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ABSTRACT 
Current hardware development is characterized by an 
increasing number of multi-core processors.  The 
performance advantages of dual and quad core 
processors have already been applied in high-speed 
calculations of video streams and other multimedia 
tasks. New options arise from the increasing power of 
new graphic processors.  They include up to 1600 
shading processors, which can also be used for 
universal computations at present. The paper discusses 
possible applications of graphic processors in 
simulation and other areas of high computation needs, 
like FEM or flow-analysis. The implementation of 
parallel threads on more than one core requires 
substantial changes in the software structure, which are 
only possible inside the source code. The paper also 
introduces feasible architectures and compares the 
CUDA and OpenCL approach. 
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1. INTRODUCTION 
Since 2005, we have observed a quiet revolution in 
hardware development – the performance of graphic 
processor units (GPU) has been developing at a speed 
leading to a ten times higher performance against 
standard central processors (CPU) (see Fig. 1/from 
(Kirk and Hwu 2010). But the development of CPU´s 
has been slowing down since 2003 due to energy 
consumption and heat-dissipation issues limiting a 
further increase of clock frequency. As demonstrated in 
Fig. 1, the performance of actual graphical processing 
units (GPU´s) achieves 1000 GFlops, a value lying in 
the range of older super computers. It is quite sure, that 
this revolution will continue also in the next years as a 
result of a very strong competition between the two 
major players – AMD and NVIDIA. 
 As a matter of fact, simulation science has already 
searched for the highest feasible performance 
(Wiedemann 2000). Otherwise, there exist completely 
new hardware architectures and requirements (see 2.2). 
The imple¬mentation of parallel threads on a large 
number of cores leads to substantial changes in the 
software structure. Changes like these are only feasible 
inside the source code and cannot be executed with 
COTS-simulation systems. 

 As a conclusion, we may expect a new era of high 
performance software development. This paper 
introduces not only options and constraints of the new 
hardware, but also the changes in the simulation 
software resulting from 
. 

 
 

Figure 1: Performance chart ((Kirk and Hwu 2010)) 
 

 
The new hardware architecture of modern GPU´s was 
primarily designed for high-end 3D-computer games. In 
these games, the high quantity of processors is used for 
parallel computing of high-quality images with fine-
grained textures and sophisticated rendering algorithms. 
The first versions of such GPU´s were tailored to 
special purposes and could not carry out universal 
computations (Kirk and Hwu 2010). The current 
versions are now capable of calculating common types 
of algorithms with double precision.   

Resulting from the orientation on graphic 
algorithms, the hardware also follows a special 
architecture.  First the host system and the graphic 
processor have separate memory and control areas. 
Programs for the graphic processor must be compiled in 
a special way and transferred to the graphic subsystem. 
The memory bandwidth of the GPU is up to ten-fold 
higher than the standard RAM memory of the host.  

The GPU processor is divided into a number 
(16…128) of computing blocks, whereby each block 
consists of a grid of streaming core processors (cores). 
The number of cores inside a block is not fixed, but can 
be defined dynamically by the control program. High-
end GPU processors, like the ATI Radeon™ HD 5870, 
are equipped with up to 1600 streaming cores.  
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Figure 2: GPU architecture ((Kirk and Hwu 2010) 

 
Memory organization is a significant limiting fact. 

The fastest memory is the shared memory inside the 
blocks. Only cores inside a block are able to 
communicate upon shared memory and to synchronize 
their work. Synchronization of cores between different 
blocks is slow and poorly supported!  These aspects 
should be considered, when simulation scenarios are 
evaluated. A second, much more critical constraint is 
the single program multiple-data (SPMD) programming 
model of GPU´s. This means, that inside a block, only 
one program is executed over different areas of data. If 
a program like this includes a branch, then the 
alternative else-branch is performed after executing the 
then-branch, which slows down execution at all. For 
graphical applications with large data streams, like 
encoding of videos or rendering complex 3D scenes, 
this model is suitably adapted, since it reduces the 
necessary ratio of logics inside the small processors.  

If a complex program is executed, this 
programming model must be considered carefully! An 
approach is demonstrated on the following pages. 

 
2.  GPU´S IN UNIVERSAL COMPUTATIONS 

 
2.1. General discussion of multi core applications 

The main algorithms and mathematical foundations of 
simulation systems are well defined and efficient 
(Heusmann and Wiedewitsch 1995). Although the 
software tools for continuous (CS) and discrete 
simulation (DS) are very different, there exist two 
general options for using parallel computing 
environments.  
First, the model itself is divided in smaller sub-models 
and each sub-model is computed on one core. This 
Parallel Simulation approach has been known for about 
25 years (Perumalla 2006). As a result of the necessary 
communication between the sub-models, this approach 
is very complex.  

During the last decade the possible speedup 
degreed. The main reason is the nearly constant 

communication speed and increasing computation 
performance. The communication speed of standard 
parallel computers is limited by the simple 
pheno¬menon of distance between the computing cores. 
Let us assume a distance of 30 cm, only, than it takes 
the signal at light speed about 1ns (t=s/v=0.3m/3*10e-8 
m/s), lying in the range of 3 periods of a 3 GHz 
processor. Additional delays occur by the electronics’ 
latencies themselves.  In summary, the resulting 
speedup of parallel computation can decrease (fall 
down?) to 2 or even below 1 on multi-core machines, 
when the models are not suitably distributed on the 
cores. However, the new hardware architecture of 
GPU´s may improve this situation again: First, by 
smaller distances of the core inside the chip die (<2mm) 
and second, by optimized synchronization hardware 
inside the same chip.  

The second approach uses each core for computing 
exactly one simulation model, which is also known as 
Hyper Computing (Perumalla 2006). The larger number 
of cores is used for calculating the models n-time, e.g. 
by applying different random number seeds. Speeding 
up of such computations is nearly equal to the number 
of the cores and could be guaranteed in practice.  

From a practice point of view, the Hyper 
computing approach is very interesting and to be used 
easily, if we leave the single simulation view and look 
on the whole simulation process.  Nearly all larger 
simulation studies must consider random numbers 
inside the model or different input data scenarios. For 
statistical correctness, over 20 or more simulation runs 
must be executed for getting significant results.  If there 
are different input data sets – Ndatasets, this number 
can be multiplied by the number of simulation runs 
Nruns, since all runs are independent one from each 
other and can be computed simultaneously. As a 
conclusion, running Ndatasets * Nruns , we obtain 
Ndatasets statis¬tical significant results over all data 
input sets.   

If there are no different input scenarios, than 
Ndatasets  runs could be used for making a sensitive 
test, which provides significant information about the 
quality of simulation variables used. 

 
2.2. Performance considerations in Hyper 

Computing 
 

Against the background of the new GPU architecture, it 
makes sense to subdivide calculations into two different 
classes. Typical graphical computations are also 
subdivided into different computation classes, like 
transforming, rendering and shading of 3D objects with 
textures. The resulting GPU architecture (see Figures 2 
and 1.2) provides an adequate support to different 
computing groups.  
Let us assume that the simulation models only differ in 
their specific random numbers, whereas input data and 
computation are always the same. This is true for a 
large number of continuous simulations, but only a 
small number of discrete event simulations. 
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Concludingly, a set of Ndatasets can be computed with 
Nruns each, whereby each block of Nruns computes one 
significant result for one of the datasets. 
 Since the maximum number of  Ndatasets * Nruns 
is 512, a definition of  Nrun =32 runs and Ndatasets = 
16 data sets is a good practical combination. 

 
 

Figure 2: Hyper computing scenarios 
 
If such a combination of variance and sensitive 

computation is realized, than the possible speedup can 
be the number of parallel running cores, in this case up 
to 512! This speedup does not depend on special 
methods of disaggregation of complex simulation 
models.  The method can be adapted easily to new 
hardware characteristics, e.g. if the limit of 512 
computing units in a block is extended (up to 1024 or 
more?)  in the next years. 

 
2.3. Typical scenarios for independent and equal 

simulation runs in a Hyper Computing context  
 

In the field of continuous simulation, all formulae 
must be equal and only differ in the vector index of the 
input data and the index of the random number 
generator:  
     dv/dt =  f(  a(idx), vstart(idx), rand(idx) )         
The value of the idx-variable is equal to the blockidx-
value of the core inside the block. The blockidx is 
automatically determined by the host program at the 
start of the parallel runs and counts all the used cores 
from 1 to N.  
In the example, each run may have different values for 
acceleration a, the initial speed vstart and the random 
values of the motion, like wind or engine 
characteristics. Like mentioned before in chapter 2.2, 
additional cores can be used for calculating sensitive 
tests or different data input sets. 
A similar formula may be used for Monte-Carlo-
simulations (MC) (e.g. for determining ∏ ) :  
    for (int i=1; i<= experiments; i++)  
    {  x =  rand1(blockidx);  y = rand2(blockidx);  
        r_testPI =  x * x  +  y * y; 
        if (  fabs(r_testPI) <  Radius)     hit++;  
    }   PI = hit / experiments * 4; // get PI by MC  

The rand1() and rand2() are typical random number 
generators, where the seed and current value are stored 
in a vector, referenced by the blockidx-value again. For 
both applications, speedup may grow up to the number 
of cores used in parallel.  

2.4. Parallel execution in discrete simulation 

Application of GPU´s in the discrete event simulation is 
much more difficult. In general, the objects are very 
different in their characteristics, and thus code 
execution is not equal, which, in turn, slows down 
execution speed in the context of the single program 
multiple-data (SPMD) programming model. 
One special option is possible, if the simulation model 
consists of objects with nearly identical characteristics 
and an equal schedule sequence (e.g. each minute a 
customer is served or nothing is done)! Such a code for 
one object of some hundreds of objects could be 
described by the following expression:  
 
        while (  running ) 
        { if  ( mynext_time >  simtime) 
              //  do nothing  
              else  {    /* do  actions  */   
  p= getnextproduct(blockidx); 
              optime = workon_product(p);  
              mynext_time = simtime +optime; 
          }  _syncthreads(); // wait for the other …  
 } 
In any case, the two branch sections then { } and else {}  
are executed in sequence and not in parallel, but the first 
section does nothing and  the loss of speed is minimal. 
The functions getnextproduct() and workonproduct() 
should execute the same code, only depending from the 
blockidx-value of the core, which corresponds to the 
number of the machine in the simulation model. 
Of course, this approach is limited by the restrictions of 
the single program multiple-data (SPMD) programming 
model. Much more complex discrete simulation models 
must be executed on different cores in result of their 
heterogeneous code, but the number of such cores is not 
so high.  Future work on the hardware will give new 
opportunities also for discrete simulation in this area.  

2.5. Using GPU´s for high-performance applications  

All the discussed scenarios for the different simulation 
methods are valid also for other computations in the 
CAD/CAM area. Like in simulation, the GPU can be 
used in two different modes: 
- If the data or computation model is distributed in 

space and the computation algorithms are the same 
with different parameters, the GPU cores can run in 
parallel over a distributed model. 

- If the data or model is not distributed, the cores 
could be used for equal runs with changing 
experiment parameters. For example, a complex 
CAD or CAM calculation could be done for 
different levels of external temperature or 
mechanical stress.  

Mixed modes of the two options are also possible! 
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2.6. Optimization with GPU´s  

A third level of parallelization is possible by using 
optimization techniques. The approach from chapter 1.3 
-1.5 can be extended by using the results of the basic 
runs in an optimization method with independent 
points, like the Monte-Carlo optimization method or 
genetic algorithms.  
On the GPU stream cores, a method like this would be 
distributed in the following way:  

• One single optimization point is calculated by 
16 or 32 cores inside one block.  

• 32 or 16 blocks are used for getting the points 
for 32 or 16 individuals in the search space. 

• One additional block works as an optimization 
control block and collects all the points and 
calculates the next generation of individuals. 

If there are more blocks available, the whole 
optimization run can be started for a second or third 
time with different starting values for using all 
computing cores. 
Let us assume that there are 32 runs executed for each 
of the 16 individuals.  With this assumption, we provide 
the maximum number of 512 cores on a computing unit. 
But if there are 1600 cores in a high performance GPU 
like the ATI HD 5870, we can perform three runs of 
these optimizations, providing a total speedup of 1500.  

2.7. Conclusion  

Consequently, it is easier and much more flexible to use 
a Hyper computing approach.  The major limiting factor 
is the single program multiple-data (SPMD) 
programming model inside the blocks, which defines 
some constraints on the bandwidth of code.  

 
3. PREREQUISITES AND FUTURE 

DEVELOPMENT  
 

The GPU hardware is supported by special API´s and 
C-style programming libraries. Both companies, AMD 
and Nvidia, provide special software drivers and 
programming environments (Nvidia 2012) (OpenCL 
2012) (OpenAcc 2012 ).   

3.1. CUDA, OpenCL and OpenAcc 

In 1999, Nvidia invented the GPU-multicore 
architecture and supported/ supports the hardware with 
its proprietary CUDA technology (Nvidia  2012). AMD 
and its subdivision ATI assist the own hardware and 
also the Nvidia hardware with the open and non-
proprietary OpenCL technology (OpenCL 2012). A 
third option is available since 2012 – the OpenAcc-
interface (OpenAcc 2012) .  
Until summer 2012, the final result of this competition 
has still been open:  

• Nvidia´s CUDA is more efficient and easier to 
use on the Nvidia GPU´s. 

• The OpenCL is much more flexible, but 
requires more development efforts. OpenCl 
can be executed also on multi- core CPU´s. 

• OpenAcc is only an extension of C-compilers 
and tries to generate automatic code for the 
GPU from standard C-code. The performance 
will be lower in most cases, but the ease of use 
will be higher compared to CUDA and 
OpenCL. 

From the author’s point of view, the final result will 
mainly depend on the OpenCL and OpenAcc 
development.  

3.2. New hardware opportunities  

New hardware from Nvidia, based on the next-
generation CUDA architecture codenamed “Fermi” 
brings the performance of a small supercomputing 
cluster to the desktop.  Compared to a Cray-1 from 
1980 with 150 MFlops and a price of about 8 Mio $ one 
card now offers 480 GFlops for a price of a desktop PC.  
Up to 4 cards can be combined in a PC, which offers a 
peak performance of nearly 2 Terraflops. The future 
development of the hardware will continue and the 
results will be very interesting for all areas of high 
speed computing !  

3.3. Final summary  

The new GPU architectures are very promising for 
applications with a high demand of computation for a 
low price. Practical results are feasible and will show 
speedup´s of some hundreds at a very interesting price, 
compared with traditional parallel computers.  
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