
EVOLUTION TRACKING IN GENETIC PROGRAMMING

Bogdan Burlacu
(a)

, Michael Affenzeller
(b)

, Michael Kommenda
(c)

, Stephan M. Winkler
(d)

, Gabriel Kronberger
(e)

(a-e)

University of Applied Sciences Upper Austria

Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg, Austria

(a)

bogdan.burlacu@fh-hagenberg.at,
(b)

michael.affenzeller@fh-hagenberg.at,
(c)

michael.kommenda@fh-hagenberg.at,
(d)

stephan.winkler@fh-hagenberg.at,
(e)

gabriel.kronberger@fh-hagenberg.at

ABSTRACT

Much effort has been put into understanding the

artificial evolutionary dynamics within genetic

programming (GP). However, the details are yet unclear

so far, as to which elements make GP so powerful. This

paper presents an attempt to study the evolution of a

population of computer programs using HeuristicLab. A

newly developed methodology for recording heredity

information, based on a general conceptual framework

of evolution, is employed for the analysis of algorithm

behavior on a symbolic regression benchmark problem.

In our example, we find the complex interplay between

selection and crossover to be the cause for size increase

in the population, as the average amount of genetic

information transmitted from parents to offspring

remains constant and independent of run constraints

(i.e., tree size and depth limits). Empirical results reveal

many interesting details and confirm the validity and

generality of our approach, as a tool for understanding

the complex aspects of GP.

Keywords: genetic programming, tree fragments,

evolutionary dynamics, schema theory, population

diversity, bloat, introns

1. INTRODUCTION

A difficult task in genetic programming is to

explain the evolutionary behavior of highly

polymorphic, dynamic populations of computer

programs. Evolution within GP is characterized by

complex genotype-phenotype relations that make it

difficult for researchers to identify the influential factors

of emergent behavior and the underlying mechanisms

behind phenomena such as loss of diversity, over-

fitting, bloat and introns.

Although these phenomena have been correlated

by scientists with different algorithmic components (run

constraints, genetic operators, function and terminal

set), the main reason a causal relationship could not be

derived from the work is two-fold.

On the one hand, on the theoretical level, problems

arise from the inherent complexity of the Genotype-

Phenotype map, which is a mathematical function to

describe the relationships between genotype and

phenotype. Phenotypic innovation is the result of

genetic modification mediated by the GP-map (Stadler

and Stephens 2003, Stadler 2006). The notion of

phenotypic neighborhood induced by the GP-map may

differ fundamentally from any notion of “nearness”

among phenotypes based solely on the comparison of

their morphological features (Fontana and Schuster

1998). Therefore, stronger metrics and measurements

are required for describing fitness landscape topologies

in the presence of many-to-one relationships, i.e., sets of

genotypes folding into essentially the same (at least on

the semantic level) phenotypic structure. Difficulties in

fulfilling this particular requirement make it unclear

how to determine the role of selection, crossover and

mutation in genetic programming.

On the other hand, the presence of representational

bias (how genotypes are represented) or procedural bias

(determined by genetic operators and fitness function)

in the algorithm, varying across different problem

domains, and the delicate balance between performance

(training accuracy) and robustness (test accuracy)

makes it unclear which innovations or algorithmic

improvements are related to the underlying dynamics

and which ones exploit particularities of a specific class

of problems. Understanding the relationship between

bias and generalization ability of genetic programming

is crucial in designing algorithms with good

generalization capabilities (Kushchu 2002).

In this paper, we focus on the study of genetic

algorithms under the framework of neo-Darwinian

evolution. The suggested approach, based on the

tracking of all genetic information that flows through

the evolutionary graph, constitutes the first step in an

attempt to analyze and explain the influence and

interplay of genetic operators.

The paper is organized as follows: Section 2

provides a brief overview of the essential biological

concepts of evolution at the base of this approach. A

brief summary of other research in this area is described

in Section 3. In Section 4, the implementation of the

HeuristicLab tracking plugin is detailed. Section 5

discusses some preliminary results concerning the

distribution of tree and fragment lengths sampled by

crossover, and Section 6 is devoted to conclusions.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 362

mailto:bogdan.burlacu@fh-hagenberg.at
mailto:mail@uni.edu
mailto:michael.kommenda@fh-hagenberg.at
mailto:stephan.winkler@fh-hagenberg.at
mailto:gabriel.kronberger@fh-hagenberg.at

2. CONCEPTS OF ARTIFICIAL EVOLUTION

Evolution is the result of selection acting upon the

genetic variation within a population. In other words, it

requires variation in phenotype, differential

reproduction on the basis of phenotype, and heredity of

the traits associated with differential reproduction.

Some traits associated with better fitness survive and

propagate further while others – and their corresponding

genes – become extinct in the population.

In genetic programming, operators such as

crossover and mutation act on genotypes, while fitness-

based selection acts on phenotypes. In this context, we

take genes to be minimal fragments consisting of

symbols (primitives) and terminals.

The ability of the genetic operators to produce

useful variation (i.e., new compositions of symbols,

variables and constants) plays a crucial role in algorithm

performance; this requirement, however, is not

sufficient to guarantee algorithm convergence, as there

are cases when a relevant gene becomes extinct before

getting the chance to become useful. Moreover, the

closure property of the GP function set makes it

possible, in theory, for genetic operators to produce

variation ad infinitum. In practice, this possibility is

limited by size and depth constraints, but this does not

prevent the occurrence of bloat (i.e., gradual increase in

tree size), or the appearance of introns (“intragenic

region” – segments of non-viable, inefficient or neutral

code), as an effect of selection pressure. One of the key

challenges in GP is to eliminate introns and bloat while

at the same time maintaining just enough diversity in

the population so that the search can succeed.

3. RELATED WORK

This section provides a summary of existing

research on the topic of evolutionary dynamics, or,

more generally, on how information from successive

generations (genealogical information or otherwise

significant indicators like size, fitness) can guide the

search process or explain, predict or improve various

aspects of artificial evolution.

Burke et al. (2003) improve population diversity

by taking into account lineage information in the

selection phase. A genetic lineage is defined as the

connection from the root parent to those individuals

which were created, via crossover, from that individual.

Lineage selection is implemented as an additional step

to bias selection towards different lineages from the

initial population. In effect, the selected parents are the

results of tournament selection across lineages, so that

the selection pressure is reduced from the fittest

individuals to the fit and diverse (Burke et al. 2003). In

terms of evolutionary dynamics, the authors conclude

that adding diversity can worsen fitness on some

problems that clearly benefit from elitism in a hill-

climbing environment, but may avoid local optima,

when deception is embedded into the problem.

In a subsequent paper, Gustafson et al. (2005)

focus on the analysis of survival rates, mating success

and dissimilarity between offspring and parents. They

reach the conclusion that similar parents (with the same

fitness) are unlikely to produce better offspring and they

introduce a simple rule to prevent mating between

solutions with the same fitness. Their work supports the

idea that GP search may be improved by producing

more differently fit solutions.

Another work by Smart et al. (2007) suggests a

methodology for investigating the building blocks

hypothesis in GP, by aggregating statistical information

of fragments and fragment schemas. A fragment is

defined as a connected set of nodes from the program

tree. A fragment schema is defined as the set of all

programs containing a specified fragment at some point

in the program tree. In their paper, Smart et al. use the

concept of maximal fragment, defined as the largest

fragment contained in all subtrees from some subset of

the population. The set of maximal fragments can be

analyzed in various ways to identify properties of the

set of all fragments (Smart et al. 2007). The analysis

relies on a subtree-mining algorithm called TRIPS

(TRee mIning algorithm using Prüfer Sequences)

capable of finding frequent subtrees (fragments) from a

forest of tree structures. The TRIPS algorithm is

explained in detail in Tatikonda et al. (2006).

Finally, in a series of papers, Poli et al. detail the

correlation between the mean program size at

generation 0, the average arity of the primitive set and

the internal node distributions of mixed arity trees. They

develop a size evolution equation which is an exact

formalization of average program size dynamics. It is

shown that under standard subtree-swapping crossover

(uniform selection of crossover points), the population

converges to a limiting tree length distribution that will

exponentially sample smaller programs (Poli and

McPhee 2008, Dignum and Poli 2008). For this reason,

crossover depth and size limits are found to actually

have a positive effect towards bloat, as small trees are

more likely to be sampled, but are less likely to generate

new programs. In Poli and McPhee (2008), an effective

method for dynamically setting the parsimony

coefficient, and thus controlling the average program

length in the population, is derived from the size

evolution equation.

The work of Poli et al. is especially important as it

lays the foundations for a mathematical model of

evolutionary search. It also emphasizes the important

role of the interplay between selection and crossover,

which determines GP behavior.

4. TRACKING OF EVOLUTION DATA

This section outlines our proposed methodology

for the study of evolutionary dynamics within GP, with

a focus on genetic operator behavior and fragment

statistics. In the context of this paper, a fragment

denotes a subtree (usually swapped by crossover) that is

part of a bigger rooted tree (the individual).

4.1. Analysis of Inheritance Information

The tracking functionality was implemented in

HeuristicLab, a framework for heuristic and

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 363

evolutionary algorithms developed at the Heuristic and

Evolutionary Algorithms Laboratory (HEAL) of the

Upper Austria University of Applied Science

(http://dev.heuristiclab.com). Inheritance information is

recorded in the form of an evolutionary graph, in which

nodes represent individuals and arcs represent heredity

relationships between them. It is clear that the graph

itself consists of the union set of all lineages in the

population. This representation was chosen for its

potential to provide additional insight into the process

of evolution by investigating the changes in the

topological and algebraic properties of the graph.

Figure 1 shows an example of an individual

(marked with a rectangle), its genealogy and its tree

structure, in which the genetic information it received

from the parent is highlighted. The interface facilitates

the investigation of lineages, heredity and how the

genetic material is assembled from lower building

blocks during evolution.

4.2. Tree and Fragment Similarity

 In addition to tracking fragments transmitted via

genetic recombination, it is also possible for arbitrary

tree fragments to be matched against the population of

individuals. This powerful tool can be used to

investigate the distribution of certain fragments or

schemas within the population.

 Fragment matching is done according to three sets

of rules. The terminology used below refers to Symbols

which represent functions or operators, Variables which

represent elements from the data set, and Constants

which are random numbers supplied as inputs to the

functions alongside the variables.

S1 „Exact”: the entire fragment must be matched

one-for-one: symbol names and arities must be

the same, as well as variable names and

weights, or constant values

S2 “High”: exact matching of symbols, partial

matching of leaf nodes – they are required to

be of the same type (Variables or Constants)

S3 “Relaxed”: exact matching for symbols, leaf

nodes are considered wildcards

It is clear that for sets S1, S2, S3 of matched

fragments given by the three similarity rules defined

above, S1 ⊆ S2 ⊆ S3. Moreover, fragments contained in

S2 and S3 are isologous (i.e., having a similar structure

but containing different leafs). Isologous tree fragments

can be considered elements of a set S of phenotypic

instances of a gene G, in which case G can also be

viewed as a schema. This provides a way to identify

useful genes or schemas in the population.

Figure 2 shows an example of fragment matching.

The tree fragment highlighted on the right was matched

against multiple individuals in the population. The

black nodes represent “exact” matches, the dark gray

ones represent “high” matches, while the normal gray

ones represent “relaxed” matches.

5. EMPIRICAL CASE STUDY

 The study of tree fragments was done on a

symbolic regression problem (Poly-10) where the target

function is the 10-variable cubic polynomial:

f(x) = x1 x2+ x3 x4+ x5 x6+ x1 x7 x9+ x3 x6 x10

Population size 500

Generations 200

Selector Tournament (size=3)

Crossover Size-fair crossover (p=0.9)

Mutation Multi-mutation operator (p=0.15)

Table 1: Genetic Algorithm Settings

In a first phase, our run analysis focused on the

distribution of parent, children and fragment lengths

across generations. For the Poly-10 problem, a

maximum tree size of 100 nodes was used.

Empirical data from a standard GP run shows that,

with the size-fair crossover, which only performs a

swap if the size and depth limits are respected, the

children length is not very different from the length of

the parent, and is, on average, smaller (Figure 3).

This result is somewhat surprising as it contrasts to

the overall behavior of all the trees in the population

(including those that did not reproduce) which is

characterized by a gradual increase in length throughout

evolution. The apparent contradiction can be explained

by the interplay between crossover, which drives the

size distribution of children towards smaller lengths,

and selection, which tends to reduce diversity, thus

promoting uniformity in the population at the expense

of smaller, less fit programs.

Figure 1: On the left, an individual (marked with a rectangle) and its genealogy. On the right, the tree structure of the

individual. The highlighted nodes belong to the fragment that was received via crossover.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 364

http://dev.heuristiclab.com/

Figure 2: Example of fragment matching according to the three similarity criteria: black – “exact”, dark gray – “high”

and gray – “relaxed”. The matched fragment is highlighted in the right-hand side.

To verify this, we propose a similarity measure

based not on whole tree comparison, but on comparison

between tree fragments that get transmitted via

crossover. The similarity value is obtained by dividing

the total number of identical fragments in the population

(matched by the “exact” similarity measure) by the

number of similarity groups they form.

Figure 3: Average parent and child lengths over 200

generations (10-run average)

 The evolution of fragment similarity is shown in

Figure 4, and is measured in average number of similar

fragments per generation. The probability of a fragment

occurring multiple times in the population is a product

between the probability its containing individual gets

selected multiple times and the probability that the

fragment itself is sampled by crossover more than once.

Therefore, it is reasonable to assume that even a small

increase in the average number of identical fragments

(i.e., similarity in the genetic material which gets passed

to the offspring) can in fact mean a big decrease in

population diversity.

Another interesting result is that the average size of

the crossover fragments tends to remain constant

throughout the run. The only factor influencing average

fragment size seems to be the average arity of the

available functions. Figure 4 shows an increase in

average fragment length in the beginning of the run

(first 20 generations), followed by a decrease and

stabilization at a fragment size value of approximately

4.6 nodes. This can be explained by the fact that, after

the initial exploratory phase of the algorithm, when

many different points in the solution space are sampled,

the search becomes gradually more local and the

accepted changes become those that have a small

positive effect and do not affect the overall structure of

the tree.

Figure 4: Fragment similarity increasing from 1 to 5.5,

fragment length stabilizing at ~4.6 nodes

The correlation between fragment size and search

locality becomes more obvious if we look at the

Offspring Selection Genetic Algorithm (Affenzeller et

al. 2009). We outline the main idea of the algorithm

here: in OSGA the selection mechanism is extended to

include an “offspring selection” step after the parents

are selected via the usual means (i.e., proportional,

roulette or tournament selection). In this extra step, the

fitness value of the offspring is compared with the

fitness values of its parents (either the worst or best

parent, or an average between the two). Only the

offspring that are able to outperform their parents

(denoted as “successful” offspring) are accepted as

candidates for the further evolutionary process,

according to a predefined success ratio which gives the

percentage of the population that is expected to surpass

their parents’ fitness. The rest of the population is filled

with random individuals chosen from the pool of

individuals that were also created by crossover but did

not reach the success criterion. This strategy guarantees

that evolution is resumed mainly with crossover results

that were able to mix the properties of their parents in

an advantageous way. The value of selection pressure is

given by the quotient of new individuals that had to be

created until the success ratio was reached, and the

number of individuals in the population (Affenzeller et

al. 2009).

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 365

Consequently, in OSGA, because of the dynamic

selection pressure, the shift from global to local search

is more pronounced and the correlation with average

fragment size is easier to observe. Similar to

successful/unsuccessful individuals, we define a

successful fragment as a fragment contained in an

individual that was selected for reproduction. The

OSGA algorithm run settings are shown in Table 2.

Population size 500

Generations 1000

Maximum tree depth 10

Maximum tree length 100

Selector Proportional

Crossover Size-fair crossover

Mutation rate 20 %

Comparison factor 1

Success ratio 1

Table 2: OSGA Algorithm Settings

Note that even though the algorithm is allowed to run

for 1000 generations, the termination criteria will be

reached before that, when the selection pressure exceeds

a predefined threshold (when no more successful

individuals can be produced).

Figure 3: OSGA – average parent/child lengths, 10 runs

Figure 3 shows the evolution of parent/child average

length for 10 OSGA runs. The average child length is

always lower than the average parent length. Different

runs have different lengths depending on when the stop

criterion is reached

.

Figure 4: OSGA – average fragment sizes, 10 runs

In OSGA, the selection pressure increases as it

becomes harder to produce successful offspring. This

translates into an overall increase in fragment size as the

algorithm spends more effort trying to find new and

better programs. However, while the average fragment

size increases (Figure 4), the average size of successful

fragments gradually becomes smaller, as the search

converges (Figure 5). This proves that a selection

pressure steering mechanism is an effective guide for

the evolutionary search. In contrast with the standard

GA, the OSGA behavior illustrates more clearly what

happens when the search converges. The accepted

modifications gradually become smaller until no better

children can be obtained from the available genetic

material.

Figure 5: OSGA – average size of successful fragments,

10 runs

6. DISCUSSION AND CONCLUSIONS

In this paper, we described a powerful and general

methodology for analyzing the evolutionary dynamics

in genetic programming. The approach integrates the

basic principles of evolution with a set of novel

techniques for the tracking and analysis of inheritance

and hereditary information.

Preliminary results are promising as they bring

insights into the behavior of genetic operators and their

combined effects. In our test case, we explain the

increase in the average size of individuals as the result

of the complex interplay between crossover and

selection.

The fragment statistics acquired during the run

provide an additional insight into the behavior and

dynamics of the evolutionary run. The increase in

fragment similarity shows how genetic diversity is lost

as the search progresses. The results show that average

fragment length stabilizes and remains constant, and

that although the overall tendency of the GA population

is to increase in size, the children produced by crossover

are on average smaller than their parents. Using the

notion of “successful” fragments, we provided an image

and explanation of GP convergent behavior.

Future research will provide more details regarding

the extent to which each genetic operator influences the

overall behavior of the algorithm. Detailed lineage

analysis in terms of fragments and fitness similarities

can reveal more about the characteristics of the

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 366

underlying genotype-phenotype mappings. Concerning

the evolutionary graph, we plan to see if the underlying

topology can substantially affect the results of the

evolutionary process.

Overall, the work described in this paper opens a

breadth of new possibilities for the study and

understanding of genetic programming and artificial

evolution.

REFERENCES

Affenzeller, M., Winkler, S., Wagner, S., Beham, A.,

2009. Genetic Algorithms and Genetic

Programming: Modern Concepts and Practical

Applications. Chapman & Hall/CRC ©2009.

Burke, E., Gustafson, S., Kendall, G. and Krasnogor,

N., 2003. Is Increased Diversity in Genetic

Programming Beneficial? An Analysis of Lineage

Selection. Evolutionary Computation, 8-12 Dec

2003, Vol. 2, pp. 1398-1405.

Dignum, S. and Poli, R., 2008. Crossover, Sampling,

Bloat and the Harmful Effects of Size Limits.

EuroGP'08 Proceedings of the 11th European

conference on Genetic programming, pp 158-169.

March 26-28, 2008. Naples, Italy.

Fontana, W. and Schuster, P., 1998. Continuity in

evolution: On the nature of transitions. Science, 29

May 1998, Vol. 280, no. 5368, pp. 1451-1455.

Gustafson, S., Burke, E.K. and Krasnogor, N.., 2005.

On Improving Genetic Programming for Symbolic

Regression. Proceedings of the 2005 IEEE

Congress on Evolutionary Computation, CEC

2005, 2-5 Sep 2005, Vol. 1, pp. 912-919.

Kushchu, I., 2002. Genetic Programming and

Evolutionary Generalisation. IEEE Transactions

on Evolutionary Computation, Vol. 6, No. 5,

October 2002.

McPhee, N., Ohs, B. and Hutchison, T., 2008. Semantic

building blocks in genetic programming.

EuroGP'08 Proceedings of the 11th European

conference on Genetic programming, pp 135-145.

March 26-28, 2008. Naples, Italy.

Poli, R., McPhee, N.F., 2008. Covariant Parsimony

Pressure for Genetic Programming. Technical

Report, CES-479, Department of Computing and

Electronic Systems, University of Essex, UK,

2008.

Smart, W., Andreae, P. and Zhang, M., 2007. Empirical

Analysis of GP Tree-Fragments. EuroGP'07

Proceedings of the 10th European conference on

Genetic programming, pp. 55-67. April 11-13,

2007, Valencia, Spain.

Tatikonda, S., Parthasarathy, S. and Kurc, T., 2006.

TRIPS and TIDES: new algorithms for tree

mining. CIKM '06 Proceedings of the 15th ACM

international conference on Information and

knowledge management, pp. 55-67. 2006. New

York, NY, USA.

AUTHORS BIOGRAPHIES

BOGDAN BURLACU received his MsC

in computer science and systems

engineering in 2009 from the “Gheorghe

Asachi” Technical University in Iasi,

Romania. Currently he is a research

associate in the Heuristic and

Evolutionary Algorithms Laboratory in Hagenberg,

under the supervision of Michael Affenzeller.

MICHAEL AFFENZELLER has

published several papers, journal articles

and books dealing with theoretical and

practical aspects of evolutionary

computation, genetic algorithms, and

meta-heuristics in general. In 2001 he

received his PhD in engineering sciences and in 2004 he

received his habilitation in applied systems engineering,

both from the Johannes Kepler University of Linz,

Austria. Michael Affenzeller is professor at UAS,

Campus Hagenberg, and head of the Josef Ressel

Center Heureka! at Hagenberg.

MICHAEL KOMMENDA finished his

studies in bioinformatics at Upper Austria

University of Applied Sciences in 2007.

Currently he is a research associate at the

UAS Research Center Hagenberg working

on data-based modeling algorithms for

complex systems within Heureka!.

STEPHAN M. WINKLER received his

PhD in engineering sciences in 2008 from

Johannes Kepler University (JKU) Linz,

Austria. His research interests include

genetic programming, nonlinear model

identification and machine learning. Since

2009, Dr. Winkler is professor at the Department for

Medical and Bioinformatics at the University of

Applied Sciences (UAS) Upper Austria at Hagenberg

Campus; since 2010, Dr. Winkler is head of the

Bioinformatics Research Group at UAS, Hagenberg.

GABRIEL KRONBERGER received his

PhD in engineering sciences in 2010 from

JKU Linz, Austria, and is a professor at

the UAS Research Center Hagenberg. His

research interests include genetic

programming, machine learning, and data

mining and knowledge discovery.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 367

