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ABSTRACT

The aim of this paper is to simulate the effectraffic
lights and time-varying flows distribution at jurats

of urban traffic networks. We consider a macroscopi
model for road networks based on conservation law,
describing the motion of cars as a continuous flatv.
junctions some Riemann solvers to find a unique
solution to Riemann problems are introduced.

In particular we propose a micro-algorithm to defim
Riemann solver in situations in which a road in eom
time-instant is empty and the corresponding problem
can be under-determined. Then, we discuss theatorre
use of Riemann solvers to capture the presenaafitt
lights and time-varying behavior of drivers at jtions.
Simulation results for a2x2 junction and a
comparison among the effects of changing traffibts
cycles in a network are shown.

Keywords: fluid-dynamic model for traffic networks,
conservation law, Riemann solvers, traffic lights
simulation.

1. INTRODUCTION

To study car traffic phenomena, researchers from
various areas proposed a lot of models, among which
fluid-dynamic ones. The latter treat traffic from a
macroscopic point of view: the evolution of
macroscopic variables, such as density and average
velocity of cars, is considered.

The basic fluid-dynamic model is due to Lighthill,
Whitham and Richards (LWR model) (Lighthill and
Whitham, 1955; Richards 1956), according to whiwh t
motion of cars along a road can be modeled by a
conservation law, regarding the density of carghas
main quantity to be looked at. To overcome the
limitations of the LWR model, other alternativesrere
searched for, such as second and third order models
(Helbing 2001; Colombo 2002; Bellomo and Coscia
2005). Recently, the LWR model was extended to
networks (Coclite, Garavello and Piccoli 2005;
Garavello and Piccoli 2006).

Since traffic networks consist of a finite set of
roads meeting at some junctions, the dynamics at
junctions is captured solving Riemann problems tvhic
are Cauchy problems with constant initial data aohe
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road. In order to solve uniquely Riemann problems
some assumptions are made:

e the incoming traffic distributes to outgoing
ones according to fixed (statistical) coefficients;

« drivers behave to maximize the through flux.

More precisely, if the number of incoming roads is
greater than that of outgoing ones, some right af w
parameters have to be added.

Once the solution to a Riemann problem is
provided, piecewise constant approximations visaaev
front tracking algorithm can be construct¢dressan
2000; Garavello and Piccoli 2006).

In this paper starting from Coclite, Garavello,
Piccoli model, we describe the evolution of vehscle
flows respecting traffic lights cycles and definitige-
varying distribution at junctions in order to takecount
the dynamic behavior of drivers. Then we introdace
micro-algorithm and a Riemann solver to cover these
typical situations. Numerical schemes such as the
Godunov method, based on exact solutions to Riemann
problems (Godlewski and Raviart 1991; Godunov
1959) are used to solve numerically the consematio
law along roads.

The paper is organized as follows. A model for
traffic networks is introduced in Section 2. Sect®is
devoted to the definition of Riemann solvers at
junctions. In particular the micro-algorithm and
Riemann solvers for traffic lights and time-varying
distribution coefficients are described. Numerical
methods are presented in Section 4. Some simulation
results for a typical scenario of a sim@& 2 junction
(two incoming roads and two outgoing ones) are show
in order to test and verify the adopted approach in
Section 5. The section ends with a comparison lerwe
different configurations of two traffic lights in a
network with three junctions.

2. MODELING CAR TRAFFIC NETWORKS
A road network is schematized by the cou;ﬁIeJ) ,

where 1 ={1,:i=1,..,N} represents the set of roads,
while J is the collection of junctions connectingads.

Fixed a junction JOJ, we denote bylnc(J) and

Out(J), respectively, the set of all incoming roads,
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numbered froml ton , and the set of all outgoing
ones, numbered from+1 te-m (see Figure 1).

n+m

Figure 1: example of @XM junction.
Each road is represented by an interval
I, =[a,h]ODO.

According to the LWR model, we describe the
evolution of cars density along each road by

0.0 +0,f(p)=0, @

where g =p (t,X)0[0,0,.] is the cars density on
road |, o,,, is the maximal densityf (0) = pv(p) is

the flux, andv(p) is the average velocity.

On the fluxf we assume that
(P f:[0,1] - O is smooth, strictly concavé(0) =
f (1)=0. Therefore there exists a unique strict maximum
oo, .

The dynamics at each junctiah(JJ is determined
by solving a Riemann ProbleRR), which is a Cauchy
problem with constant initial data on each inciderad.
The solution is formed either by continuous waves,
called rarefactions, or by traveling discontinuities,
called shocks. In order to find a unique solution some
Riemann SolversRS) are defined, based on rights of
way and traffic distribution parameters.

Definition 1. A Riemann Solver for the junction

J is a map RS:[01]"x[od™ - [01]" x[0]™ that
associates to Riemann datg = (010, /psmo) at J
a vector,bz(,b ,...,,Z)n+m) so that the solution on an
incoming road I, i=1,..n , is given by the wave
(0i0. 4 ) and on an outgoing road, j =n+1,..n+m ,

is given by the wave(,bj,,o,-,o) . We require the

consistency condition

(cC) Rs(RS{p,)) = Rs(p0)-

In particular, for anxm junctionRSs are based
on the following rules:

(A) drivers distribute at a junction according to
some traffic distribution coefficients which repeas
the preferences of drivers from the incoming rotws
outgoing ones and they are collected in the matrix:

A={a} i, pemiz1., OO™" )
n+m

such that 0<aj <1, Zaii =1, where a;; is the
j=n+l

percentage of drivers who, arriving from théh

incoming road, take thi¢h outgoing road.
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(B) Respecting (A) rule, drivers behave so as to
maximize the flux through the junctiohdJ

(C) If n>m, it is assumed that not all cars can
enter the outgoing roads and It be the amount tha

can do it. Thenp,Q cars come from ftitle road to the
genericjth one, withi =1,....n andj =n+1,...n+m,
and p; can be thought as a right of way parameter.

3. RIEMANN PROBLEMSAT JUNCTIONS
Let J be anxm junction. The density functions on
incoming and outgoing roads are denoted as

(t,x)00" xI, - o (t,x)0[0,0,,]) . i=1..n  and
(tX)00* %1, - p (t,X)0[0,0,s] ] =N+ L..n+m

. We observe that the waves generated on incoming
roads must have negative velocity, while the outgoi
ones positive velocity. For this reason, some bewm
possible states reached by a solution toREnat J

exist. Precisely, if we set = f(p) , we have:
Proposition 2. Let (pl,O""'pn+m,0) be the initial

densities of arRP at J. The maximal fluxesy™

i=1..n and y/™, j=n+l..n+m, that can be

obtained on incoming roads and outgoing ones,
respectively, are the following:

o |f(a0) it ao0[0d],

4 _{f(a) TS Rl ®3)
w_ (o) ifp,0f00],

g _{f (0,0) if 510010000 =ntlentm.(g)

Theorem 3. Let J be anxm junction. For every

initial data (plvo,...,pmmvo), there exists an unique
admissible weak solutiop = (p,,....0,.,) to (1) dt
respecting rules (A), (B) and (C), such that

101 (O'[)]Epl,O""'pmm( O[)]Epmm,o (5)

Moreover, there exists a vector

(D, sPrem) SUCh that

unique

{0 JU(00) Pra] if O<po<0,

i [Uipmax] if O-Spi,o SIomax (6)
with i =1,...n, and
. _|[o,d] if 8p,<0 ,
,- ro (7)

{pJ,O}U[O'T(pJ,O)[ It 0= 0),0= Prnae
with j=n+1,...n+m, wherer :[0,1] - [O;L] is the map
such that f(r(p))=f(0) for everypn[o1 and
r(p)ip for every p0[0,\{3} .
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In order to show the construction of the RS
satisfying rules (A) and (B) we recall the followin

simple cases:
Case 1 2x1 junction;
Case 21x2 junction.

Case 1. We consider the junction in Figure 2 with two
incoming roads,land2, and one outgoing roa8

1
—>
e
Figure 2: a2x1 junction.

Fix a right of way parametepD] O,l[ describing

the percentage of cars crossing the junction. The
solution is built as follows. To maximize the thgbu
traffic, according to rule (B), we set

P = min{ pre+ pre pred ®)

where ™, i =1,2 and p"™ are respectively given by
relations (3) and (4). Observe th#t is given by th

column vector(L,1) . Considering the spage, y,) and
the lines
1_
b=t (©)
Vo V=V (10)

we indicate withP  the intersection point betweam$
(9) and (10). Therefore the final fluxes must beglda
the admissible region

=H{(r):0sp+y,<p,0sy<y™i=13. 1)

We distinguish two different cases:
1. P belongs toQ
2. P does not belong t&2

In the first case (Figure 3) we sé¥,,J,)=P,
while in the second case (Figure 4) we @@;t }72) =Q,
where Q is given by the
Qﬂ{(yl,yz) VY, = f/3} . Once determinedy, 7,, 7,

we are able to compute in a unique way,p,, 0,
applying Theorem 3.

intersection

A
72

+7 =7,

1-p
p /72 =—n

max

¢ e
Figure 3: P belongs t62
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Ntr=7
max

72

Figure 4P  does not belong®

Case 2. Deal with the junction in Figure 5 characterized

by one incoming road  and two outgoing roagls, and
3.
2
1
3

Figure 5: alx 2 junction.

The rules (A) and (B) are only used. The
distribution matrix is given by

A:(lfaj,

where 0]0,] and(1-a) indicate the percentage of

(12)

cars which, from roadl , goes to roads aBd |,
respectively. Due to rule (B), the solution to RP i
= (0 dons) = (avu(1-a) i), (13)

where

mm{;/“ax 3 ymax}. Finally, we

a 'l1-a
determinep,, p,,p, by Theorem 3.

3.1. RSfor generalized junctions

Now we focus on some particular cases fomam
junction with n>m . Starting from the discussion done
in subsection 2.1, Case 1, we are able to defiRSa
through the archetype of a linear programming)(
problem. Without loss of generality we can analize
sub-case of amx1 junction as shown in Figure 6.

>

o—

n

Figure 6:nx1 junction.
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For each incoming road we fix a right of way
parameter p, D]O,][ ,i=1..n, such thath. =1 .
i=1

According to rule (B), we set

Voa=max{y + .4y, Vb, (14)

or we can say that the objective function of thisigbem

is max(y1+ Wt yn) . The admissible region is given by
the set

Q :{(yl,_.,yn) :z_n“;/i < P 0S y S ,Di}. (15)

Considering tha-dimensional spacg;,....y,)  we
can determine the unique solution as the intersedt

y :%yl, o, (16)

n
Zyl Sj}nﬂ'
i

We remark that, since no graphical method can be
applied, the solution point? is obtained using the
simplex method to solve theP problem defined in
(15), (16), (17) with objective function in (14).

Then if P belongs tQ , we sé¥,,/,,...0;) =P

, otherwise, J; = ;"> , and we run the simplex method

adding this constraint to the® problem.
Observe that if at some time instapf =0 , the

solution is given by(f;,%,,...%,)=(0,0,...0. Since

this is not acceptable (the through traffic flow is
different from zero), in order to determine therect
solution the following micro-algorithm, consistingf
three steps, is implemented:

1. Search the incoming road with minimum
traffic right of way parameter, except that with
zero density.

2. Set the priority constraints, as in (16), referred
to the choice at step one.

3. Solve the correspondird? problem.

Let us discuss the case of &nm junction, as in

17)

Figure 7, in which the distribution matrix is the
following
a,
A= (18)
am
m
with a;0[0,4 ,i=1,..m, andZ:afi =1 .

i=1
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Figure 7: anlxm junction.

In this case the flux vector of solution to fRE is

v=(V.a.0,..a.p), (19)
where
mm(y'“ax s ﬁ) : (20)

Now, we are able to describe thE problem for a
nxm junction assumingh>m . In order to satisfy the
rules (A), (B) and (C), we get the followingP
problem:

manyi , (21)
i=1
0> ayy < y™,
Iil (22)
0> a,. ¥ <y,
i=1
=Xy, Oi=2,.0, (23)
4
0y <y Di= 2.0, (24)

which can be solved using the simplex method. Then
the outgoing fluxes are given by

(25)

o) [za oS ar yj |

n
i=1

3.2. RSfor time dependent traffic

The real dynamic behavior of drivers at junctioss i
captured considering time dependent distribution
coefficients, which means that, for instance, dyran
time period of the day, the traffic flows towardsre
specific direction, while in the successive period
towards another one. Then, the matri is time
dependent. Moreover we include a traffic light dwe t
incoming side of a junction of typ@x2  (Figure 8),
where 1,2 are the incoming roads an8 4 are the
outgoing ones.
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Figure 8:2X2 junction.

Assume the distribution coefficients are two
piecewise constant functions

a(t)z{ﬂl Ost<t,
n, T<tsT,

n, 0st<r,
t)=
'8() {/71 T<t<T,

(26)

with 0<aft)<1,0<g(t)<1 and alt)# £(t) , for each
t=0. We define two piecewise constant maps as
xi=xl), x2=xat), with x(t)+x,(t)=1 and
xi(t)o{ol}, i=12, for eacht>0 , which represent
traffic lights. The values O and 1 correspond,

respectively, to red and green lights. The matfixis
given by

oxe®) 080
A‘(m(t)(l— W) %00 )j

First, let y; (t)=1,i =12 (no traffic lights) and fix
t<7;to find the solution(f/l, ;72) at junction we solve
the followingLP problem:

(27)

maxjq + 2,
my+my2<y5,

@-m+@-n2)2< V3, (28)

0<y < ™,

0<y, <5

Clearly, for a time-instant belonging to the inr
[7.T], theLP problem will be defined taking account the
different values of distribution coefficients, as(26).

Now, if we suppose that, for sone< 7 Xl(t)=l

and x,(t)=0, i.e. for road 1 the green light is set, while

for road 2 red light, the traffic flows from roall ot
roads 3 and 4. In this case th® problem can be
reduced to
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maxy, ,
mnsys,
A-mIn<yi™,

0<p <™

(29)

4. NUMERICAL METHOD
The space(t,x) is discretized via a numerical grid in

N X(O,T) using the following notations:
» Ax is the space grid size;
» At isthe time grid size;

o (xptn)=(mAx,nat) for NnON and mO 2
are the grid points.
The values of the velocity — and the denspy

on the grid are denoted, respectively, Wy= v(xm,tn)

=p(Xwty) -

In order to find a numerical solution for the
conservation law along roads, the Godunov scheme is
used. The initial datunp, is approximated by

and o,

1 pxed
ve :ijm f:: o (X) dx (30)

The Godunov scheme is based on exact solutions
V2 to RP at points (m—%)Ax ,mO0<Z and on the

projection of the solution

1
1 (XmtoAX
= [T VA ok (31)

AX Lax

This procedure can be repeated inductively on
every t, . Under theCFL (Courant-Friedrichs-Lewy)

condition

Atsup; supf (o) <Ax,
SR ]y

the waves, generated by differdR®P, do not interact.
We can use the Gauss-Green formula to complite

(32)

The flux in x:xm—%Ax for tO(ty,ths1) is given by

f(p(t,xm—%AxD f( (vgl,v”)),

WR( v_,v+j is the self-similar solution between

where
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and v, . Similarly for the pointx:xm+%Ax:

f (p(t,xm +%AX)) =f (WR(O;V,?1 ,v;ﬂ)) . As the flux is

time invariant and continuous, we can put it outhodf
integral and, settingg®(o,v) = f (W, (0:0.v)) under
the condition (35), the scheme can be written as:

VARV —%(gG(vﬂq,vﬂm)— gG(v,’]‘q_l,v,’]‘q)) . (33)
In general the numerical flux of Godunov is
min f (z), if p<w,
gG(p'W):{ZD%iW f(z),if wsp. (34)
2w, p)

4.1. Boundary condition
Fix a condition at the incoming boundary (incoming

flow) x=0: u(0t)=p(t),t>0, and study equation
only for x>0. Inserting a ghost cell, we define the
numerical condition as

Vg+1 =V _E(QG (ngvz) _gG (p{‘,v{)‘)) '

A (35)

where pf :i.f:” o (t)dt takes the place ofv”,

Analogously, the outgoing boundary is defined as
follows. Let x< L = x,, , then we have

n n

v (0t (ie) et (). @8

where of :ij.:"ﬂpz (t)dt takes the place off,, that

is a ghost cell value.

4.2. Condition at junctions
For roads connected to a junction at the right eimdp
we set

¥

n

n+l _ . n _g( gG (VN—l’V’T‘ )) !

A (37)

while for roads connected to a junction at the left
endpoint we have

vt == (g () -7), (38)

where j;, p, are the flux solutions.
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5. SIMULATION RESULTS

In what follows we choose a flux function
f(p)=p(1-p) which admits a unique maximum
"2

5.1. Simple Junction Scenario
Now we focus on a typical scenario of2a 2 junction
with a traffic light, wherel,2 are the incoming roads

and 3,4 are the outgoing ones, as shown in Figure 8.

Consider the length of each road as normalized, a
simulation time interval[0,T] withT =10 (which

represents a time horizon of observation) and a
numerical grid with Ax=0.12 and
At =CFLxAx =0.108 where CFL =0.9 . The number

of discrete time instants is given by the ra%-?:gs

and accordingly the time variable is referredhese
instants. Further we assume the following data:

pl.O = 102.0: 103,0: p4.0:0’
Prp = Paop = Pap = Py =0.3,
where fori=12,3 4, /.0 is the initial density data,
P, is the boundary density data.
From (3) and (4) we get that the maximal fluxes
y* are the following:
Y = e = ek max= 0 5
The traffic light is modeled by two functions, one
for each incoming roady, (t)  ang, (t)

1 0<t< 20,
0 20<t< 40
1 40<t< 60,
0 t= 60,

0 0<t< 20,
1 20<t< 40,
%()=10 s0<t< 60
1 t> 60.

x(t) =

Finally, for the distribution coefficienta we
consider two different cases:
e @ constant;

. =a(t) , i.e. time varying.

5.1.1. Caseof constant distribution
The distribution matrix is given by

a 0.5
A= = ,
l1-a 0.5
which means that the same quantity of cars is
distributed on outgoing roads.

The evolution of traffic density on each road is
shown in the following figures.
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fe 2 is equal tol butyy*=0.5 , the corresponding
incoming density isc =0.5 , so thah, = p, =0.25.
R

5.1.2. Case of time-varying distribution
The distribution matrix is given by

o)
1-aft)

where g (t) = —%t +0.7.

06k

04rF

02F

P m % w

Figure 9: density on roatl
Here the evolution of traffic density on the

incoming roads is the same of the previous cash wit

constanta , while on the outgoing roads it is shamn
the following figures.
fal
030
025k
020
015
P w0 a0 e t
Figure 10: density on road e
005
P 1 1 1 1
025 a0 40 <] a0 t
| Figure 12: density on roag, .

015

IR

0.05 -

1 1 1 L t

L
an 40 60 a0

Figure 11: density on road} 4

As we can see from Figures 9 e 10, in the firsetim
interval [O,2q , When the traffic light is green on

L L 1 L
a0 40 60 a0

Figure 13: density on roagd,

increases until the valog , i.e.
it reaches the boundary condition, whige  tendthto

value 1 , which means that the ro2d is saturated and
consequently, congests. Then, in the successigevait

[20,4Q , When the traffic light is green on road p,
decreases in such way that the road decongestsitunti
reaches the value of density=0.5 , i.e. when the flux

attains the maximum. Observe that this behavior is
periodic since we choose the same alternate triigfi¢

incoming roadl ,p,

We can observe that the effect of time-varying
distribution consists in a modulation of the whole
outgoing traffic. In general, the behavior of thévdrs
is captured more realistically finding the rightndynic
modeling of distribution coefficients.

5.2. Network Scenario
In this section, we study a network scenario witre¢

cycles. different junctions:
For the outgoing roads (Figure 11), considering the s J,-2x1,
same distribution coefficients, we see that[[h 2q « J,-2x2 with distribution coefficients

p;=p,=0.15 as we expect; in fact from the only
incoming road, i.e. road , the incoming densityi8. .
Then, in[20,4q , since the incoming density from road

a,=05anda, =05,
J,—3x1 with priority parametersp, =0.5 ,
p,=0.2 and p, =05,

linked as in Figure 14.
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Figure 14: a network with three junctions.

On each road, we sep ,=0 , and boundary

condition p, =0.3 . In accordance ©FL condition we
set Ax=0.0122.

Now, the goal is to compare the effects due to
changes of traffic light cycles on the evolutionflokes
outgoing from the network such as to choose thtebet
strategy able to minimize congestion phenomena.

First, we assume inJ, and, two traffic lights

having the green-red cycles as in Table 1.

Table 1: green-red cycles fal, and J,.

‘]1 ‘]2

Time Road1 | Road2 | Road 3 | Road5
instants

0-99 Green Red Green Red
100 - 199 Red Green Red Greep
200 -299| Green Red Greer Red
300 - 399 Red Green Red Greep
400 - 499 Green Red Greer Red
500 - 599 Red Green Red Greep
600 - 699| Green Red Greer Red
700 - 799 Red Green Red Greep
800 - 903| Green Red Greer Red

Focusing on the network outgoing roads, i.e. roads
4 and 7, the simulation results of the density etioh
are shown, respectively, in Figures 15 and 16.

P

025k

020

015+

0.10 -

0nsr

1 1 1 1 t

200 400 600 B00

Figure 15: density on road 4.
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05k

04r

03

02r

0lr

1 1 1 1 t

200 400 600 o0

Figure 16: density on road 9.

Now, we change the traffic light cycles as shown
in Table 2 and Table 3, setting different time amss.

Table 2: green-red cycles fal, .

Jl

Time Road 1 | Road 2
instants

0-99 Green Red
100 - 199 Red Green
200 -299| Green Red
300 - 399 Red Green
400 - 499| Green Red
500 - 599 Red Green
600 - 699| Green Red
700 - 799 Red Green
800 -903| Green Red

Table 3: green-red cycles fak,.

‘]2

Time Road 3 | Road 5
instants

0-49 Green Red
50 -149 Red Green
150 - 249 Green Red
250 - 349 Red Green
350 - 449 Green Red
450 - 549 Red Green
550 - 649 Green Red
650 - 749 Red Green
750 - 849 Green Red

In this case the density evolution on roads 4 and 7
is represented in Figures 18 and 19.
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020k

015

010

0osE

1 1 1 1 t

200 400 6o 200
Figure 18: density on road 4.

0sF

04 -

03r

0lr

L 1 1 1 t

200 400 600 s00

Figure 19: density on road 9.

Notice that, in the second configuration case of
traffic lights, the outgoing fluxes are greater rthéhe
first case.

Finally, we conclude that, choosing a right policy
for the management of fluxes at a junction, playimy
distribution coefficients and traffic lights cycle# is
possible to improve traffic conditions and minimize
congestion effects.
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