
USING GRAPHIC PROCESSORS FOR HIGHSPEED SIMULATIONS
AND OTHER HIGH PERFORMANCE COMPUTATIONS

Thomas Wiedemann (a)

(a) University of Applied Science Dresden

(a)wiedem@informatik.htw-dresden.de

ABSTRACT
Current hardware development is characterized by an
increasing number of multi-core processors. The
performance advantages of dual and quad core
processors have already been applied in high-speed
calculations of video streams and other multimedia
tasks. New options arise from the increasing power of
new graphic processors. They include up to 1600
shading processors, which can also be used for
universal computations at present. The paper discusses
possible applications of graphic processors in
simulation and other areas of high computation needs,
like FEM or flow-analysis. The implementation of
parallel threads on more than one core requires
substantial changes in the software structure, which are
only possible inside the source code. The paper also
introduces feasible architectures and compares the
CUDA and OpenCL approach.

Keywords: Grid computing, CUDA, OpenCL

1. INTRODUCTION
Since 2005, we have observed a quiet revolution in
hardware development – the performance of graphic
processor units (GPU) has been developing at a speed
leading to a ten times higher performance against
standard central processors (CPU) (see Fig. 1/from
(Kirk and Hwu 2010). But the development of CPU´s
has been slowing down since 2003 due to energy
consumption and heat-dissipation issues limiting a
further increase of clock frequency. As demonstrated in
Fig. 1, the performance of actual graphical processing
units (GPU´s) achieves 1000 GFlops, a value lying in
the range of older super computers. It is quite sure, that
this revolution will continue also in the next years as a
result of a very strong competition between the two
major players – AMD and NVIDIA.
 As a matter of fact, simulation science has already
searched for the highest feasible performance
(Wiedemann 2000). Otherwise, there exist completely
new hardware architectures and requirements (see 2.2).
The imple¬mentation of parallel threads on a large
number of cores leads to substantial changes in the
software structure. Changes like these are only feasible
inside the source code and cannot be executed with
COTS-simulation systems.

 As a conclusion, we may expect a new era of high
performance software development. This paper
introduces not only options and constraints of the new
hardware, but also the changes in the simulation
software resulting from
.

Figure 1: Performance chart ((Kirk and Hwu 2010))

The new hardware architecture of modern GPU´s was
primarily designed for high-end 3D-computer games. In
these games, the high quantity of processors is used for
parallel computing of high-quality images with fine-
grained textures and sophisticated rendering algorithms.
The first versions of such GPU´s were tailored to
special purposes and could not carry out universal
computations (Kirk and Hwu 2010). The current
versions are now capable of calculating common types
of algorithms with double precision.

Resulting from the orientation on graphic
algorithms, the hardware also follows a special
architecture. First the host system and the graphic
processor have separate memory and control areas.
Programs for the graphic processor must be compiled in
a special way and transferred to the graphic subsystem.
The memory bandwidth of the GPU is up to ten-fold
higher than the standard RAM memory of the host.

The GPU processor is divided into a number
(16…128) of computing blocks, whereby each block
consists of a grid of streaming core processors (cores).
The number of cores inside a block is not fixed, but can
be defined dynamically by the control program. High-
end GPU processors, like the ATI Radeon™ HD 5870,
are equipped with up to 1600 streaming cores.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 176

Figure 2: GPU architecture ((Kirk and Hwu 2010)

Memory organization is a significant limiting fact.

The fastest memory is the shared memory inside the
blocks. Only cores inside a block are able to
communicate upon shared memory and to synchronize
their work. Synchronization of cores between different
blocks is slow and poorly supported! These aspects
should be considered, when simulation scenarios are
evaluated. A second, much more critical constraint is
the single program multiple-data (SPMD) programming
model of GPU´s. This means, that inside a block, only
one program is executed over different areas of data. If
a program like this includes a branch, then the
alternative else-branch is performed after executing the
then-branch, which slows down execution at all. For
graphical applications with large data streams, like
encoding of videos or rendering complex 3D scenes,
this model is suitably adapted, since it reduces the
necessary ratio of logics inside the small processors.

If a complex program is executed, this
programming model must be considered carefully! An
approach is demonstrated on the following pages.

2. GPU´S IN UNIVERSAL COMPUTATIONS

2.1. General discussion of multi core applications

The main algorithms and mathematical foundations of
simulation systems are well defined and efficient
(Heusmann and Wiedewitsch 1995). Although the
software tools for continuous (CS) and discrete
simulation (DS) are very different, there exist two
general options for using parallel computing
environments.
First, the model itself is divided in smaller sub-models
and each sub-model is computed on one core. This
Parallel Simulation approach has been known for about
25 years (Perumalla 2006). As a result of the necessary
communication between the sub-models, this approach
is very complex.

During the last decade the possible speedup
degreed. The main reason is the nearly constant

communication speed and increasing computation
performance. The communication speed of standard
parallel computers is limited by the simple
pheno¬menon of distance between the computing cores.
Let us assume a distance of 30 cm, only, than it takes
the signal at light speed about 1ns (t=s/v=0.3m/3*10e-8
m/s), lying in the range of 3 periods of a 3 GHz
processor. Additional delays occur by the electronics’
latencies themselves. In summary, the resulting
speedup of parallel computation can decrease (fall
down?) to 2 or even below 1 on multi-core machines,
when the models are not suitably distributed on the
cores. However, the new hardware architecture of
GPU´s may improve this situation again: First, by
smaller distances of the core inside the chip die (<2mm)
and second, by optimized synchronization hardware
inside the same chip.

The second approach uses each core for computing
exactly one simulation model, which is also known as
Hyper Computing (Perumalla 2006). The larger number
of cores is used for calculating the models n-time, e.g.
by applying different random number seeds. Speeding
up of such computations is nearly equal to the number
of the cores and could be guaranteed in practice.

From a practice point of view, the Hyper
computing approach is very interesting and to be used
easily, if we leave the single simulation view and look
on the whole simulation process. Nearly all larger
simulation studies must consider random numbers
inside the model or different input data scenarios. For
statistical correctness, over 20 or more simulation runs
must be executed for getting significant results. If there
are different input data sets – Ndatasets, this number
can be multiplied by the number of simulation runs
Nruns, since all runs are independent one from each
other and can be computed simultaneously. As a
conclusion, running Ndatasets * Nruns , we obtain
Ndatasets statis¬tical significant results over all data
input sets.

If there are no different input scenarios, than
Ndatasets runs could be used for making a sensitive
test, which provides significant information about the
quality of simulation variables used.

2.2. Performance considerations in Hyper

Computing

Against the background of the new GPU architecture, it
makes sense to subdivide calculations into two different
classes. Typical graphical computations are also
subdivided into different computation classes, like
transforming, rendering and shading of 3D objects with
textures. The resulting GPU architecture (see Figures 2
and 1.2) provides an adequate support to different
computing groups.
Let us assume that the simulation models only differ in
their specific random numbers, whereas input data and
computation are always the same. This is true for a
large number of continuous simulations, but only a
small number of discrete event simulations.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 177

Concludingly, a set of Ndatasets can be computed with
Nruns each, whereby each block of Nruns computes one
significant result for one of the datasets.
 Since the maximum number of Ndatasets * Nruns
is 512, a definition of Nrun =32 runs and Ndatasets =
16 data sets is a good practical combination.

Figure 2: Hyper computing scenarios

If such a combination of variance and sensitive

computation is realized, than the possible speedup can
be the number of parallel running cores, in this case up
to 512! This speedup does not depend on special
methods of disaggregation of complex simulation
models. The method can be adapted easily to new
hardware characteristics, e.g. if the limit of 512
computing units in a block is extended (up to 1024 or
more?) in the next years.

2.3. Typical scenarios for independent and equal

simulation runs in a Hyper Computing context

In the field of continuous simulation, all formulae
must be equal and only differ in the vector index of the
input data and the index of the random number
generator:
 dv/dt = f(a(idx), vstart(idx), rand(idx))
The value of the idx-variable is equal to the blockidx-
value of the core inside the block. The blockidx is
automatically determined by the host program at the
start of the parallel runs and counts all the used cores
from 1 to N.
In the example, each run may have different values for
acceleration a, the initial speed vstart and the random
values of the motion, like wind or engine
characteristics. Like mentioned before in chapter 2.2,
additional cores can be used for calculating sensitive
tests or different data input sets.
A similar formula may be used for Monte-Carlo-
simulations (MC) (e.g. for determining ∏) :
 for (int i=1; i<= experiments; i++)
 { x = rand1(blockidx); y = rand2(blockidx);
 r_testPI = x * x + y * y;
 if (fabs(r_testPI) < Radius) hit++;
 } PI = hit / experiments * 4; // get PI by MC

The rand1() and rand2() are typical random number
generators, where the seed and current value are stored
in a vector, referenced by the blockidx-value again. For
both applications, speedup may grow up to the number
of cores used in parallel.

2.4. Parallel execution in discrete simulation

Application of GPU´s in the discrete event simulation is
much more difficult. In general, the objects are very
different in their characteristics, and thus code
execution is not equal, which, in turn, slows down
execution speed in the context of the single program
multiple-data (SPMD) programming model.
One special option is possible, if the simulation model
consists of objects with nearly identical characteristics
and an equal schedule sequence (e.g. each minute a
customer is served or nothing is done)! Such a code for
one object of some hundreds of objects could be
described by the following expression:

 while (running)
 { if (mynext_time > simtime)
 // do nothing
 else { /* do actions */
 p= getnextproduct(blockidx);
 optime = workon_product(p);
 mynext_time = simtime +optime;
 } _syncthreads(); // wait for the other …
 }
In any case, the two branch sections then { } and else {}
are executed in sequence and not in parallel, but the first
section does nothing and the loss of speed is minimal.
The functions getnextproduct() and workonproduct()
should execute the same code, only depending from the
blockidx-value of the core, which corresponds to the
number of the machine in the simulation model.
Of course, this approach is limited by the restrictions of
the single program multiple-data (SPMD) programming
model. Much more complex discrete simulation models
must be executed on different cores in result of their
heterogeneous code, but the number of such cores is not
so high. Future work on the hardware will give new
opportunities also for discrete simulation in this area.

2.5. Using GPU´s for high-performance applications

All the discussed scenarios for the different simulation
methods are valid also for other computations in the
CAD/CAM area. Like in simulation, the GPU can be
used in two different modes:
- If the data or computation model is distributed in

space and the computation algorithms are the same
with different parameters, the GPU cores can run in
parallel over a distributed model.

- If the data or model is not distributed, the cores
could be used for equal runs with changing
experiment parameters. For example, a complex
CAD or CAM calculation could be done for
different levels of external temperature or
mechanical stress.

Mixed modes of the two options are also possible!

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 178

2.6. Optimization with GPU´s

A third level of parallelization is possible by using
optimization techniques. The approach from chapter 1.3
-1.5 can be extended by using the results of the basic
runs in an optimization method with independent
points, like the Monte-Carlo optimization method or
genetic algorithms.
On the GPU stream cores, a method like this would be
distributed in the following way:

• One single optimization point is calculated by
16 or 32 cores inside one block.

• 32 or 16 blocks are used for getting the points
for 32 or 16 individuals in the search space.

• One additional block works as an optimization
control block and collects all the points and
calculates the next generation of individuals.

If there are more blocks available, the whole
optimization run can be started for a second or third
time with different starting values for using all
computing cores.
Let us assume that there are 32 runs executed for each
of the 16 individuals. With this assumption, we provide
the maximum number of 512 cores on a computing unit.
But if there are 1600 cores in a high performance GPU
like the ATI HD 5870, we can perform three runs of
these optimizations, providing a total speedup of 1500.

2.7. Conclusion

Consequently, it is easier and much more flexible to use
a Hyper computing approach. The major limiting factor
is the single program multiple-data (SPMD)
programming model inside the blocks, which defines
some constraints on the bandwidth of code.

3. PREREQUISITES AND FUTURE

DEVELOPMENT

The GPU hardware is supported by special API´s and
C-style programming libraries. Both companies, AMD
and Nvidia, provide special software drivers and
programming environments (Nvidia 2012) (OpenCL
2012) (OpenAcc 2012).

3.1. CUDA, OpenCL and OpenAcc

In 1999, Nvidia invented the GPU-multicore
architecture and supported/ supports the hardware with
its proprietary CUDA technology (Nvidia 2012). AMD
and its subdivision ATI assist the own hardware and
also the Nvidia hardware with the open and non-
proprietary OpenCL technology (OpenCL 2012). A
third option is available since 2012 – the OpenAcc-
interface (OpenAcc 2012) .
Until summer 2012, the final result of this competition
has still been open:

• Nvidia´s CUDA is more efficient and easier to
use on the Nvidia GPU´s.

• The OpenCL is much more flexible, but
requires more development efforts. OpenCl
can be executed also on multi- core CPU´s.

• OpenAcc is only an extension of C-compilers
and tries to generate automatic code for the
GPU from standard C-code. The performance
will be lower in most cases, but the ease of use
will be higher compared to CUDA and
OpenCL.

From the author’s point of view, the final result will
mainly depend on the OpenCL and OpenAcc
development.

3.2. New hardware opportunities

New hardware from Nvidia, based on the next-
generation CUDA architecture codenamed “Fermi”
brings the performance of a small supercomputing
cluster to the desktop. Compared to a Cray-1 from
1980 with 150 MFlops and a price of about 8 Mio $ one
card now offers 480 GFlops for a price of a desktop PC.
Up to 4 cards can be combined in a PC, which offers a
peak performance of nearly 2 Terraflops. The future
development of the hardware will continue and the
results will be very interesting for all areas of high
speed computing !

3.3. Final summary

The new GPU architectures are very promising for
applications with a high demand of computation for a
low price. Practical results are feasible and will show
speedup´s of some hundreds at a very interesting price,
compared with traditional parallel computers.

REFERENCES

Kirk D., Hwu W. 2010. Programming Massively

Parallel Processors: A Hands-On Approach

Heusmann J., Wiedewitsch J. 1995. "Future Directions
of Modeling and Simulation in the Department of
Defense", Proc. of the SCSC'95, Ottawa, Canada

Wiedemann, T., 2000. VisualSLX – an open user shell
for high-performance modeling and simulation,
Proceedings of the 2000 Winter Simulation
Conference, Orlando Florida

Perumalla K., 2006 “Parallel and Distributed
Simulation: Traditional Techniques and Recent
Advances”. Proceedings of the 2006 Winter
Simulation Conference

Nvidia 2012. available from developer.nvidia.com/
 [Accessed 15.7.12]

OpenCL 2012 available from www.khronos.org/opencl/
[Accessed 15.7.12]

OpenAcc 2012 available from www.openacc.org/
[Accessed 15.7.12]

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 179

