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ABSTRACT 
The main purpose of this paper is to discuss how a 
Bayesian framework is appropriate to incorporate the 
uncertainty on the parameters of the model that is used 
for demand forecasting. We first present a general 
Bayesian framework that allows us to consider a 
complex model for forecasting. Using this framework 
we specialize (for simplicity) in the continuous-review 
( )RQ,  system to illustrate how the main performance 
measures that are required for inventory management 
can be estimated from the output of simulation 
experiments. We discuss the use of sampling from the 
posterior distribution (SPD) and show that, under 
suitable regularity conditions, the estimators obtained 
from SPD satisfy a corresponding Central Limit 
Theorem, so that they are consistent, and the accuracy 
of each estimator can be assessed by computing an 
asymptotically valid halfwidth from the output of the 
simulation experiments.  

 
Keywords: inventory simulation, reorder points, para-
meter uncertainty, output analysis 

 
1. INTRODUCTION 
Most of the proposed techniques to compute service 
levels and reorder points assume that the parameters of 
the model that is used for demand forecasting are 
known with certainty (see, e.g., Nahmias 2008). 
However in practice, parameters are estimated from 
available information (data and/or expert judgment), 
and there exists a certain degree of uncertainty in the 
value of these parameters. In this article, we use a 
Bayesian framework that allows us to incorporate 
parameter uncertainty that is induced from the 
estimation procedure. This framework is particularly 
useful when using a complex model for demand 
forecasting, in the sense that analytical expressions to 
obtain service levels and/or reorder points may not be 
available, so that the application of estimation 
procedures based on stochastic simulation is 
recommended.  

Although it is not our intention to review the 
abundant literature on inventory simulation (see 
Jahangirian et al. 2010 for a recent survey), we mention 
that simulation has been extensively used to analyze 
inventory policies in a supply chain (see Tako and 

Robinson 2012 for a recent survey). Simulation has also 
been used as a tool to compare different forecasting 
procedures for inventory management (see, e.g., 
Syntetos et al. 2009, Bartezzaghi et al. 1999). 
Furthermore, simulation-based methodologies such as 
importance sampling (see, e.g., Glasserman and Liu 
1996) and simulation optimization (see, e.g., Fu 2002) 
have been applied to inventory models. However, to the 
best of our knowledge, parameter uncertainty has not 
been considered in the related bibliography.  
 The Bayesian approach described in this article 
allows us to incorporate parameter uncertainty through 
a probability distribution, and it is in the spirit of the 
approach described, e.g., in Chick (2001) and Bermúdez 
et al. (2010), where the authors discuss the 
incorporation of parameter uncertainty in a forecasting 
model using stochastic simulation. In this article, we 
show how this approach can be extended to the 
estimation of Bayesian reorder points, and our main 
contribution is the development of a Central Limit 
Theorem (CLT) for each of the proposed point 
estimators. As is well known in the simulation 
literature, a CLT for an estimator allows us to construct 
an asymptotic confidence interval (ACI) to assess the 
accuracy of the point estimator obtained using 
simulation. We extend the results of Muñoz and 
Galindo (2010) to include the estimation of three 
measures of service level and corresponding reorder 
points. 
 The remainder of this article is organized as 
follows. In Section 2 we present a Bayesian framework 
under which performance measures for inventory 
management can be precisely defined, we illustrate the 
derivation of performance measures under this 
framework by considering the continuous-review 
( )RQ,  system. In Section 3 we discuss how SPD can be 
used to estimate the performance measures defined in 
Section 2 as well as to assess the accuracy of the point 
estimators. Finally, in Section 4 we provide a simple 
example to illustrate our Bayesian Framework.  
 
2. THEORETICAL FRAMEWORK 

 
2.1. Notation and Model Assumptions 
We assume that ( )( )Θ≤≤= ;0, TssYgW  is the 
demand for an item, where ( ){ }Θ≥= ;0,ssYY  is a 
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stochastic process (possibly multivariate), T  is a 
stopping time that represents the planning horizon, and 
Θ  is a vector of parameters. This notation is general 
enough to include most forecasting models that are used 
in practice (e.g., ARIMA and regressions), and in 
particular, a discrete-time stochastic process can be 
incorporated into this framework by setting 
( ) ⎣ ⎦( )sYsY =  (where ⎣ ⎦s  denotes the integer part of   

s ).  
 

 
Figure 1: Main Steps to Compute Performance 
Measures for Inventory Management 

 
 A Bayesian approach for inventory management is 
summarized in two steps, as illustrated in Figure 1. In 
the first step parameter uncertainty is assessed by 
constructing the posterior density  ( )xp θ  from the 
available data x  and a prior density ( )θp . In the 
second step ( )( )Θ≤≤= ;0, TssYgW  and the posterior 
density ( )xp θ  are used to compute the performance 
measures that are required for inventory management.  
Input data on the model parameters is available through 
a vector of observations dx ℜ∈  that satisfies a 
likelihood function ( )θxL . If ( )θp  is a prior density 
function for the vector of parameters Θ , then the 
posterior (given the data x ) density function of Θ  
becomes 
 

( ) ( ) ( )
( ) ( )∫

=
0S dxLp

xLp
xp

θθθ
θθ

θ ,  (1) 

 
for dx ℜ∈  and 0S∈θ .   

Note that we can consider an input dx ℜ∈  with 
correlated data, and for the special case where 

( )nxxx ,,1 K=  is a set of observations of a random 
sample ( )nXXX ,,1 K=  from a density func-

tion ( )θyf , the likelihood function takes the form of  
 
( ) ( ) ( ) ( )θθθθ nxfxfxfxL K21= . (2) 

  
The prior density ( )θp  reflects the initial uncertainty on 
the vector of parameters Θ , and there are essentially 

two points of view to proposing a prior density ( )θp . 
The first approach consists of using a non-informative 
prior, which is appropriate when we wish to consider a 
prior density that does not “favor” any possible value of 
Θ  over others. This can be considered as an 
“objective” point of view (for a discussion on this 
subject see, e.g., Berger et al. 2008). The second 
approach is a “subjective” point of view, and consists in 
the establishment of a prior density based on expert 
judgment.  
 
2.2. Performance Measures for Inventory 

Management 
Although our previous notation can be useful to 
consider different inventory control policies, multi-item 
and/or multi-period systems, a definition of the 
appropriate performance measures for inventory 
management may be problem-dependent, and this is 
why we restrict our discussion to a single-item, single-
period inventory system subject to a continuous-review 
( )RQ,  policy. We set ** LTT += , where *T  is the 
time at which the inventory level reaches the reorder 
point R , and *L  is the (possibly random) lead time for 
an order. A suitable definition for the output process is 
( ) =sY  cumulative demand of the single item on the 

interval [ ]s,0 , so that ( ) ( )*TYTYW +=  is the demand 
during the lead time. 
 In general, a forecast for demand W  is completely 
defined by its cumulative distribution function (c.d.f.) 
( ) [ ]xXwWPwF =≤= , which allows us to define the 

following important performance measures for 
inventory management. The expected demand 

 

[ ] ( )∫
∞=== 0 yydFxXWE

def
μ   (3) 
 
is usually regarded as the point forecast. We assume 
that demand W  is non-negative (i.e., ( ) 0=wF  for 

0<w ). Note that, although F  or μ  might depend on 
x , in order to simplify the notation, we denote (on 
purpose) F  or μ  not depending on x , and remark that 
the results of Section 3 can also be applied to the case 
where parameter uncertainty is not considered. 
 A performance measure that is of practical 
importance in inventory management is the probability 
of no stock-out  

 

( ) [ ] ( )RFxXRWPR
def

==≤=1α ,   (4) 
 
where 0≥R . Thus, we say that the type-1 service level 
(T1SL) corresponding to a reorder point 0≥R  is 

( )%100 1 Rα , and given 10 <<α , a reorder point for a 
%100α  T1SL is defined as 

( ) ( ){ }ααα ≥≥= RRr
def

11 :0inf ,   (5) 
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where ( )R1α  is defined in (4). 
 Another measure of service is the proportion of 
demands that are met from stock, 

 

( )
( ) ( )

Q
ydFRy

R R
def ∫

∞ −
−= 12α ,   (6) 

 
where 0≥R , and 0>Q . We say that the type-2 
service level (T2SL) corresponding to a reorder point 

0≥R  is ( )%100 2 Rα , and given 10 <<α , a reorder 
point for a %100α  T2SL is defined as 

 

( ) ( ){ }ααα ≥≥= RRr
def

22 :0inf ,   (7) 
 
where ( )R2α  is defined in (6). According to Nahmias 
(2008), the term “fill rate” is often used to describe 
T2SL, and is generally what most managers mean by 
service. 
 Finally, note that T1SL considers the probability of 
stock-out only during the lead time, so that we might 
also consider a measure of fill rate during the lead time, 

 

( )
( ) ( )

μ
α ∫

∞ −
−= R

def ydFRy
R 13 ,   (8) 

 
where 0>μ  is defined in (3). Similarly, we say that the 
type-3 service level (T3SL) corresponding to a reorder 
point 0≥R  is ( )%100 3 Rα , and given 10 <<α , a 
reorder point for a %100α  T3SL is defined as 

 

( ) ( ){ }ααα ≥≥= RRr
def

33 :0inf ,   (9) 
 
where ( )R2α  is defined in (8). 
 When analytical expressions for the performance 
measures defined in this section cannot be obtained (or 
they are too complicated), simulation can be applied to 
estimate these parameters, as we explain in the next 
Section. 

 
3. ESTIMATION USING SIMULATION 
As illustrated in Figure 2, under the SPD algorithm we 
first sample from the posterior density ( )xp θ  to obtain 
independent and identically distributed (i.i.d.) 
observations of the uncertain parameter Θ  (given the 
data x ),  and then we simulate demand W  to estimate 
μ , ( )Riα  and ( )αir , by μ̂ , ( )Riα̂  and ( )αir̂ , 3,2,1=i , 
respectively. The algorithm of Figure 2 is based on the 
algorithm proposed in Chick (2001) for the estimation 
of μ , and we also show how to produce consistent 
estimators for ( )Riα  and ( )αir , 3,2,1=i . Furthermore, 

each of the point estimators defined in Figure 2 satisfies 
a corresponding CLT, as we explain below.   

For the sake of completeness, we first show, using 
the case of the estimation of μ , how an ACI is obtained 
from a CLT. As is well known from the standard CLT, 
when [ ] ∞<= xXWE 2

1   we have 
 
( ) ( )1,0

ˆ2/1
Nm

W
⇒

−
σ

μμ ,  (10) 

where “⇒ ” denotes weak converge (as ∞→m ), 
( )1,0N  is a standard normal distribution, and 2

Wσ  is the 
variance of 1W  (given the data x , i.e., 

[ ] 22
1

2 μσσ −== xXEW . Also, from a Weak Law of 
Large Numbers we also know that 1/ ⇒WWS σ , 
where  

( )
2

1

1

1

22/11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑∑

=

−

=

− m

j
j

m

j
jW WmWmS  

is the sample standard deviation, so that it follows from 
(10) and a converging together argument that 

( ) ( )1,0
ˆ2/1

N
S

m

W
⇒

− μμ , and the interval  

[ ]WWm SmzSmzI 2/12/1 ˆ,ˆ −− +−= ββ μμ   
tends (as ∞→m ) to cover the parameter μ  with 
probability ( )β−1 , where 10 << β  is a given constant 
and ( )[ ] 2/11,0 ββ −=< zNP . The interval mI  is 
called a ( )%1100 β−  ACI for μ , and the corresponding 
halfwidth 

 

WSmzH 2/1
ˆ

−= βμ ,  (11) 
 
is used in the simulation literature to assess the accuracy 
of μ̂  as an estimator of parameter μ . Similarly, 

( ) [ ]xXVER == 111α , and ( ) [ ]xXVER == 212α , where 

[ ]RWIV ≤= 111  and ( ) [ ]RWIRWQV >−−= −
11

1
21 1 , so 

that CLT’s for ( )R1α̂  and ( )R2α̂  are easily obtained 
from the standard CLT, and the halfwidths 
corresponding to a ( )%1100 β−  ACI for ( )Riα , 2,1=i  
are given by 

 

( ) iR SmzH
i

2/1
ˆ

−= βα ,   (12) 

where ( ) ( )21
1

1
22/11 ∑∑ =

−
=

− −−= m
j ij

m
j iji VmVmS , 

[ ]RWIV jj ≤=1 , ( ) [ ]RWIRWQV jjj >−−= −1
2 1 , for 

2,1=i , mj ,,1K= , and the jW ’s are defined in Figure 
2. 

Finally, note that ( ) μμα /13 RR −= , where 
{ }[ ]xXRWER =−= 1,0maxμ , so that a CLT for 
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( )R3α̂  can be obtained by applying the Delta method 
(see, e.g., Lemma 1 of Muñoz and Glynn 1997), and the 
halfwidth corresponding to a ( )%1100 β−  ACI for 

( )R3α  is given by 
 

( ) 3
2/1

ˆ
3

SmzH R
−= βα ,  (13) 

where ( ) ( ) 22
33

2
3

1
3 ˆˆˆˆ2ˆ

3 WWV SSSS μμμμμ −+−−= − , 

∑ =
−= m

j jVm 1 3
1

3μ̂ , { }RWV jj −= ,0max3 , ,,,1 mj K=  

( ) ( ),ˆ1 2
31

2
3

12
3 μmVmS m

j j −−= ∑ =
−  and 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑

=

−
3

1
3

1 ˆˆ1
3

μμmVWmS
m

j
jjWV . 

 
When W is discrete, the value of a reorder point 

can be investigated from the estimation of the 
corresponding service levels ( )Riα  for different values 
of R , and thus we assume that W is continuous when 
discussing how to compute a halfwidth for a reorder 
point. In particular, for the estimation of ( )α1r , we 
assume that F  is differentiable at ( )α1r  with 

( )( ) 01 >′ αrF , so that it follows from Bahadur’s 
representation for quantiles (Bahadur 1966) that ( )α1̂r  
satisfies a CLT, and a halfwidth corresponding to a 

( )%1100 β−  ACI for ( )α1r  is given by 
 

( ) ( ) 2/
12111̂ mmr ZZH +=α ,  (14) 

where ( )[ ]⎣ ⎦2/1
11 1 ααα β −−= mzmm , 

( )⎡ ⎤2/1
12 ]1[ ααα β −+= mzmm , and the iZ ’s are 

defined in Figure 2. The validity of the ACI 
corresponding to (14) relies on a CLT for ( )α1̂r  and is 
established in Section 2.6.3 of [29]. We remark that the 
asymptotic variance of the CLT for ( )α1̂r  depends on 
the density ( )( )α1rF ′ , and to avoid a density estimation 
we are using a halfwidth in the form of (14). 

In order to establish a CLT for ( )α2̂r  and ( )α3̂r , 
we need to introduce some notation. For 0≥R , set 

( ) ( ) ( ) ( ),121 ∫
∞ −−−= R ydFRyQR αλ

( ) ( ) ( ) ( ) ( )

( ) ( ),

121

2

22
22

∫

∫
∞

∞

−+

−−−−=

R

R

ydFRy

ydFRyQQR ααλ
  (15) 

and 
( ) ( ) ( ) ( ),131 ∫

∞ −−−= R ydFRyR μαλ

( ) ( ) ( ) ( ) ( ).1 2
0

22
32 ∫∫

∞ −+−= R
R ydFyRydFyR ααλ  (16) 

Proposition 1. Let us suppose that ( ) ∞<∫
∞
0

2 ydFy   and 

10 <<α . Then 

(i) If ( ) ( ) 22
0

2 1 QydFy α−>∫
∞ , ( )R21λ  is 

differentiable at ( )α2rR =  and ( )R22λ  is 
continuous at ( )α2rR = , we have 

( ) ( )[ ] ( )1,0ˆ 222
2/1 Nrrm σαα ⇒− , 

where ( )R21λ  and ( )R22λ  are defined in (15), and 

( )( ) ( )( ) ( )

( )( )( )22

222
22

2
1

1
2

α

αα
σ α

rF

QydFryr

−

−−−
=
∫
∞

. 

(ii) If 0>μ , ( )R31λ  is differentiable at ( )α3rR =  and 
( )R33λ  is continuous at ( )α3rR = , we have 

( ) ( )[ ] ( )1,0ˆ 333
2/1 Nrrm σαα ⇒− , 

where ( )R31λ  and ( )R32λ  are defined in (16), and 

( ) ( )( ) ( )( ) ( )( )
( )( )( )

.
1

1
2

3

2
30

22
2
3

3

3

α

ααα
σ α

α

rF

ydFyrydFy r
r

−

−+−
=

∫∫
∞

 

 
Figure 2: Estimation of Performance Measures Using 
SPD 

 
Using Proposition 1 we can establish the following 

halfwidths, corresponding to a ( )%1100 β−  ACI for 
( )α2r  and ( )α3r , respectively, 

 

( ) 2
2/1

ˆ ˆ
2

σβα
−= mzHr  and ( ) 3

2/1
ˆ ˆ
3

σβα
−= mzHr , (17) 

 
where

( ) ( )( ) ( ) ,1ˆˆ 222
2

2
2

2
2

2 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−= ∑

=

− αασ mQrWkmm
m

kj
j

( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−= ∑∑

=

−

=

− m

kj
j

k

j
j WrWkmm

3

3 2
3

1

1

222
3

2
3 ˆ1ˆ αασ ,

32 ,kk  and the jW ’s are defined in the algorithm of 
Figure 2. 
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4. AN ILLUSTRATIVE EXAMPLE 
In order to illustrate our notation, we present a model 
that is inspired in the ideas of Silver (1965) and Croston 
(1972) to forecast intermittent demand. Suppose that the 
arrival of clients at a retailer occurs according to a 
Poisson process, however there is uncertainty on the 
arrival rate 0Θ , so that given [ ]00 θ=Θ , the time 
between customers arrivals are i.i.d. according to the 
exponential density function 

( )
⎩
⎨
⎧ >=

−

otherwise,,0
,0,00

0
yeyf

yθθθ  

where ( )∞=∈ ,0000 Sθ . In addition, every customer 
orders j  items (independently of each other) with 
probability j1Θ , qj ,,1K= , 2≥q .  

 Set ( )( )11111 ,, −ΘΘ=Θ qK  and ∑ Θ−=Θ −
=

1
1 11 1 q

j jq , 
then ( )10,ΘΘ=Θ  denotes the parameter vector, and 
the parameter space is 01000 SSS ⊗= , where 

( )( )
⎭
⎬
⎫

⎩
⎨
⎧

−<∑=
−

=
− 1,;1:,, 1

1

1
1111101 qE j

q

j
jq KK θθθθ . 

We are interested in the total demand (W ) during a 
lead time of length *L ,  

( ) ( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

>−+∑=
−+

=
otherwise,,0

,0, ***

1

***

TNLTNUW
TNLTN

i
i  (18) 

where *T  is as in (3), 0* >L  is a constant, ( )sN  is the 
number of clients that arrived on [ ]s,0 , 0≥s , and 

K21,UU   are the individual demands (assumed 
conditionally independent relative to Θ ). Information 
on Θ  is available from (i.i.d.) observations of past 
clients ( )nvvv ,,1 K=  and ( )nuuu ,,1 K=  where iv  is 
the interarrival time of client i , and iu  is the number of 
items ordered by client i . Note that, according to (2), 
the likelihood functions for v  and u  take the form of 

( )
∑−
==
n

i
ivnevL 1

0

00
θ

θθ , and ( ) ,1
1

1
1

1

1
11 ∏⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−=

−

=

−

=

q

j

c
j

cq

j
j

j

q

uL θθθ  

respectively, where ( )( )11111 ,, −= qθθθ K , and 

[ ]∏ == =
n
i ij juIc 1  is the number of past clients that 

ordered j  items.  
If we adopt an objective point of view, we may 

wish to consider a non-informative prior density for Θ , 
and using Jeffrey’s prior may be appropriate. As is well 
known, Jeffrey’s prior density for the exponential model 
is ( ) 1

00
−= θθp , 000 S∈θ , so that it follows from (1) that 

( )
( )!1

1
0

1

1
0

0 −

⎟
⎠
⎞

⎜
⎝
⎛
∑

=

∑−

=

− =

n

ev
vp

n

i
ivnn

i
i

n θ
θ

θ , (19) 

 

which corresponds to the ( )∑ =
n
i ivn 1,Gamma  

distribution, where, for 0, 21 >ββ , ( )21,ββGamma  

denotes a Gamma distribution with expectation 1
21
−ββ . 

Similarly, Jeffrey’s prior density for the multinomial 
model (see, e.g., Berger and Bernardo 1992) is 

 ( )
( )2/1,,2/1

1
1

1

2/1
1

2/11

1
1

1
KB

p

q

j
j

q

j
j ∏⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−

=

−

=

−
−−

=
θθ

θ ,  

where ( ) ( ) ∏∑= =
−

=
q
j j

q
j j aaB 1

1
12/1,,2/1 K , for 

0,,1 >naa K , so that it follows from (1) and (19) that 

( ) ( )2/1,,2/1

1

1

1

1

2/1
1

2/11

1
1

1 ++

∏⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑−

=

−

=

−
−−

=

q

q

j

c
j

cq

j
j

ccB
up

j

q

K

θθ
θ , (20) 

which corresponds to a ( )2/1,,2/1Dirichlet 1 ++ qcc K   

distribution. Thus, if we set ( )iii uzx ,= , ni ,,1K= , 
( )nxxx ,,1 K= , and ( )10 ,θθθ = , under an appropriate 

independence assumption, the posterior density 
becomes ( ) ( ) ( )upzpxp 10 θθθ = , where ( )zp 0θ  and 
( )up 1θ  are defined in (19) and (20), respectively. 

Note that in this example we can obtain an 
analytical expression for the point forecast 

[ ]xXWE ==μ , since from (19) and (20) we have 

[ ] ( ) 1
10

−
=∑==Θ n

i ivnvVE , and 

[ ] ( )2/11
1 +==Θ −

jj ccuUE   

(where ( ) 2/2/11 qncc n
j j +=∑ += = ), so that from (18) 

we have 
 

[ ][ ]
( ) ( )[ ] [ ][ ]

[ ] [ ]

( ) ( ),2/12/

,

1

1
1

1

*

1
10

*

1
10

*

1
***

∑ ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑=

∑ =Θ=Θ=

⎥
⎦

⎤
⎢
⎣

⎡
=∑ ΘΘ=

=ΘΘ−+=

==Θ=

=

−
−

=

=

=

q

j
j

n

j
i

q

j
j

q

j
j

cjqnvnL

uUjEvVEL

xXjEL

xXUETNLTNEE

xXxXWEEμ

  

 
which allows us to compute the point forecast μ  from 
the available data x . However in this case, analytic 
expressions for a service level or a reorder point may 
not be easy to obtain, and the SPD algorithm described 
in Section 3 may be useful to compute, via simulation, 
the other performance measures defined in Section 2. It 
is worth mentioning that Muñoz and Muñoz (2011) 
applied a simplified version of this model to the 
estimation of reorder points for a T1SL using data from 
a car dealer.  
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5. CONCLUSIONS 
 We discussed how performance measures for 
inventory management (service levels and reorder 
points) can be suitably defined under a Bayesian 
framework, and how these performance measures can 
be estimated from the output of simulation experiments.  
 In the case where the sample data has the form of 

( )nxxx ,,1 K=  and the likelihood has the form of (2), 
this approach is particularly relevant when the sample 
size n  is small, since in that case parameter uncertainty 
should be relatively large. It is worth mentioning that, 
as ∞→n , this approach is consistent with the classical 
approach of ignoring parameter uncertainty and fixing 
the value of the parameter at the maximum likelihood 
estimator, since under regularity conditions (see e.g., 
Theorem 5.14 of Bernardo 2000), ( )xp θ  has an 
asymptotically (as ∞→n ) normal distribution, with 
mean equal to the estimator nθ̂  that maximizes ( )xp θ . 

Finally, note that SPD can be applied when a valid 
algorithm to generate samples from ( )xp θ  is available. 
If this is not the case, methodologies based on Markov 
Chain Monte Carlo (see, e.g., Robert 2007) can be 
applied, and, under regularity conditions, a valid ACI 
for any of the performance measures defined in Section 
2 can still be obtained (see, e.g., Muñoz and Glynn 
1997 and Muñoz 2010 for regularity conditions of 
ACI’s based on the batch means method). 
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