
TOWARDS THE IMPLEMENTATION OF A HANDBALL PLAYER AGENT 

FRAMEWORK 
 

 

João Jacob
†
, Rosaldo J. F. Rossetti

‡
, António Coelho

†
, Rui Rodrigues 

 
† 
INESC TEC – INESC Technology and Science 

‡ 
Artificial Intelligence and Computer Science Laboratory (LIACC) 

Department of Informatics Engineering (DEI) 

Faculty of Engineering, University of Porto (FEUP) 

Rua Dr. Roberto Frias S/N, 4200-465, Porto – PORTUGAL 

{joao.jacob, rossetti, acoelho, rui.rodrigues}@fe.up.pt  

 

ABSTRACT 

Sports simulation can help to assess the 

performance of strategies and players in a sand-boxed 

environment. Ultimately it can lead to improved real-

life performance of actual teams if it is able to provide 

useful information to the team coach or manager. Many 

tools are now available for many different sports, most 

notably Soccer Server Simulator, a soccer simulator, 

that has already attracted many researchers from the 

artificial intelligence community into developing 

intelligent agents (soccer players) for them to form 

teams to play against each other in simulated matches. 

This paper presents a methodology for developing 

agents for testing and further developing the Handball 

Sport Simulator, which is based on the Soccer Server 

Simulator. The main contribution of this work is to 

provide a basic, expandable, agent architecture, 

specifically capable of playing at a Handball Sport 

Simulator server, while at the same time testing what 

features and sport’s rules of the Handball Sport 

Simulator have been implemented correctly. 

 

Keywords: workstation design, work measurement, 

ergonomics, decision support system 

 

1. INTRODUCTION 

 Agent-based models as means of portraying 

complex environments such as sport games are not new. 

These simulators consist of several agents cooperating 

and competing towards common or opposite goals. 

Information exchange, coordinating tasks or competing 

for resources are appropriate scenarios to be modeled 

through the multi-agent metaphor. This is also 

verifiable in real-life situations, thus making agents a 

valuable addition for simulators that attempt to simulate 

those scenarios, being sports simulators very complete, 

as cooperation and coordination are needed as well as 

the competition for a goal. 

 Several of these simulators exist, for many sports. 

One of the most widely known is the Soccer Server 

Simulator, which even has its own category in the 

RoboCup competition (Chen 2002). The goal of this 

simulator is to be a tool useful for the development and 

testing of artificial intelligence techniques, as it serves 

as a test-bed for teams of agents to compete with the 

same resources, implying that one team can only defeat 

another if it is tactically superior. As this simulator is 

agent based (each agent represents one player in a 

game), it allows for everyone interested in developing 

an agent to do so in any programming language, 

provided that it respects the client-server protocol that 

the Soccer Server Simulator requires.  

 However, there are still other sports that lack the 

availability of an easy-to-use agent-based simulator. In 

order to bridge this gap, a Handball Server Simulator 

(Santiago 2011) was recently developed, being based on 

the Soccer Server Simulator’s core engine. This allowed 

the Handball Server Simulator to retain most of the 

added value of the original Soccer Server Simulator, 

such as the ease of use and the ease of developing 

agents for it. However, being such a new simulator, 

there are currently no agents developed specifically for 

it, and as such, it is difficult to assert if the simulator is 

missing features (such as game rules) or if those already 

present were incorrectly implemented. 

 The purpose of this work is to provide a framework 

for the development of simple cooperative handball 

agents capable of testing the implemented features of 

the handball server. It is not the focus of this work the 

development of a highly robust and competitive 

handball agent. The agent can be later improved upon, 

as it is further tested with the simulator, while the 

simulator is also updated taking these tests into 

consideration. 

 The remaining part of this paper is organized as 

follows; the Methodology section, describes the 

designed model, how it was implemented and the 

limitation of certain approaches. The Results section 

provides some results of the testing of the prototype 

agent in the Handball Server Simulator, and finally the 

Conclusions section, summarizes the achieved goals 

and criticizing the obtained results whereas also 

providing some future goals for the rest of this project. 

 

2. RELATED WORK 

Multi agent simulation is a technique used for 

simulation in several scenarios with different purposes 

(Murakami 2003). One possible scenario for multi agent 

simulation to be used is team sports. The most notable 

simulator would be the Soccer Server Simulator that is 

used in the RoboCup competition (Chen 2002). There 

are practically no multi-agent sports simulators similar 

to the Soccer Server Simulator for other sports. In order 

to fill this gap the Handball Server Simulator was 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 204



developed (Santiago 2011). It provides a solution for 

simulating handball matches in a similar way to that of 

the Soccer Server Simulator.  

Although there are no other agents developed for 

the Handball Server Simulator, since the basis of the 

simulator is the Soccer Server Simulator, it is possible 

to adapt existing ones. Considering that most of the 

principles used in the development and testing of agents 

for the Soccer Server Simulator also apply for the 

Handball counterpart, an existing soccer agent can be 

adapted easily with minor changes in the client-server 

protocol and expected changes in its behavior, as it will 

now be playing handball and should perform 

accordingly. Having this in mind we opted to adapt an 

existing agent architecture, designed for the Soccer 

Server Simulator, into a Handball Server Simulator 

player. 

Zang and associates discuss on of how agent 

architectures can be developed specifically for the usage 

in the Robocup soccer simulator (Zhang 2000). They 

explain how agents interact with the simulation 

environment, capturing information from it, building 

representations of that information, deliberating and 

acting based on those representation and the 

information exchanged among them. They also provide 

an overview of the architecture of some teams which 

take part in that competition. The CMUnited-99 (Reis 

2001) (a former champion of the competition) was 

identified as having a behavior-based architecture, a 

common architecture for agents, as they take actions 

depending on the actual world state. Other architectures 

were identified, such as the layered architecture. This 

architecture is similar to that of the architecture used in 

this work, where there is a clear separation between 

layers of basic abilities or actions, client-server 

commands, interpretation of received information and 

higher level abilities, such as spatial reasoning and 

ponderation. This architecture can be found in teams 

such as RobologKoblenz99, among others (Certo 2007). 

Candea and associates noted the importance of 

coordination in multi-agent simulations such as the 

Robo Cup simulator (Candea 2001). They mention how 

communication based coordination can help improve 

team performance and self-organization in a more 

reliable way. Other forms of coordination, as well an 

autonomous coordination or heterogeneous agents’ 

coordination are referred. However, communication 

based coordination as a means of distributed 

coordination was found to be the preferred approach in 

their work, as it eases the burden of coordination 

(agents do not have to rely on “coach” like tactics) and 

ensures homogeneity. The issues identified, such as the 

dynamic assignment of roles and team strategies are 

important ones. These issues and the importance of 

roles in this context have also been identified elsewhere 

(Åberg 1998). 

Positioning the agents of a team correctly is also an 

issue, since the environment they are at is very 

dynamic. Akiyama proposed a solution for finding 

suitable positions for each agent, based on the status of 

the environment (Akiyama 2008). The method requires 

training data to be collected and has several advantages 

such as being fast, scalable, accurate and reproducible. 

A similar approach was that of Reis  and  his associates, 

that based the positioning and coordination of a team on 

predefined tactics and formations (Reis 2001). This 

allowed the team to dynamically change the gameplay, 

position and roles of its players in different situations of 

the game. They considered a “High level decision 

module” that was responsible for outputting adequate 

actions taking into account formations, roles, state of 

the world and the game’s situation. The adaptability of 

this solution provided very positive results with the FC 

Portugal team (using this approach) winning most 

matches against several of the RoboCup teams. 

Genetic algorithms have also been used for the 

training and performance evaluation of RoboCup 

simulator teams (Aronsson 2003). However, they are 

hindered by the usual limitation of this type of 

algorithms, such as overfitting, limited search space, 

expensive computation and premature convergence. 

Even so, it was proven that it is possible for software 

robots to learn the rules of simulated soccer. 

 

3. METHODOLOGIC APPROACH 

The aim of this work is to provide a framework for 

the creation of handball player agents for the Handball 

Server Simulator while also testing it via the agents 

developed with said framework. 

 

3.1. Specifications of a Handball Player Agent 

Although there are some similarities between the 

Soccer Server and the Handball Server, as they both 

simulate a team sport, played with a ball, two opposite 

goals on a rectangular field, since the rules for each 

sport are different, there has to be differences between 

them. 

As such, it is expected that a player agent 

developed for the Handball Server Simulator will differ 

from one aimed at the Soccer Server Simulator. Similar 

to a soccer player agent, however, a handball player 

agent will attempt to accomplish its goals while 

ensuring that the game’s rules are respected. In light of 

this, it is possible to adapt a soccer player agent’s code 

into a handball one as they differ (in terms of their own 

logic) in rules to respect (which influences their 

available actions). 

 

3.2. Handball Server Simulator communication 

protocol 

The Handball Server Simulator, like the Soccer 

Server counterpart is part of a client-server architecture 

consisting of a game (the server) that is disputed by two 

teams, formed by several players (the clients). The 

server will provide information regarding the game’s 

state to all of the agents so that the agents may 

deliberate upon it and act by sending to the server 

individual actions. Each agent receives both common 

(such as the game’s score or what the other players are 

saying) and unique information (such as what is in its 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 205



field of view) from the server. Thanks to this approach, 

both servers allow for clients to be implemented in 

diverse ways, as long as they respect the server’s 

protocol. 

Prior to designing and developing the agent’s 

behaviors it was deemed necessary the creation of an 

architecture for its basic modules. Since the Handball 

Server Simulator was based on the protocol of the 

Soccer Server Simulator, searching for a released 

simple Soccer Server Simulator agent’s code that could 

serve as a basis for this work. From that basic code, we 

could change the needed protocol parts and agent 

behaviors. 

Since the communication between the Handball 

Server Simulator and the clients (agents) is made via 

sockets (UDP/IP), these clients may be implemented in 

any language and run on any device as long as they 

comply with the server’s protocol. 

Determining what the protocol was, relied on 

consulting the Soccer Server Simulator’s protocol 

(Chen 2002) as well as the source code for the Handball 

Server Simulator.  The handball simulator has many 

common aspects with the Soccer Server Simulator’s 

protocol as it can be seen in the table 1 and table 2. 

 

Table 1: Comparison between Soccer Server Protocol 

and Handball Protocol (Client to Server) 

 

Soccer Server Handball Server 
Behaviour 

Init Init 
Registers the player in 

the server 

Kick Throw 

Allows a ball that is 

in possession by the 
player to be kicked or 

thrown with varying 

force and angle 

- Step 

The agent takes one 

step with the ball in 

its hand without 
releasing it (moving 

without dribbling) 

Catch Catch 
The agent catches a 

ball that is in his 

range of action 

Change_View Change_View 

Allows the agent to 

change its viewing 
angle. A wider angle 

allows for more 
information to be seen 

and a narrower one 

for the information 
seen to be of higher 

quality 

Say Say 

The agent can share 

information with all 

agents present in the 

field 

Move Move 

Places the agent 
instantly at a given 

position of the field 

(only available when 
the game hasn’t 

started) 

Sense_Body Sense_Body 

Asks for a 
sense_body command 

to be sent back from 

the server 

Turn Turn 

Allows the agent to 

rotate its whole body 
a variable number of 

degrees 

Turn_Neck Turn_Neck 

Allows the agent to 
only turn his head a 

variable number of 

degrees while keeping 
the rest of the body in 

the same orientation 

Dash Dash 

The agent is capable 

of running at a certain 
direction and intensity 

 

Table 2: Comparison between Soccer Server Protocol 

and Handball Protocol (Server to Client) 

 

Soccer Server Handball Server 
Behaviour 

Hear Hear 

Agent is capable of 
receiving all 

messages that were 

transmited to the 
server using the Say 

command from any 

agent 

See See 

Agent captures visual 

information relative 

to his position and 
orientation, as the 

presence of other 

players, the ball, 
goals or game lines 

Sense_Body Sense_Body 

Provides some 

information of the 
current situation of 

the agent such as 

current speed and 
stamina 

 

 As the above two tables show, there is not much 

difference from the handball server to the soccer server 

in terms of protocol. The two major differences are the 

Step command, that does not exist in the Soccer Server 

and the Throw command that behaves exactly like the 

Kick counterpart in the Soccer Server. The Step 

command is, as the name suggests, a step to be 

performed with the ball in hand (assuring that the ball is 

not lost, unlike dribbling with the ball in the Soccer 

Server). However, as the rules of Handball imply, only 

3 steps may be taken with the ball in possession. 

 

4. A FRAMEWORK TO DEVELOP HANDBALL 

PLAYER AGENTS 

 Since the goal of this work was to create a basis for 

the development of Handball Server Simulator agents, 

there was no need to choose a Soccer Server Simulator 

agent with complex behavior code. As such, the chosen 

base code was of the krislet-0.2 (Langner,2011) agent as 

it was a simple soccer agent that was already capable of 

processing many soccer server commands, being some 

of those commands also present in the handball server.      

 This agent was chosen instead of other candidates 

(such as Agent2D) as it contained nearly no logic for 

soccer or other sport-related notions, such as strategy. 

Since the focus of this work is mainly to create agents 

that test what features the handball server has working, 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 206



a complex agent isn’t needed. The portion of code that 

was responsible for the agent’s connection to the server 

was mostly left unaltered as the Handball Server 

Simulator’s protocol is similar to the Soccer Server 

Simulator’s in that aspect, and only values such as the 

port of the running server and team names were 

changed. Other elements, concerning the client-server 

protocol, that were present in the original agent’s code 

were replaced or omitted in the final code. 

 Besides the client-server protocol, the original 

architecture of the agent was mostly left intact. 

However, there were some changes worth noticing. 

 

Krislet 0.2

Client BrainData

Handball Agent

Client + Brain

 
Figure 1: Diagram representing original architecture 

(left) versus the final architecture (right) 

 

 As it can be seen in figure 1, above, the original 

architecture was multi-threaded. This feature served the 

purpose of running the “Brain” thread (responsible for 

the decision making process) concomitantly with the 

“Client” thread (responsible for the client-server 

communication and parsing of the data), allowing for 

the agent to never miss a server communication, even 

while performing the needed calculations prior to 

sending a command to the server. Although, in theory, 

this can be considered a useful feature there were some 

issues to be addressed: 

 Synchronism: If the “Brain” thread was processing 

a received command, the “Client” thread should not 

update that received command in the event of receiving 

a server communication, as it might lead to mixing old 

information with new one. This means that new 

information is stored in a stack and the Brain will access 

the next item in that stack whenever it is done 

processing the current one. This can lead to the client’s 

notion of the game’s current state to be severely out of 

synchronization with the server’s. 

 Wasted cycles: If the “Brain” thread finishes 

computing a command and has not received a new 

command to process, it will continuously verify if there 

are new requests to process. Even though the authors of 

the original code included a sleep call to help reduce the 

number of wasted cycles, this means that there is a 

possibility that the server and client are not 

synchronized, as the server may send new information 

to the client while the “Brain” thread is sleeping, 

wasting several milliseconds in this state. 

 All these issues pointed that a multi-threaded agent 

was difficult to synchronize and as such would not add 

any value to the solution, as it led mostly to wasted 

processing cycles. There is no gain in using separate 

threads for the retrieval and sending of commands and 

the processing of said commands if these tasks are to be 

executed sequentially. So, the architecture was changed 

to a single threaded one. This was done easily, and 

meant only changing the “Brain” thread’s infinite cycle 

to a simple function that would be called each time 

whenever the “Client” thread would receive the server’s 

commands. Part of the “Brain’s” thread was left intact, 

the part that dealt with initializations and preprocessing, 

as we felt it would not interfere with synchronization 

issues when the agent started processing game 

instructions. 

 

Table 3: Comparison between the original code’s 

protocol and the final code’s protocol 

 

Original Code Protocol Final Code Protocol 

Init 
Init (altered to 

include default values) 

Shoot 
Throw (operates the 

same way as shoot) 

Say (unused in Brain 

class) 

Say (altered to be 

used with objects of the 

Message class) 

Dash Dash 

Turn Turn 

Catch(unused in 

Brain class) 
Catch 

Move Move 

See See 

Sense_Body(unused 

in Brain class) 
Sense_Body 

Hear(unused in Brain 

class) 
Hear 

 

 As the above table 3 depicts, the original code’s 

protocol did implement many commands (the Client 

class had each command implemented individually as a 

function). However, many of these commands were not 

used for the original agent behavior. 

 Most notably, the original soccer agent’s code did 

not make use of the “say” command for inter-agent 

communication. This is a much needed feature for 

developing a cooperative team of agents for any team 

sport. In order to fill this blank, a “Message” class was 

created that allows the agent to send and receive 

coordination-specific content. 

 Instantiating a handball player and results 

After designing the final architecture of the agent, it was 

necessary to develop a prototype handball agent. This 

agent should make use of all the previous mentioned 

features of the developed architecture. The developed 

agent implements a simple behavior, as depicted in 

figure 2. 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 207



Ball Visible and 
no one to get it?

Ball in Range?

Yes

Turn 40º and search 
again

No

Dash towards it

No

Catch ball

Yes

Is opponent goal 
visible?

Less than 7m 
away

Yes

Shoot at goal

Yes

Some one asked 
for it?

No

Keep it and dribble

No

Pass it

Yes

No
Say that you are 

going to get it

 

Figure 2: Agent Behavior 

 

With this behavior, the commands present in table 

2 were tested. Note that inter-agent communication and 

coordination was also tested and allowed for simple 

teamwork to be achieved. The untested commands were 

inherited directly from the Soccer Server Simulator’s 

core engine and, as such, did not need any testing in 

order to validate them.  

 

Table 4: Test coverage of client-server commands 

Handball Server Testing Status 

Init Tested 

Throw Tested 

Step  Tested 

Catch Tested 

Change_View Untested 

Say Tested 

Sense_Body Tested 

Turn Tested 

Turn_Neck Tested 

Dash Tested 

Score Untested 

 

And the following simulator objects were 

identified and used correctly by the handball agent. 

 

Table 5: Simulator object identified and use in the 

agent’s behavior 

Object retrieved by 

“see” 

Presence in agent 

behavior 

Ball Present 

Flag Present 

Player Present 

Goal Present 

Line Present 

 Finally, we were able to validate the following 

rules of the sport[10] in the Handball Server Simulator. 

This validation was made by checking the messages that 

were sent and received by the agent and the server, and 

by the game’s referee. Additionally, most of these could 

be seen via the server’s graphical viewer. 

 

Table 6: Handball rules verification by the agent when 

connected to a server 

 

Handball Server 

Testing Status 

Handball Server Testing 

Status 

Do not block or 

kick ball using feet  

Server doesn’t verify 

Do not hold ball for 

more than three seconds 

Tested 

Do not bounce the 

ball, catch the ball and 

bounce it again 

Server doesn’t verify 

Take no more than 

three steps with the ball 

caught 

Tested 

Do not enter goal 

area 

Tested 

Do not touch the 

ball lying inside the goal 

area 

Server doesn’t verify 

Do not charge the 

opponents or run into a 

defending player 

Untested 

Do not engage in 

passive play 

Server doesn’t verify 

Do not steal the ball 

from the hands of an 

opponent 

Untested 

Do not push or hold 

attacking player’s body 

Untested 

Stay at least 3 

meters away from the 

attacking player when 

restarting the game 

Server doesn’t verify 

Goalkeeper cannot 

take the ball outside the 

area 

Tested 

Goalkeeper cannot 

take the ball inside the 

area 

Tested 

 

 As table 6 suggests, some defensive features were 

untested, as the focus of the agent’s behavior is mainly 

an offensive one. These untested features have to be 

validated by a human, (passive play, charging, pushing 

or holding adversaries) much like how “fouls” are 

handled by humans in the soccer server (Chen 2002). 

Other rules were not verified by the handball server, 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 208



meaning that although the agent was tested in a scenario 

where that rule would be infringed, the handball server 

did not punish the team for doing so. 

 

5. CONCLUSIONS AND FUTURE WORK 

 The current work served both the purpose of 

creating a foundation for the development of future 

handball server simulator agent behaviors and of 

exposing the limitations of the server that result in an 

unrealistic representation of the sport. Although nearly 

all issues are due to the fact that the server has its roots 

in the Soccer Server Simulator, these issues were less 

relevant there. These issues revolve around the fact that 

the simulator is a 2D simulator and the players’ 

physiognomy has been simplified. This means that at 

this time the server is incapable of determining if: 

 The ball has been blocked or kicked using the 

feet 

 The player is “in the air” when inside the goal 

area 

 There was physical contact, such as a collision 

between opposing players 

 The dribble was valid 

 The defending player is closer than 3 meters to 

the attacking player when the game is being 

restarted 

 The Handball Server Simulator is also missing the 

implementation of some other handball rules, but that 

does not have to do with the simulators limitations. In 

fact, even in real life some rules are difficult to apply; 

for instance, the “passive play” rule is triggered if the 

players in possession of the ball aren’t focused on 

attacking, solely preoccupied in maintaining the ball 

possession, a free throw is awarded to the opposing 

team. 

 The presented agent behavior server the purpose of 

proving that, currently, developing and testing handball 

agents is somewhat limited, as some rules of a handball 

game go unverified by the server. Furthermore these 

issues, if left unattended, can also lead to agents using 

strategies that would be rendered unusable in real life 

(such as long distance shots at the goal or passive play). 

Even so, these issues are acceptable due to the simulator 

being in its early days of development and having 

inherited some of these limitations from the Soccer 

Server Simulator. Hopefully, these foundations for the 

development of handball agents can help perfect the 

simulator, as it tested most of the rules and features 

already present in the Simulator. 

 We have presented the foundations of a handball 

agent, and also developed and tested a cooperative 

sample agent. Although the agent itself is still lacking 

some features, such as the capability of determining his 

position or the position of fellow and opposing players, 

these features can be easily added, thanks to the division 

of the “client” communication with the server and the 

“brain” component of the agent, responsible for the 

behavior and decision making of the agent. In fact, any 

further alteration to the agent is expected to be made 

only on the “Brain” component. 

 The next step for this project is to further develop 

the handball agent framework in parallel with the 

Handball Server Simulator. The development of a 

complete, cooperative and intelligent handball team of 

agents is the ultimate goal to be achieved. However, for 

that to happen, the Handball Server Simulator must see 

further development as well, to become more complete.  

Furthermore, testing new server features and developing 

more complex handball agent behavior will be needed 

and as such, the proposed handball agent framework 

will serve as a base for these future steps in this project. 

 

REFERENCES 

Åberg, H. (1998). Agent Roles in RoboCup Teams. 

Science And Technology , (February), 1-24. 

Candea, C. (2001). Coordination in multi-agent 

RoboCup teams.Robotics and Autonomous 

Systems, 36(2-3), 67-86. doi:10.1016/S0921-

8890(01)00137-3 

Chen, M., Foroughi, E., Heintz, F., Huang, Z., 

Kapetanakis, S., Kostiadis, K., Kummeneje,J., et 

al. (2002). RoboCup Soccer Server. 

H. Akiyama(2008), Multi-agent positioning mechanism 

in the dynamic environment, RoboCup 2007: 

Robot Soccer World Cup XI, pp. 377-384, 2008. 

International Handball Federation, Rules of the Game , 

July 2010 

J. Aronsson (2003), Genetic Programming of Multi-

agent Systems in the RoboCup Domain, M.Sc 

thesis, Lund Institute of Technology, 2003. 

J. Certo, N. Lau, L.P. Reis (2007),  A generic multi-

robot coordination strategic layer, First 

International Conference on Robot 

Communication and Coordination. Athens, 

Greece, 2007. 

L. Reis and N. Lau (2001), Situation based strategic 

positioning for coordinating a team of 

homogeneous agents, Balancing Reactivity and 

Social Deliberation in Multi-Agent Systems, From 

RoboCup to Real-World Applications, 2001. 

Langner, K., Krislet 0.2 

(http://www.ida.liu.se/~frehe/RoboCup/Libs/Sourc

es/ Last accessed on September 3 , 2011). 

Santiago, C. B., & Reis, L. P. (2011). Foundations for 

Creating a Handball Sport Simulator. Information 

Systems and Technologies CISTI, 2011  

Y. Murakami, T. Ishida, T. Kawasoe, and R. Hishiyama 

(2003), Scenario description for multi-agent 

simulation, Proceedings of the AAMAS  ’03, pp. 

369-376, 2003. 

Y. Zhang (2005), Multi-agent systems: the Tao of 

Soccer , Tutorial presented at SFU Survey,March 

8th 2005. 

Zhang, B., Chen, X., Liu, G., & Cai, Q. (2000). Agent 

architecture: a survey on RoboCup-99 simulator 

teams. Proceedings of the 3rd World Congress on 

Intelligent Control and Automation (Cat. 

No.00EX393),1, 194-198. Ieee. 

doi:10.1109/WCICA.2000.859946Y. 

 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 209


