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ABSTRACT
The  importance  of  multi-core  processors  increases 
every  day.  So  multi-threaded  programming  also 
becomes more important. Due to data consistency it is 
necessary  to  synchronize  specific  parts  of  the  code. 
These synchronizing methods cause an overhead during 
program execution. This paper analyses  this overhead 
based on time on different  operating systems.  On the 
one  hand,  the paper  gives  a  short  introduction  to  the 
most important synchronization methods, on the other 
hand a test  application is introduced  to determine the 
delay  time  of  each  of  these  methods. All  tests  are 
designed  to  give  real  world  examples  of  how  much 
overhead is produced. Following the given data of the 
test application, the delay times of different operating 
systems are compared to each other. The paper shows 
that  some methods perform better  on one system and 
others perform better on the other systems.

Keywords: synchronization methods, synchronization 
performance, multi-threaded performance, decision 
support

1. INTRODUCTION

1.1. Motivation
The  development  of  new  processors,  such  as  faster 
single-core  processors  and  multi-core  processors, 
resulted in new opportunities in software development. 
On multi-core processors it is now possible to achieve 
real parallelism of software by running various software 
components on different cores.

Alongside  these  new  opportunities  also  new 
difficulties  came.  One  primary  difficulty  is  the 
synchronization  of  software  components  which  run 
independently. Synchronization refers to controlling the 
application flow of paralleled software components.

There  are  certain  techniques  required  to  perform 
synchronization.  Because  of  the  various 
implementations of these techniques, different overhead 
is  produced  depending  on  the  way  of  the 
implementation.

This  paper  analyses  the  overhead  on  the popular 
operating  systems  Windows  XP,  Windows  7  and 
Ubuntu 10.04 LTS in each case 32-bit edition.

1.2. Objective
The primary objective is to accomplish a comparison of 
various  synchronization  techniques  on  different 
operating systems.  This is  achieved by measuring the 
delay  time  by  modelling  real-world  usage  of  the 
different  techniques  and  simulating  their  real-world 
behaviour in the test environment.

The paper is divided into two main sections. The 
first  section  gives  an  overview to  the  basics  of  each 
synchronization  method.  Especially  the  usage  of  the 
methods  using  Win32-API  and  using  POSIX  (IEEE 
1003.1-2008, 2008) is described.

The second section describes the test scenario, the 
implementation  and  the  analysis  of  the  results.  Both, 
modelling and simulation of the test  scenario is  done 
with industrial applications in mind.

1.3. Related work

A  similar  approach  of  analysing  synchronization 
techniques can be found in the paper “A new Look at 
the Roles of Spinning and Blocking” (Johnson, 2009). 
There  the  trade-off  between  spinning  and  blocking 
synchronization is analysed and observed that the trade-
off  can  be  simplified  by  isolating  the  load  control 
aspects of contention management.

Another  approach  can  be  found  in  the  article 
“Multi-threaded  Performance”  (Asche,  1996)  where 
strategies  for  rewriting single-threaded  applications to 
be multi-threaded applications are discussed. It analyses 
the  performance  of  multi-threaded  computations  over 
compatible single-threaded ones in terms of throughput 
and response.

2. THE BASICS

2.1. Multi-threaded programming
Multi-threaded  programming  allows  the  creation  of 
parallel  software.  Since  C++  does  not  provide 
mechanisms  for  multi-threaded  applications  until  C+
+11 (ISO, 2011), operating system functions have to be 
accessed. The problem with these functions is that they 
are  implemented  differently  on  various  operating 
systems and also provide different results in regard to 
performance.  C++11  already  provides  multi-threaded 
mechanisms on the basis of POSIX-threads,  but  there 
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are hardly any compilers or commercial software since 
it was released in August 2011.

Multi-threaded  code  is  program  code  which  is 
executed simultaneously by the operating system.

On Linux systems these functions are defined by 
the POSIX standard and implemented in the kernel. On 
Windows systems they are defined by the Win32-API 
and also implemented in the kernel.

Because  of  parallel  execution  of  software 
components,  which  also  share  resources  and 
communicate  with  each  other,  the  control  flow  is 
synchronized.  But  this  synchronized  execution  also 
causes  problems  in  the  form  of  deadlocks,  race 
conditions,  starvation  and  live-locks.  These  problems 
occur  when  synchronization  methods  are  used 
carelessly.

Further  discussions  on  multi-threaded 
programming  can  be  found  in (Akhter  &  Roberts, 
2006),  (Williams,  2012) and  (Johnson,  Athanassoulis, 
Stoica, & Ailamaki, 2009).
2.2. Why synchronization?
Due to the previously mentioned problems with multi-
threaded programming a synchronization of the control 
flow is needed.

Synchronization  is  always  needed  when  parallel 
reading  and  writing  on  memory  occurs  and  when  a 
specific  sequence  of  the  control  flow  has  to  be 
guaranteed. Also synchronization is needed when only 
writing parallel on memory but reading sequential. No 
synchronization is needed when the memory is written 
sequential.

In  general,  synchronization  is  always  necessary 
when several threads write to a specific memory area.

2.3. POSIX-standard
The  POSIX-standard  defines  a  consistent  standard 
system  interface  for  UNIX-systems  and  Windows-
systems.  POSIX  is  the  abbreviation  for  Portable  
Operating System Interface for UNIX. POSIX has been 
created  to  enable  portable  code  for  various  UNIX-
systems.  POSIX  includes  the  PThread-library  for 
programming  multi-threaded  applications  for  UNIX-
systems.

2.4. Synchronization mechanisms
There are various synchronization primitives, depending 
on the operating system and the underlying CPU. Each 
primitive has its special purpose:

• Critical Sections: atomic areas within a process 
for exclusive access.

• Events:  signal  that  a  certain  state  of  the 
application occurred.

• Wait-functions:  blocked waiting for  an event 
or other signal.

• Mutex: similar to critical sections which work 
outside process boundaries.

• Semaphore: similar to mutex with an internal 
counter for handling several threads.

• Spin-lock: similar to critical sections but with 
short active waiting before passive waiting.

• Interlocked  functions:  hardware  depended 
atomic operations which directly execute CPU-
instructions

Further  discussions  on  these  techniques  can  be 
found in (Hart, 2010) and (Jones, 2008).

3. TEST SCENARIO

3.1. Introduction
As basis for the tests the Microsoft operating systems 
Windows  XP and  Windows 7,  as  well  as  the  UNIX 
based  free  operating  system  Ubuntu  10.04  LTS  are 
used.  Windows XP and Windows 7 have  been  taken 
because  they are  the  most  commonly used  Microsoft 
operating  systems  in  industry.  Ubuntu  10.04  LTS  is 
used because it’s one of the most commonly used UNIX 
based operating systems. The test environment is built 
with C++ and uses its object oriented capabilities.

3.2. Time measurement
The  time  measurement  is  carried  out  by  operating 
system internal time measurement operations with high 
accuracy.  The measurement  uses an accuracy of  1 us 
which  is  accurate  enough  for  our  real  world 
measurement approach.

Not  the absolute time delay is  measured,  but  the 
delay  relative  to  the  current  CPU-tick  count.  This 
allows a better comparison by disregarding the blur of 
each operating system because their similar scheduling 
algorithms.

To  keep  the  source  code  compatible  between 
Windows  and  UNIX  the  Win32-API  functions 
QueryPerformanceCounter and 
QueryPerformanceFrequency were implemented using 
gettimeofday  (Linux  High-Resolution  Timer,  2009). 
The functions have the same interface like the Win32-
API  functions  and  are  implemented  using  compiler 
directives.

3.3. Test flow
Given  that  the  different  synchronization  techniques 
primarily  differ  in  their  field  of  application  and 
therefore similar in usage also the test flow is structured 
similar for each technique.

Basically a test consists of initialization, start of the 
components, time measurement and analysis.

1. Initialization:  The  synchronization 
mechanisms  and  program  components  are 
initialized according to their usage.

2. Execution:  The  execution  and  time 
measurement are carried out in parallel and are 
repeated to generate a more accurate median.

3. Analysis: The median is calculated and written 
into an Excel file for further processing.
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3.4. Constraints
Given that there are a lot of multi-core processors with 
various numbers of cores and clock frequencies and the 
different operating systems, it needs to be ensured that 
the average result is only exposed to low deviation.

It  has  to  be  ensured  that  the  whole  program 
inclusive  all  its  components  is  executed  on  only  one 
CPU core.  This  is  needed  because  the  switch  of  the 
execution to another CPU core also produces overhead 
and to avoid inter-core communication influence.

Also  it  has  to  be  ensured  that  the  overhead  of 
context switches between parallel executed components 
is  minimized.  This  is  done  by  setting  the  process 
priority to the highest priority available.

4. IMPLEMENTATION

4.1. Introduction
This  section  describes  the  architecture  and 
implementation  of  the  test  application  for  each 
synchronization technique.

4.1.1. Software architecture
The architecture is built up from two base classes, one 
for the test flow and one for threads. Derived from this 
base  classes  are  all  classes  needed  for  testing  each 
synchronization technique. Classes are named after the 
technique they are used for with the suffixes ‘Test’ and 
‘Thread’ to differentiate between the test flow and the 
threads.

Figure 1: Test Classes

Figure  1  shows  the  class  hierarchy  of  the  test 
classes.  Each  test  class  implements  methods  for 
controlling the test flow and interpreting the test results.

Figure 2: Thread Classes

Figure 2 shows the class hierarchy of the thread classes. 
The base class is used for controlling the typical thread 
flow  such  as  creating,  starting  or  suspending.  The 
derived classes implement the specific methods for each 
synchronization  technique  and  the  control  flow.  The 
threads  are  implemented  as  fire-and-forget  threads  so 

there is no need to stop and delete them. They are used 
for  calculating  the  overhead  of  the  various 
synchronization techniques.

Because  the  POSIX-standard  doesn’t  provide  an 
implementation for manual-reset-events,  they are self-
implemented using a conditional variable and a mutex. 
There  are  methods  and  a  structure  realized  which 
implement the functionality.

4.1.2. Test flow
Figure 3 shows the typical test flow with the help of the 
base  classes.  The  user  creates  a  new  test  class  and 
initializes  it.  The  test  class  then  creates  the 
corresponding thread  class  and  starts  the testing.  The 
testing is repeated as often the as MEASURES declares. 
After  the tests are completed the average  overhead  is 
calculated and written to a file for further processing.

Figure 3: Test flow

4.1.3. Choosing  processor  core  and 
process priority

As  described  in  section  3.4  the  overhead  of  context 
switches  and  switching  to  another  core  needs  to  be 
reduced so the results don’t get falsified.

To  reduce  the  number  of  context  switches  the 
process  priority  is  set  to  real-time.  To  block  core 
switching  the  process  affinity  mask  has  to  be  set.  It 
doesn’t matter on which core the program is executed as 
long as it is only one core.

Listing  1  and  Listing  2  show  the  Windows 
implementation  and  respectively  the  UNIX 
implementation of setting process priority and affinity 
mask.

Listing 1: Windows Process Priority and Affinity Mask 
(without error handling)
HANDLE h_process = GetCurrentProcess();
// set process priority to high
SetPriorityClass(h_process, REALTIME_PRIORITY_CLASS);
// set process affinity mask to only use core 0
SetProcessAffinityMask(h_process, AFFINITY_MASK);

Listing 2: UNIX Process Priority and Affinity Mask 
(without error handling)
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(0, &mask);
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// set process priority to high
setpriority(PRIO_PROCESS,0,-20);
//set process affinity mask to only use core 0
sched_setaffinity(0, sizeof(mask), &mask);

4.2. Synchronization techniques
All tests are designed to give real  world examples of 
how  much  overhead  is  produced  by  the  various 
techniques and not just laboratory values.

4.2.1. Critical sections
The  test  flow is  shown in  Figure  4.  The  delay  time 
measured  is  the  delay from entering  and  respectively 
leaving the critical section. This way of measurement is 
done because critical sections are used for short sections 
only so there is not much overhead.

Figure 4: Measuring Critical Sections

4.2.2. Events
The test flow is shown in Figure 5. After starting the 
test a thread is created which initially waits for an event 
to continue execution. In the test method this event is 
signalled and the thread continues its execution. After 
signalling the event the test method waits for an event 
signalled by the thread. After continuing execution the 
thread sets the event and finishes its work. The delay of 
events  is  calculated  by  measuring  the  time  from 
signalling the event to recognizing the signalled event. 
With  this  method  of  measurement  not  only  the 
execution time of the technique is measured but also the 
overhead produced by context switches which gives a 
real world example of the overhead.

Figure 5: Measuring Events

4.2.3. Wait-functions
Because there are no directly equivalent functions in the 
POSIX-standard  this  tests  measures  the  delay  of 
recognizing  the  exiting  of  a  thread.  And  also  wait-
functions from Win32-API which are used to wait for 
signals of mutex, semaphores and events are measures 
in the corresponding tests.

Figure 6 shows the test flow of measuring the wait-
functions. After the test is started a thread is created and 
started and the test method waits for it to complete. The 
time is measured after the thread was started and after 
the thread completed execution.

Figure 6: Measuring Wait-functions

4.2.4. Mutex
The  test  flow  of  testing  mutex  is  similar  to  that  of 
testing critical sections with the difference that there is a 
thread to communicate with.

Figure 7 shows the test flow. After starting the test 
a  mutex  is  created  in  blocked  mode  and  a  thread  is 
created  and  started.  The thread  opens  the  mutex  and 
waits for  it  to be released.  After  the thread  owns the 
mutex the test method waits for it to be released. The 
overhead  is  calculated  by  measuring  the  time  from 
releasing the mutex in the test method and respectively 
in the thread and getting to own the mutex in the thread 
and respectively the test method.

Figure 7: Measuring Mutex
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4.2.5. Semaphore
The test flow of the semaphore test, shown in Figure 8, 
works  corresponding  to  the  mutex  test  with  the 
difference that more threads are used.

4.2.6. Spin-locks
The test flow of the spin-locks test is corresponding to 
that of testing critical sections with the only difference 
being spin-locks in testing instead of critical  sections. 
Because of this nearly equivalent test flow there is now 
explicit figure given to illustrate it.

Figure 8: Measuring Semaphore

4.2.7. Interlocked functions
The test flow of measuring interlocked functions, shown 
in Figure 9, is very simple. Each function is executed 
and its execution time is measured.

Figure 9: Measuring Interlocked Functions

5. ANALYSIS

5.1. General Findings
Through the evaluation of the test results insights could 
be gained on how the performance of synchronization 
techniques differs on different operating systems. When 
viewing the test results it is important to differ between 
synchronization techniques, which are influenced by the 
operating system and those without. Influenced by the 
operating  system  are  mutex,  semaphore,  events  and 
wait-functions. Without influence are critical  sections, 
spin-locks and interlocked functions.

If  synchronization  does  not  depended  on  the 
operating  system,  less  overhead  can  clearly  be 

recognized.  In  general,  for  process-internal 
synchronization critical sections should be used and for 
calculations  interlocked  functions  if  available.  Spin-
locks are particularly well suited for synchronization of 
small areas which are divided among multiple processor 
cores,  but  produce  more  overhead  if  the  number  of 
critical areas exceeds the number of processor cores.

If  synchronization  depends  on  the  operating 
system, wait-functions cause the least overhead because 
they only wait for a certain signal, usually in a blocked 
manner.  Because  of  the  operating  system  influenced 
token system of mutexes they produce more overhead 
than  critical  sections.  Semaphores  produce  similar 
overhead to mutex but have even more impact due to 
the internal  counter.  The overhead of events exists of 
operating system influence and the expense to signal the 
wait-function to continue execution.

Table 1 shows the results of the tests on Windows 
7, Windows XP and Ubuntu 10.04 LTS. As it  can be 
seen  clearly,  synchronization  techniques  without  the 
influence of the operating system are by far, the fastest. 
Values of 1us indicate that the measurement is near or 
beyond its  precision,  which doesn’t  mind as  the high 
values  are  important  in  real-world  applications.  That 
confirms  the  knowledge  that  for  process  internal 
synchronization  critical  sections  and  for  calculations 
interlocked functions should be used. Also recognizable 
is that wait-functions produce nearly the same overhead 
regardless of whether they are waiting on one or more 
signals.  Mutex,  semaphore  and  events  produce  very 
different overhead on the several operating systems; this 
will be illustrated in the next section.

Looking  at  the  results  of  operating  system 
influenced  synchronization  techniques  it  can  be  said, 
that  semaphores  should  be avoided  when possible.  If 
synchronization is needed outside of process boundaries 
use events or mutex under Windows but try to avoid 
events under UNIX.

Table 1: Results Windows XP, Windows 7, 
Ubuntu 10.04 LTS (time in us)

Synchronization 
technique

Win 
7

Win 
XP Ubuntu

EnterCriticalSection 1 1 1
Interlocked Decrement 1 1 1
Interlocked Increment 1 1 1
LeaveCriticalSection 1 1 1
Lock Spinlock 1 1 1
ReleaseMutex 21 59 14
ReleaseSemaphore 39 27 11
SetEvent 32 20 51
Unlock Spinlock 1 1 1
WaitForMultipleObjects 18 20 19
WaitForSingleObject 18 19 15
Waiting for Mutex 24 26 42
Waiting for Semaphore 145 105 106
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5.2. Differences between Windows XP, 
Windows 7 and Ubuntu 10.04 LTS

In a direct comparison of windows and UNIX it can be 
seen that in general the mechanisms require less effort 
under UNIX than under Windows.

On  all  systems  critical  sections,  spin-locks  and 
interlocked  functions  only  produce  such  a  small 
overhead that no difference is recognizable. The same 
can be seen by looking at wait-functions, which produce 
nearly  the  same  overhead  on  the  several  operating 
systems. A big difference can be seen when looking at 
mutex, which produces more than twice the overhead 
when it is released on Windows XP than on Windows 7 
or Ubuntu. Acquiring a mutex produces more overhead 
on Ubuntu than on Windows XP or Windows 7 which 
produce similar overhead. Another big difference can be 
seen  at  semaphores.  Acquiring  a  semaphore  on 
Windows  XP  or  Ubuntu  produces  nearly  the  same 
overhead but produces a lot more overhead on Windows 
7.  This  could  be  explained  due  to  the  internal 
implementation of  the semaphore  counter.  In  general, 
acquiring a semaphore produces the most overhead of 
all synchronization techniques. Releasing a semaphore 
produces  very  different  overhead  on  all  operating 
systems.  On  Windows  XP  the  overhead  is  twice  as 
much as on Ubuntu and on Windows 7 three times as 
much overhead. Also events produce different overhead 
on  each  operating  system.  The  least  overhead  is 
produced  on  Windows XP,  a  little  more  overhead  is 
produced on Windows 7 but on Ubuntu the overhead is 
more  than twice  the  overhead  produced  on  Windows 
XP.  This  can  be  explained  by  looking  at  the 
implementation  of  the  manual-reset-event  on  Ubuntu 
which uses a mutex and a conditional variable, so the 
overhead of two mechanisms is included in this test.

In general, it can be seen beside a few exceptions 
that  Ubuntu  operating  system produces  less  overhead 
than  both  Windows  operating  systems.  With  the 
Windows  operating  systems  it  is  more  complicated, 
because  some mechanisms  produce  less  overhead  on 
Windows XP and some on Windows 7.

A visual representation of these differences can be 
seen in Figure 10.

Figure 10: Difference between Windows and Linux

CONCLUSION
The performed tests have shown what average overhead 
is expected on the various operating systems.  Also it 
was pointed out that  UNIX comparing all  mechanism 
produces  less  overhead  than  Windows  operating 
systems. It can be seen that each operating system has 
its strengths and weaknesses in the implementation of 
synchronization techniques.

Based on these measurements it can now be shown 
which operating systems are the better option for each 
synchronization technique, provided a free selection is 
an option. In the field of synchronization Linux would 
be  in  almost  every field the better  option,  except  for 
events which have less overhead under Windows than 
under Linux.

On  UNIX-systems  it  cannot  be  assumed,  despite 
the POSIX-standard that the overhead on average is the 
same,  since  different  UNIX-derivatives  also  have 
different kernel implementations. But in general it can 
be assumed that  different Linux-distributions with the 
same kernel produce the same overhead.

Due  to  the  different  performance  of 
synchronization techniques it is important to analyse in 
advance  which  mechanisms  will  be  needed  to  not 
slowing  down  a  multi-threaded  application 
unnecessarily.
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