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ABSTRACT 
In this paper we describe the identification of variable 
interaction networks in a medical data set. The main 
goal is to generate mathematical models for standard 
blood parameters as well as tumor markers using other 
available parameters in this data set. For each variable 
we identify those variables that are most relevant for 
modeling it; relevance of a variable can in this context 
be defined via the frequency of its occurrence in models 
identified by evolutionary machine learning methods or 
via the decrease in modeling quality after removing it 
from the data set. 

Several data based modeling approaches 
implemented in HeuristicLab have been applied for 
identifying estimators for selected tumor markers and 
cancer diagnoses: Linear regression and support vector 
machines (optimized using evolutionary algorithms) as 
well as genetic programming. 

 
Keywords: medical data analysis, data mining, 
evolutionary algorithms, variable interaction networks 

 
1. INTRODUCTION, RESEARCH GOALS 
In this paper we present research results achieved within 
the Josef Ressel Centre for Heuristic Optimization 
Heureka!: Data of thousands of patients of the General 
Hospital (AKH) Linz, Austria, have been analyzed in 
order to identify mathematical models for cancer 
diagnoses. We have used a medical database compiled 
at the central laboratory of AKH in the years 2005 – 
2008: A series of routinely measured blood values of 
thousands of patients are available as well as several 
tumor markers (TMs, substances found in humans that 
can be used as indicators for certain types of cancer). 
Not all values are measured for all patients; especially 
tumor marker values are determined and documented 

mainly if there are indications for the presence of 
cancer. The results of empirical research work done on 
the data based identification of estimation models for 
standard blood parameters as well as tumor markers are 
presented in this paper: The main goal is to generate 
mathematical models for standard blood parameters as 
well as tumor markers using other available parameters 
in this data set. For each variable we identify those 
variables that are most relevant for modeling it; 
relevance of a variable can in this context be defined via 
the frequency of its occurrence in models identified by 
evolutionary machine learning methods or via the 
decrease in modeling quality after removing it from the 
data set. 
 
2. VARIABLE INTERACTION NETWORKS 

 
2.1. General Approach 
The main goal in the identification of variable 
interaction networks is to determine in how far variables 
interact which other variables in the given data set. We 
identify these interactions by modeling all given 
variables and determining the importance / relevance of 
all potential input variables; influences above some pre-
defined threshold are considered relevant and are shown 
in respective graphical representation of this interaction 
network. An exemplary interaction network is shown in 
Figure 1. 

In (Winkler et al. 2006), for example, variable 
selection results were shown partially resembling 
interaction networks; in (Kronberger 2011) the author 
showed variable interaction networks for a blast furnace 
process, an industrial chemical process, and macro-
economic data dependencies using symbolic regression 
based on genetic programming. 
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Figure 1: An exemplary variables interaction network. 
Variable A is influenced by variables B and C, while C 
is influenced by D and E (which also influences D). 

 
2.2. Calculation of the Impact (Relevance) of 

Variables 
 

In the present research work we estimate the relevance 
of the available variables (i.e., standard blood 
parameters and virtual tumor markers) with respect to 
models. There are several methods for calculating the 
relevance of variables (see for example (Winkler 2009) 
and (Affenzeller et al. 2009)); the following approaches 
are used in the context of this research work: 

 
2.2.1. Frequency Based Relevance of Variables: 

 
The relevance of a variable (at index i) with respect to a 
given model m can either be defined as the number of 
references in this model (calculated using function 
freq1) to this variable, or simply as 1 if there is a 
reference to this variable and 0 if not (freq2). 
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0: ݁ݏ݅ݓݎ݄݁ݐ݋
  (2) 

 
2.2.2. Impact Based Relevance of Variables - 

Impact of Variables with Respect to Models 
 

The estimation of a variable’s impact on the evaluation 
of a model is done by temporarily replacing the values 
of exactly this variable and evaluating the model using 
the resulting manipulated data base. We here use 
replacement methods using averaging, constants, linear 
regression and additive Gaussian noise; a given variable 
(at index i) is replaced without changing any other part 
of the data basis. We transfer the original data basis 
Data consisting of N variables with n samples each to a 
manipulated data basis Datai(r) with manipulated 
variable number i using a replacement function r as 

 
ሺ݅׊ א ሾ1;ܰሿሻ: ܽݐܽܦ௜ሺ௥ሻ ൌ
ሾܽݐܽܦଵ, ,ଶܽݐܽܦ … , ,௜ሻܽݐܽܦሺݎ ,௜ାଵܽݐܽܦ … ,  ேሿ  (3)ܽݐܽܦ

 
The replacement functions used replace a 

particular variable using a given constant value (rconst), 
its mean value (rmean), its linear trend (rlinreg), or the 
addition of Gaussian noise (ragn). Now it is possible to 
calculate the variable’s impact with respect to the model 

m by evaluating the model on the manipulated data set 
Datai and measuring the resulting difference between 
the original output values and those calculated on the 
manipulated data. 

This measurement can be done on the basis of the 
mean squared difference function impactmsd, e.g.: 
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2.2.3. Impact Based Relevance of Variables - 

Impact of Variables with Respect to 
Algorithm Performance: 

 
After identifying the models that are used most 
frequently and seem to be most important for the 
models created by the identification algorithms, we 
estimate the importance of variables (or groups of 
variables) by removing them from the list of available 
input and repeating the modeling process. Thus, again 
we use Datai(r) for calculating the relevance of variable 
i and define the relevance of variable i with respect to a 
modeling method m, a replacement method r and a 
fitness function f as 

 
,݉,௔௟௚ሺ݅ݐܿܽ݌݉݅ ,ݎ ݂ሻ ൌ

௙ሺ௘௩௔௟ሺ௠,஽௔௧௔ሻሻ
௙ሺ௘௩௔௟ሺ௠,஽௔௧௔೔ሺ௥ሻሻሻ

  (5) 

 
3. MACHINE LEARNING METHODS APPLIED 
In this section we describe the modeling methods 
applied for identifying estimation models for tumor 
markers and cancer diagnoses: On the one hand we 
apply hybrid modeling using machine learning 
algorithms and evolutionary algorithms for parameter 
optimization and feature selection (as described in 
Section 2.1), on the other hand we use genetic 
programming (as described in Section 2.2). In (Winkler 
et al. 2011), for example, these methods have also been 
described in detail. 

 
3.1. Hybrid Modeling Using Machine Learning 

Algorithms and Evolutionary Algorithms for 
Parameter Optimization and Features Selection 

Feature selection is often considered an essential step in 
data based modeling; it is used to reduce the 
dimensionality of the datasets and often conducts to 
better analyses. Given a set of n features F = {f1, f2, …, 
fn}, our goal here is to find a subset of F, F', that is on 
the one hand as small as possible and on the other hand 
allows modeling methods to identify models that 
estimate given target values as well as possible. 
Additionally, each data based modeling method (except 
plain linear regression) has several parameters that have 
to be set before starting the modeling process. 

The fitness of feature selection F' and training 
parameters with respect to the chosen modeling method 
is calculated in the following way: We use a machine 
learning algorithm m (with parameters p) for estimating 
predicted target values est(F',m,p) and compare those to 
the original target values orig; the coefficient of 
determination R² function is used for calculating the 

A B 

C D 

E 
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quality of the estimated values. Additionally, we also 
calculate the ratio of selected features |F'|/|F|. Finally, 
using a weighting factor α, we calculate the fitness of 
the set of features F' using m and p by comparing the 
estimated values to the originally given target values: 

 
fitness(F’, m, p) = α·|F'|/|F| + 
  + (1- α)·(1-R2(est(F',m,p),orig)). (5) 

 

 
Figure 2: A hybrid evolutionary algorithm for feature 
selection and parameter optimization in data based 
modeling. Machine learning algorithms are applied for 
evaluating feature sets. 
 

In (Alba et al. 2007), for example, the use of 
evolutionary algorithms for feature selection 
optimization is discussed in detail in the context of gene 
selection in cancer classification. We have now used 
evolutionary algorithms for finding optimal feature sets 
as well as optimal modeling parameters for models for 
tumor diagnosis; this approach is schematically shown 
in Figure 2: A solution candidate is here represented as 
[s1…np1…q] where si is a bit denoting whether feature Fi 
is selected or not and pj is the value for parameter j of 
the chosen modeling method m. This rather simple 
definition of solution candidates enables the use of 
standard concepts for genetic operators for crossover 
and mutation of bit vectors and real valued vectors: We 
use uniform, single point, and 2-point crossover 
operators for binary vectors and bit flip mutation that 
flips each of the given bits with a given probability. 
Explanations of these operators can for example be 
found in (Holland 1975) and (Eiben 2003). 

We have used strict offspring selection 
(Affenzeller et al. 2009): Individuals are accepted to 
become members of the next generation if they are 
evaluated better than both parents. 

In (Winkler et al. 2011) we have documented 
classification accuracies for tumor diagnoses using this 
approach for optimizing feature set and modeling 
parameters. 

The following machine learning algorithms have 
been applied for identifying estimators for selected 
tumor markers and cancer diagnoses: Linear regression 
and support vector machines. 

 
3.2. Genetic Programming 
As an alternative to the approach described in the 
previous sections we have also applied a classification 
algorithm based on genetic programming (GP, Koza 
(1992)) using a structure identification framework 

described in Winkler (2008) and Affenzeller et al. 
(2009). 

We have used the following parameter settings for 
our GP test series: The mutation rate was set to 15%, 
gender specific parents selection (Wagner 2005) 
(combining random and roulette selection) was applied 
as well as strict offspring selection (Affenzeller et al. 
2009) (OS, with success ratio as well as comparison 
factor set to 1.0). The functions set described in 
(Winkler 2008) (including arithmetic as well as logical 
functions) was used for building composite function 
expressions. 

In addition to splitting the given data into training 
and test data, the GP based training algorithm used in 
our research project has been designed in such a way 
that a part of the given training data is not used for 
training models and serves as validation set; in the end, 
when it comes to returning classifiers, the algorithm 
returns those models that perform best on validation 
data. 

 
Figure 3: Genetic programming including offspring 
selection. 
 
4. DATA BASE 

 
The blood data measured at the AKH in the years 2005-
2008 have been compiled in a database storing each set 
of measurements (belonging to one patient): Each 
sample in this database contains a unique ID number of 
the respective patient, the date of the measurement 
series, the ID number of the measurement, standard 
blood parameters, tumor marker values, and cancer 
diagnosis information. Patients’ personal data were at 
no time available for the authors except for the head of 
the laboratory. 

In total, information about 20,819 patients is stored 
in 48,580 samples. Please note that of course not all 
values are available in all samples; there are many 
missing values simply because not all blood values are 
measured during each examination. Further details 
about the data set and necessary data preprocessing 
steps can for example be found in Winkler et al. (2010) 
and Winkler et al. (2011), e.g. 

Standard blood parameters include for example the 
patients’ sex and age, information about the amount of 
cholesterol and iron found in the blood, the amount of 
hemoglobin, and the amount of red and white blood 
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cells; in total, 29 routinely available patient parameters 
are available. 

Literature discussing tumor markers, their 
identification, their use, and the application of data 
mining methods for describing the relationship between 
markers and the diagnosis of certain cancer types can be 
found for example in Koepke (1992) (where an 
overview of clinical laboratory tests is given and 
different kinds of such test application scenarios as well 
as the reason of their production are described) and 
Yonemori (2006). 

As described in Winkler et al. (2010) and Winkler 
et al. (2011), information about the following tumor 
markers is stored in the AKH database: AFP, CA 125, 
CA 15-3, CA 19-9, CEA, CYFRA, fPSA, NSE, PSA, S-
100, SCC, and TPS. 
 
5. CASE STUDY RESEARCH RESULTS: 

FEATURES RELEVANT FOR PREDICTING 
BREAST CANCER DIAGNOSIS AND THE 
CORRESPONDING VARIABLES INTER-
ACTION NETWORK 
 

5.1. Data Preprocessing 
From the data base mentioned in the previous section 
we have selected a subset of samples containing 
standard blood data, tumor markers, and the information 
whether the corresponding patient was diagnosed with 
breast cancer or not. All samples represent female 
patients; we have selected samples that contain at least 
80% valid values and replaced all missing values by the 
median of the respective variable.  

Furthermore, variables containing less than 80% 
valid values were removed. Finally, the samples were 
filtered in such a way that 50% of the remaining 
samples represent patients with breast cancer and 50% 
patients without a positive breast cancer diagnosis. This 
leads to a data set consisting of 636 samples; Table 1 
summarizes all relevant key parameters of the so 
compiled data base. 

 
Table 1: Data base used for breast cancer diagnosis 

variables interaction network case study 
Number of samples 636 
Number of samples in  

class 0 (no breast cancer diagnosed) 
class 1 (breast cancer diagnosed) 

 
318 
318 

Number of available variables (features) 
standard values 
tumor markers (AFP, C125, C153, PSA) 

30 
26 
4 

 
5.2. Modeling Results, Variable Impacts and 

Variable Interaction Network 
 

5.2.1. Impact of Variables on Breast Cancer 
Diagnosis 

For estimating breast cancer diagnoses we have used the 
data set described in 5.1 and applied tree based genetic 
programming using the HeuristicLab 3.3.6 framework 

(Wagner (2009), http://dev.heuristiclab.com); the most 
important GP settings are summarized in Table 2. 

GP was used for learning models for the breast 
cancer diagnosis using all available variables; 
subsequently, following the strategy described in 
Section 2.2.3 all features were (one by one) removed 
from the data basis and the resulting classification 
accuracy compared to the accuracy achieved using all 
variables. Figure 4 visualizes the most important results 
of these tests showing the average test accuracies of five 
repetitions with five-fold cross-validation: Using all 
variables 75.47% of the given samples are correctly 
classified, after removing for example C125 the 
accuracy drops to 69.81%, and after removing C153 
even to 60.85%. All not displayed features do not seem 
to have a relevant impact as their removal did not lead 
to a decrease of the classification accuracy below 75%. 

 
Table 2: GP parameters 

Population size 1000 
Size limits 

maximum tree height 
maximum tree size 

 
8 

100 
Mutation rate 15% 
Offspring selection 

max. selection pressure 
strict 
100 

Function basis Arithmetic and logic 
functions 

 

 
Figure 4: Classification accuracies for breast cancer 

diagnoses 
 

5.2.2. Medical Variables Interaction Network 
Following the modeling of breast cancer diagnoses, all 
variables in the data set have been modeled using the 
hybrid approach described in Section 3.1: A genetic 
algorithm with strict offspring selection was used for 
optimizing feature selections and algorithm parameters 
for linear regression and support vector machines that 
are used for modeling each available variable. Table 3 
summarizes all relevant parameters for this modeling 
approach. 

Again, five repetitions were executed (applying 
five-fold cross-validation) for each modeling scenario. 
All variables that were eventually selected by the 
evolutionary process (either for linear regression 
modeling or support machines) were collected; from 
this information we have developed a variables 
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interaction network that represents all relevant 
relationships among variables. Figure 5 represents the 
so composed network showing relevant impacts for 
variables that can be modeled with test prediction 
squared correlation coefficient (R²) greater than 0.4 

 
Table 3: GA + linReg / SVM parameters 

Population size 10 
Mutation rates 

feature selection flip 
algorithm parameter 

mutation 

 
30% 
30% 

Offspring selection 
max. selection pressure 

strict 
100 

Initial variable selection 
probability  

30% 

 
6. CONCLUSION 
In this paper we have discussed a data-based approach 
for calculating the importance of medical variables for 
estimating cancer diagnoses using machine learning; 
furthermore, this modeling based impact analysis has 
also been used for constructing variable interaction 
networks describing the relationship among medical 
features. 

As we have seen in the empirical section of this 
paper, there are several features that are of significant 
importance for the success of estimating breast cancer 
diagnoses; not surprisingly, the most important ones are 
tumor markers. The subsequently generated interaction 

network shows the most important relationships among 
the analyzed medical variables. 
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