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ABSTRACT 
In this paper we describe the integration of ensemble 
modeling into genetic programming based classification 
and discuss concepts how to use genetic programming 
specific features for achieving new confidence 
indicators that estimate the trustworthiness of 
predictions. These new concepts are tested on a real 
world dataset from the field of medical diagnosis for 
cancer prediction where the trustworthiness of modeling 
results is of highest importance. 
 
Keywords: data mining, genetic programming, 
ensemble modeling, medical data analysis 

 
1. INTRODUCTION, RESEARCH GOALS 
Genetic Programming (GP) plays an outstanding role 
among the data-mining techniques from the field of 
machine learning and computational intelligence: Due 
to its model representation, GP is able to produce 
human interpretable models without any assumptions 
about the nature of the analyzed relationships. 
Furthermore, GP-based data analysis has been shown to 
have good generalization; GP is also able to 
simultaneously evolve the structure and the parameters 
of a model with implicit feature selection. Due to the 
combination of these aspects GP is considered a very 
powerful and also robust method for various data 
analysis tasks. 

Apart from these general aspects of genetic 
programming based modeling, the hybridization of 
symbolic regression and ensemble modeling is still 
rarely considered. A good overview article about 
genetic programing and ensemble modeling has been 

presented by Keijzer and Babovic (Keijzer, Babovic 
2000). 

In this paper we introduce new methods for the 
generation and interpretation of model ensembles 
consisting of symbolic regression / classification 
models; concretely, we introduce new confidence 
measures for assessing the trustworthiness of genetic 
programming ensemble models. Furthermore, we 
discuss and interpret symbolic classification ensemble 
modeling results achieved for medical data mining 
tasks.  

The experimental part of the paper discusses the 
value of trust of correct classifications opposed to the 
value of trust of incorrect classifications, and analyzes if 
the confidence of the correctly classified instances is 
significantly higher than that of the incorrectly 
classified samples. 

 
2. THEORECICAL FOUNDATIONS 

 
2.1. Genetic Programming Based Symbolic 

Classification  
 

Symbolic classification with genetic programming uses 
the general concept of a genetic algorithm in order to 
search the space of hypotheses which are represented as 
mathematical formulae in structure tree representation.  
We have also applied a classification algorithm based 
on genetic programming (GP, Koza (1992)) using a 
structure identification framework described in Winkler 
(2008) and Affenzeller et al. (2009).  

We have used genetic programming with gender 
specific parents selection (Wagner 2005) (combining 
random and roulette selection) as well as strict offspring 
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selection (Affenzeller et al. 2009) (OS, with success 
ratio as well as comparison factor set to 1.0) as this 
variant has proven to be especially suited for symbolic 
classification. The function set described in (Winkler 
2008) (including arithmetic as well as logical ones) was 
used for building composite function expressions. 

In addition to splitting the given data into training 
and test data, the GP based training algorithm used in 
our research project has been designed in such a way 
that a part of the given training data is not used for 
training models and serves as validation set; in the end, 
when it comes to returning classifiers, the algorithm 
returns those models that perform best on validation 
data. 
 

 
Figure 1: Genetic programming including offspring 
selection. 

 
The used fitness function is the mean squared error 

of the training samples using a threshold value that 
gives optimal accuracy on the training data set. The 
distance between a certain prediction and the threshold 
will be used in our ensemble interpretation to achieve 
additional estimates about the trustworthiness of the 
ensemble prediction. 

 
2.2. Ensemble Modeling 

 
Ensemble modeling techniques may be used as an 

extension to various regression and classification 
techniques. Supported by the increasing availability of 
hardware resources and parallel computing 
infrastructures, the general concept of ensemble 
modeling is used in order to increase the reliability and 
robustness of predictive models. 

The general idea is to apply not only a single 
hypothesis for predictive modeling but a large number 
of stochastically independent models. The result of an 
ensemble predictor is typically given by the average or 
mean value of the ensemble results for regression 
modeling or by some kind of majority voting for 
classification tasks. The reliability of an ensemble 
prediction may be indicated by the variance of the 
ensemble results for regression or by the clearness of 
the majority voting in classification applications 
(Keijzer, Babovic 2000). 

Basically the idea of ensemble modeling can be 
coupled with any stochastic hypothesis search 
technique. A well-known example is given by the 
concept of random forests (Breiman, 2001) where 
ensemble modeling is integrated into the general 
concept of tree learning strategies. 

In this paper we discuss the integration of 
ensemble modeling into the concept of genetic 
programming based symbolic classification under the 
special focus of developing and analyzing extended 
confidence estimates of the ensemble modeling results. 

 
3. NEW CONFIDENCE MEASURES OF 

SYMBOLIC CLASSIFICATION ENSEMBLE 
MODELS 

The idea is to combine the degree of majority of a 
majority voting with the average clearness of the 
ensemble predictors for a certain sample.  

On the one hand, a certain prediction will be 
considered the more reliable the clearer the result of the 
majority voting is. If we evaluate, for example, 99 
ensemble models we will have more trust in a 91 to 8 
majority than in a 50 to 49 majority. This kind of 
interpretation may be applied to any ensemble model as 
it does not use genetic programing specific aspects.  

Assuming a two-class classification problem the 
corresponding first confidence measure cm1 is defined 
as 

 
∶ 2	

| 	 |

| |
0,5 	 	 0, 1   

 
The fraction of votes for the winner class in relation to 
the total number of ensemble votes 
| 	 | / | |  will range 

between 0.5 and 1 for the majority vote. In order to 
normalize this confidence measure between 0 and 1 we 
have adapted the formula accordingly. 

On the other hand we will discuss a second 
indicator of trustfulness which is unique to genetic 
programming which optimizes the mean squared error 
of residuals in the training data set. Supposing a two-
class classification problem with the classes 0 and 1 we 
will rather trust an ensemble predictor where most of 
the prognoses are clustered around 0 compared to a 
predictor where the ensemble results will be around 
0.45. The according second confidence measure cm2 is 
therefore designed to consider both, the majority of the 
voting as well as the uniqueness of the certain ensemble 
predictors for a certain sample. Concretely cm2 is 
defined as 

 		 min
∆ ,

∆ ,
	 , 1 	 ∈ 0, 1     (3) 

where  denotes the difference between the mean value 
of the ensemble thresholds and the median or mean 
value of the ensemble predictions in the nominator of 
the formula. In the denominator of the formula the 
distance  between the median or mean value of the 
thresholds and the class value predicted by the ensemble 
is represented (which is basically the range for the 
predictors). The confidence cm2 will therefore on the 
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one hand be rather low (cm2  0) if the majority of 
ensemble predictors are near the threshold; on the other 
hand, if the majority of ensemble votes is around the 
actual class this confidence will rather high (cm2  1). 
By considering some kind of average value (median or 
mean), confidence measure cm2 is expected to implicitly 
consider both, the majority of the voting result and the 
uniqueness of the single ensemble predictors. 
 

 
Figure 1: Illustration of different GP ensemble 

estimators and their corresponding thresholds. 
 

As illustrated in Fig. 1 for the second confidence 
measure cm2 the difference between the mean ensemble 
predictor m(e) to the mean threshold m(t) is considered 
with respect to the difference between the mean 
threshold m(t) and the corresponding class.  

The effectiveness of the both confidence measures 
cm1 and cm2 will be analyzed by discussing the average 
confidence of correct predictions compared to the 
average confidence of incorrect predictions. Of course, 
confidence is expected to be higher for correct 
predictions and the delta between confidence in correct 
predictions and incorrect predictions may be used in 
order to interpret the suitability of the concrete 
confidence measure for a certain application. Due to its 
usage of additional information cm2 is expected to be 
more suited than cm1 in general for binary classification 
problems. 

 
4. THE MEDICAL DATASET 
In this section we describe results achieved within the 
Josef Ressel Centre for Heuristic Optimization 
Heureka!: Data of thousands of patients of the General 
Hospital (AKH) Linz, Austria, have been preprocessed 
and analyzed in order to identify mathematical models 
for cancer diagnoses. We have used a medical database 
compiled at the central laboratory of AKH in the years 
2005 – 2008: 28 routinely measured blood values of 
thousands of patients are available as well as several 
tumor markers (TMs, substances found in humans that 
can be used as indicators for certain types of cancer). 
Not all values are measured for all patients, especially 
tumor marker values are determined and documented 
only if there are indications for the presence of cancer. 
The results of empirical research work done on the data 
based identification of estimation models for standard 
blood parameters as well as tumor markers. The main 

goal is to generate mathematical models for cancer 
prediction based on blood parameters.  
 The blood data measured at the AKH in the years 
2005-2008 have been compiled in a database storing 
each set of measurements (belonging to one patient): 
Each sample in this database contains an unique ID 
number of the respective patient, the date of the 
measurement series, the ID number of the measurement, 
standard blood parameters, tumor marker values, and 
cancer diagnosis information. Patients’ personal data 
were at no time available for the authors except for the 
head of the laboratory. 

 

 
Figure 2: Integration of the relevant data from 

different hospital databases 
 
In total, information about 20,819 patients is stored 

in 48,580 samples. Please note that of course not all 
values are available in all samples; there are many 
missing values simply because not all blood values are 
measured during each examination. Further details 
about the data set and necessary data preprocessing 
steps can for example be found in Winkler et al. (2010) 
and Winkler et al. (2011), e.g. 

Standard blood parameters include for example the 
patients’ sex and age, information about the amount of 
cholesterol and iron found in the blood, the amount of 
hemoglobin, and the amount of red and white blood 
cells; in total, 29 routinely available patient parameters 
are available. 

An important aspect in the data preprocessing 
stage was to identification of relevant blood parameters 
for a positive cancer diagnosis. In order to identify 
characteristic blood parameters for a positive cancer 
prediction we have collected those blood parameters 
which have been measured in a time window of two 
weeks before the first cancer diagnosis based in ICD 10 
classification of diseases. Blood parameters taken 
earlier may not be characteristic as the patient may still 
have been healthy at that time and measurements taken 
after the diagnoses may be diluted due to medical 
treatment. The blood parameters for the class of healthy 
persons have been taken only from patients with no 
positive cancer diagnosis in their case history. 
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Figure 3: Identification of appropriate periods of 

relevant measurements for cancer diagnosis 
 

5. GENETIC PROGRAMMING 
For generating the ensemble models we have used 
gender specific strict offspring selection genetic 
programming which is available in the HeuristicLab 
3.3.6 framework http://dev.heuristiclab.com).  

We have used the following parameter settings for 
our GP test series: The mutation rate was set to 20%, 
gender specific parents selection (Wagner 2005) 
(combining random and roulette selection) was applied 
as well as strict offspring selection (Affenzeller et al. 
2009) (OS, with success ratio as well as comparison 
factor set to 1.0). The functions set described in 
(Winkler 2008) (including arithmetic as well as logical 
ones) has been used for building composite function 
expressions. 

In addition to splitting the given data into training 
and test data, the GP based training algorithm used in 
our research project has been designed in such a way 
that a part of the given training data is not used for 
training models and serves as validation set; in the end, 
when it comes to returning classifiers, the algorithm 
returns those models that perform best on validation 
data. 

 
6. RESULTS 

For the results presented in this section a set of GP-
based models of different model sizes have been 
generated for the prediction of breast cancer based 
solely on blood parameters and also based on blood 
parameters together with its corresponding tumor 
markers (C125, C15-3, CEA). The main GP parameters 
have been adjusted according to the settings shown in 
Table 1. 

 
Algorithm Offspring Selection Genetic 

Programming 
Runs 100 per tree size (with three 

different tree sizes) 
TreeCreator Probabilistic Tree Creator 
Symbols +, -, *, /, sin, cos, tan, exp, log, 

IfThenElse, <, >, and, or, not 
Fitness function MSE (mean squared error) 
Selector GenederSpecific (Random, 

Proportional) 
Mutator ChangeNodeTypeManipulation, 

FullTreeShaker,  

OnePointTreeShaker, 
ReplaceBranchManipulation 

Crossover SubtreeCrossover 
Elites 1 
Population Size 700 
Mutation Rate 20% 
Maximal 
Generations 

1000 

Maximal Selection 
Pressure 

100 

Cross Validation 
Folds 

5 

Tree size 
(Length/Depth) 

20/7, 35/8, 50/10 

Table 1: Algorithmic settings 
 
Overall 300 (100 per tree size) independent runs have 
been performed for predicting breast cancer and the 75 
best models concerning their training quality have been 
used for ensemble modeling as well as for standard 
evaluations as shown in Table 2. Table 2 shows the 
average training and test qualities of the best 75 training 
models (the same ones which are used also for the 
ensemble models and confidence analyses). Moreover 
the training and test accuracies of the overall best 
training model are shown in Table 2. 
Tables 3 and 4 show the results in ensemble 
interpretation for modeling breast cancer with standard 
blood parameters alone (Table 3) as well as together 
with tumor markers as additional input features. 
Together with the accuracies the confidence measures 
described in section 3 are shown for the correctly as 
well as for the incorrectly classified instances. 
 
There are several conclusions that can be drawn from 
the following result tables: 

 The results – especially the test results – of the 
ensemble predictions (Tables 3 and 4) are 
better than the results achieved with 
conventional GP models. 

 The confidence in the predictions measured by 
the two confidence measures cm1 and cm2 is 
significantly higher for the correctly classified 
instances than in those of the incorrectly 
classified instances. The delta is even higher if 
tumor markers can be used for the models. 

 The distribution of the two confidence values 
for the correctly and incorrectly classified 
instances with cm1 (left boxplots) and cm2 
(right boxplots) indicate high potential for 
future research based on these confidence 
measures: By introducing a confidence 
threshold below which the results are 
categorized as untrustworthy, the trusted 
results are expected to have significantly 
higher quality. 

 Contrary to the theoretical considerations of 
Section 3 the statistical properties of the more 
complex cm2 do not seem to lead to more 
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significant differentiation between the 
correctly and incorrectly classified instances.  

 
 Avg. 

training 
accuracy of 
100 best 
models 

Avg. test 
accuracy 
of 100 
best 
models 

Training 
accuracy 
of best 
model 

Test 
accuracy of 
best  
training 
model 

Breast 
with TM 

83.17% 77.89% 84.74% 79.33% 

Breast 
without 
TM 

76.79% 72.61% 78.15% 73.08% 

Table 2: Results with standard GP-based predictive 
modeling (without ensemble modeling) 
 

  
Majority 

Vote 
Average 

Threshold 
Accuracy training 78.47% 78.47% 
Accuracy test 76.49% 76.49% 
Average Confidence 
Correct Classified cm1 = 0.8202 cm2 = 0.4835 
Average Confidence 
Incorrect Classified cm1 =0.5543 cm2 = 0.2525 
Confidence Delta 0.2659 0.2310 

Table 3: Breast cancer without tumor marker 
 

 
Figure 4: Boxplot breast cancer without tumor marker 
 

  Majority Vote 
Average 

Threshold 
Accuracy training 84.99% 84.99% 
Accuracy test 81.44% 81.44% 
Average Confidence 
Correctly Classified cm1 = 0.8500 cm2 = 0.6182 
Average Confidence 
Incorrectly 
Classified cm1 = 0.4806 cm2 = 0.2449 
Confidence Delta 0.3694 0.3733 

Table 4: Breast cancer with tumor marker 
 

 
Figure 5: Boxplot breast cancer with tumor marker 
 
7. CONCLUSION 
In this paper two confidence measures have been 
discussed for predictive models generated by GP-based 
ensemble modeling. The results for a breast cancer data 
set have shown that the confidence for the correctly 
classified instances is significantly higher than the 
confidence for incorrectly classified instances which is 
considered as the main result of this contribution and 
which opens new areas of application especially for 
predictive modeling in the medical field where the 
confidence in a prediction is very important.  

Obvious aspects for future investigations in this 
field are analyses for further cancer types as well as the 
introduction of a new class for the uncertain prediction 
(below a certain confidence threshold) and 
corresponding analyses of the statistical properties of 
the so achieved predictions. 
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