, is derived from the size 

evolution equation. 

The work of Poli et al. is especially important as it 

lays the foundations for a mathematical model of 

evolutionary search. It also emphasizes the important 

role of the interplay between selection and crossover, 

which determines GP behavior. 

 

4. TRACKING OF EVOLUTION DATA 

This section outlines our proposed methodology 

for the study of evolutionary dynamics within GP, with 

a focus on genetic operator behavior and fragment 

statistics. In the context of this paper, a fragment 

denotes a subtree (usually swapped by crossover) that is 

part of a bigger rooted tree (the individual). 

 

4.1. Analysis of Inheritance Information 

The tracking functionality was implemented in 

HeuristicLab, a framework for heuristic and 
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evolutionary algorithms developed at the Heuristic and 

Evolutionary Algorithms Laboratory (HEAL) of the 

Upper Austria University of Applied Science 

(http://dev.heuristiclab.com). Inheritance information is 

recorded in the form of an evolutionary graph, in which 

nodes represent individuals and arcs represent heredity 

relationships between them. It is clear that the graph 

itself consists of the union set of all lineages in the 

population. This representation was chosen for its 

potential to provide additional insight into the process 

of evolution by investigating the changes in the 

topological and algebraic properties of the graph. 

Figure 1 shows an example of an individual 

(marked with a rectangle), its genealogy and its tree 

structure, in which the genetic information it received 

from the parent is highlighted. The interface facilitates 

the investigation of lineages, heredity and how the 

genetic material is assembled from lower building 

blocks during evolution. 

 

4.2. Tree and Fragment Similarity  

 In addition to tracking fragments transmitted via 

genetic recombination, it is also possible for arbitrary 

tree fragments to be matched against the population of 

individuals. This powerful tool can be used to 

investigate the distribution of certain fragments or 

schemas within the population. 

 Fragment matching is done according to three sets 

of rules. The terminology used below refers to Symbols 

which represent functions or operators, Variables which 

represent elements from the data set, and Constants 

which are random numbers supplied as inputs to the 

functions alongside the variables. 

 

S1 „Exact”: the entire fragment must be matched 

one-for-one: symbol names and arities must be 

the same, as well as variable names and 

weights, or constant values  

S2 “High”: exact matching of symbols, partial 

matching of leaf nodes – they are required to 

be of the same type (Variables or Constants) 

S3 “Relaxed”: exact matching for symbols, leaf 

nodes are considered wildcards 

 

It is clear that for sets S1, S2, S3 of matched 

fragments given by the three similarity rules defined 

above, S1 ⊆ S2 ⊆ S3. Moreover, fragments contained in 

S2 and S3 are isologous (i.e., having a similar structure 

but containing different leafs). Isologous tree fragments 

can be considered elements of a set S of phenotypic 

instances of a gene G, in which case G can also be 

viewed as a schema. This provides a way to identify 

useful genes or schemas in the population. 

Figure 2 shows an example of fragment matching. 

The tree fragment highlighted on the right was matched 

against multiple individuals in the population. The 

black nodes represent “exact” matches, the dark gray 

ones represent “high” matches, while the normal gray 

ones represent “relaxed” matches.  

  

5. EMPIRICAL CASE STUDY 

 The study of tree fragments was done on a 

symbolic regression problem (Poly-10) where the target 

function is the 10-variable cubic polynomial: 

 

f(x) = x1 x2+ x3 x4+ x5 x6+ x1 x7 x9+ x3 x6 x10  

 

Population size 500 

Generations 200 

Selector Tournament (size=3) 

Crossover  Size-fair crossover (p=0.9) 

Mutation Multi-mutation operator (p=0.15) 

Table 1: Genetic Algorithm Settings 

 

In a first phase, our run analysis focused on the 

distribution of parent, children and fragment lengths 

across generations. For the Poly-10 problem, a 

maximum tree size of 100 nodes was used.  

Empirical data from a standard GP run shows that, 

with the size-fair crossover, which only performs a 

swap if the size and depth limits are respected, the 

children length is not very different from the length of 

the parent, and is, on average, smaller (Figure 3). 

This result is somewhat surprising as it contrasts to 

the overall behavior of all the trees in the population 

(including those that did not reproduce) which is 

characterized by a gradual increase in length throughout 

evolution. The apparent contradiction can be explained 

by the interplay between crossover, which drives the 

size distribution of children towards smaller lengths, 

and selection, which tends to reduce diversity, thus 

promoting uniformity in the population at the expense 

of smaller, less fit programs. 

Figure 1: On the left, an individual (marked with a rectangle) and its genealogy. On the right, the tree structure of the 

individual. The highlighted nodes belong to the fragment that was received via crossover. 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 364

http://dev.heuristiclab.com/


Figure 2: Example of fragment matching according to the three similarity criteria: black – “exact”, dark gray – “high” 

and gray – “relaxed”. The matched fragment is highlighted in the right-hand side. 

 

To verify this, we propose a similarity measure 

based not on whole tree comparison, but on comparison 

between tree fragments that get transmitted via 

crossover. The similarity value is obtained by dividing 

the total number of identical fragments in the population 

(matched by the “exact” similarity measure) by the 

number of similarity groups they form. 

 

 
Figure 3: Average parent and child lengths over 200 

generations (10-run average) 

 

 The evolution of fragment similarity is shown in 

Figure 4, and is measured in average number of similar 

fragments per generation. The probability of a fragment 

occurring multiple times in the population is a product 

between the probability its containing individual gets 

selected multiple times and the probability that the 

fragment itself is sampled by crossover more than once. 

Therefore, it is reasonable to assume that even a small 

increase in the average number of identical fragments 

(i.e., similarity in the genetic material which gets passed 

to the offspring) can in fact mean a big decrease in 

population diversity. 

Another interesting result is that the average size of 

the crossover fragments tends to remain constant 

throughout the run. The only factor influencing average 

fragment size seems to be the average arity of the 

available functions. Figure 4 shows an increase in 

average fragment length in the beginning of the run 

(first 20 generations), followed by a decrease and 

stabilization at a fragment size value of approximately 

4.6 nodes. This can be explained by the fact that, after 

the initial exploratory phase of the algorithm, when 

many different points in the solution space are sampled, 

the search becomes gradually more local and the 

accepted changes become those that have a small 

positive effect and do not affect the overall structure of 

the tree.  

 

 
Figure 4: Fragment similarity increasing from 1 to 5.5, 

fragment length stabilizing at ~4.6 nodes 

  

The correlation between fragment size and search 

locality becomes more obvious if we look at the 

Offspring Selection Genetic Algorithm (Affenzeller et 

al. 2009). We outline the main idea of the algorithm 

here: in OSGA the selection mechanism is extended to 

include an “offspring selection” step after the parents 

are selected via the usual means (i.e., proportional, 

roulette or tournament selection). In this extra step, the 

fitness value of the offspring is compared with the 

fitness values of its parents (either the worst or best 

parent, or an average between the two). Only the 

offspring that are able to outperform their parents 

(denoted as “successful” offspring) are accepted as 

candidates for the further evolutionary process, 

according to a predefined success ratio which gives the 

percentage of the population that is expected to surpass 

their parents’ fitness. The rest of the population is filled 

with random individuals chosen from the pool of 

individuals that were also created by crossover but did 

not reach the success criterion. This strategy guarantees 

that evolution is resumed mainly with crossover results 

that were able to mix the properties of their parents in 

an advantageous way. The value of selection pressure is 

given by the quotient of new individuals that had to be 

created until the success ratio was reached, and the 

number of individuals in the population (Affenzeller et 

al. 2009). 
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Consequently, in OSGA, because of the dynamic 

selection pressure, the shift from global to local search 

is more pronounced and the correlation with average 

fragment size is easier to observe. Similar to 

successful/unsuccessful individuals, we define a 

successful fragment as a fragment contained in an 

individual that was selected for reproduction. The 

OSGA algorithm run settings are shown in Table 2. 

 

Population size 500 

Generations 1000 

Maximum tree depth 10 

Maximum tree length 100 

Selector Proportional 

Crossover Size-fair crossover 

Mutation rate 20 % 

Comparison factor 1 

Success ratio 1 

Table 2: OSGA Algorithm Settings 

 

Note that even though the algorithm is allowed to run 

for 1000 generations, the termination criteria will be 

reached before that, when the selection pressure exceeds 

a predefined threshold (when no more successful 

individuals can be produced).  

 

 
Figure 3: OSGA – average parent/child lengths, 10 runs 

 

Figure 3 shows the evolution of parent/child average 

length for 10 OSGA runs. The average child length is 

always lower than the average parent length. Different 

runs have different lengths depending on when the stop 

criterion is reached 

. 

 
Figure 4: OSGA – average fragment sizes, 10 runs 

In OSGA, the selection pressure increases as it 

becomes harder to produce successful offspring. This 

translates into an overall increase in fragment size as the 

algorithm spends more effort trying to find new and 

better programs. However, while the average fragment 

size increases (Figure 4), the average size of successful 

fragments gradually becomes smaller, as the search 

converges (Figure 5). This proves that a selection 

pressure steering mechanism is an effective guide for 

the evolutionary search. In contrast with the standard 

GA, the OSGA behavior illustrates more clearly what 

happens when the search converges. The accepted 

modifications gradually become smaller until no better 

children can be obtained from the available genetic 

material. 

  

 
Figure 5: OSGA – average size of successful fragments, 

10 runs 

 

6. DISCUSSION AND CONCLUSIONS  

In this paper, we described a powerful and general 

methodology for analyzing the evolutionary dynamics 

in genetic programming. The approach integrates the 

basic principles of evolution with a set of novel 

techniques for the tracking and analysis of inheritance 

and hereditary information. 

Preliminary results are promising as they bring 

insights into the behavior of genetic operators and their 

combined effects. In our test case, we explain the 

increase in the average size of individuals as the result 

of the complex interplay between crossover and 

selection. 

The fragment statistics acquired during the run 

provide an additional insight into the behavior and 

dynamics of the evolutionary run. The increase in 

fragment similarity shows how genetic diversity is lost 

as the search progresses. The results show that average 

fragment length stabilizes and remains constant, and 

that although the overall tendency of the GA population 

is to increase in size, the children produced by crossover 

are on average smaller than their parents. Using the 

notion of “successful” fragments, we provided an image 

and explanation of GP convergent behavior.  

Future research will provide more details regarding 

the extent to which each genetic operator influences the 

overall behavior of the algorithm. Detailed lineage 

analysis in terms of fragments and fitness similarities 

can reveal more about the characteristics of the 
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underlying genotype-phenotype mappings. Concerning 

the evolutionary graph, we plan to see if the underlying 

topology can substantially affect the results of the 

evolutionary process. 

Overall, the work described in this paper opens a 

breadth of new possibilities for the study and 

understanding of genetic programming and artificial 

evolution. 
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