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ABSTRACT 

Software programs are an essential part of our 

everyday’s life. Starting with large software programs 

on the PC, via complex control systems for the 

industrial area, to safety-critical software solutions for 

the automotive and aerospace industry; software is 

almost everywhere. Especially nowadays a high degree 

of reliability and security is essential. But due to the 

constantly growing size and complexity of such 

software programs the verification effort is increasing 

too. For this reasons, beneath dynamic testing and 

manual reviews, automatic verification methods became 

more and more popular. This paper deals with the 

expected benefits and the effectiveness of static code 

analysis and especially shows the limitations of this 

technique. Empirical tests have been developed and 

various code analysis tools employed. The paper 

discusses the obtained results. It becomes apparent that 

current code analysis tools can already find a variety of 

potential errors and weaknesses while critical cases are 

still undetected. 

 

Keywords: static code analysis, software, testing, 

verification, Goanna Studio, PC-lint, Yasca, C++ 

 

1. INTRODUCTION 

Current software programs become more complex from 

year to year. The test and verification effort for these 

software programs is constantly increasing and it 

becomes increasingly intricate to maintain these 

systems properly. Therefore, automatic static code 

verification became more and more popular in the last 

few years. Beneath dynamic testing methods and 

manual code reviews, static code analysis is another 

instrument to ensure the safety and reliability of future 

software programs. Even before the actual execution of 

the software program, the program code is checked 

against weaknesses and errors by a strict set of rules.  

Therefore static code analysis can already be used 

in early stages of development to detect critical errors in 

software programs and eliminate them. This paper 

provides a brief introduction to the topic of static code 

analysis and shows the current state of the art 

respectively the power of technology in this area. 

 Static code analysis is a method for quality 

assurance of software programs. The underlying 

program code is statically checked for weaknesses and 

errors. At automatic static code analysis the analysis of 

the program code is performed using special software 

programs. To analyze the program code as effective as 

possible, these code analysis tools use a large number of 

different kinds of analysis methods and software 

metrics. The respective program code must neither be 

complete nor executable (Hoffmann 2008, Liggesmeyer 

2009). 

Static code analysis can be used everywhere where 

software is developed. Especially for large software 

projects or for safety critical applications the use of 

static code analysis is recommended. Some 

programming conventions, like MISRA-C++ (MISRA 

2008) or the UK Defence Standard 00-55 (German 

2003), explicit stipulate the use of static code analysis 

for safety-critical software. At the same time static code 

analysis cannot replace ordinary, dynamic testing 

methods.  

The aim of this study was to determine the 

practical benefits of static code analysis and the current 

state of the art in this area. Therefore it was attempted to 

use real life examples and analysis tools which are 

preferably different.  

 

2. RELATED WORK 

Static code analysis has become increasingly important 

in the last years. For this reason there are many works 

which deal with the investigation of static code analysis 

(Muchnick 1981, Hoffmann 2008, Liggesmeyer 2009) 

and other with the evaluation and comparison of static 

analysis tools (Emanuelsson 2008, Hofer 2010, 

Almossawi 2006). Many works in this field are more 

specialized in the theoretical operating principles 

(Fehnker 2007, Miller 2007) or concentrate on a very 

specific area of computer programming (Cong 2009, 

Cooper 2002). 

 

3. VERIFICATION METHODOLOGIES 

In the context of software development, verification 

means to ensure that a given program code or algorithm 

meets its formal specification. In the case of static code 

analysis, the instruction set and the syntax of the 

programming language form the formal specification.   

Static code analysis tools use a variety of different 

methods to verify the correctness of the respective 

program code. For example dataflow- and controlflow-

analyses are used. Some tools, like Goanna Studio 

transform the respective program code into a finite state 

machine and use model checking techniques for the 

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 115



evaluation. Beneath these hard criteria the tools often 

use software metrics to determine the quality of the 

respective program code. Therefore the program code 

will be converted into different quantifiable values. 

Among the most popular metrics are Halstead-, 

McCabe-, component- and structural metrics   

(Hoffmann 2008, Liggesmeyer 2009, Fehnker 2006, 

Fehnker 2007).  

Static code analysis can not give any information 

about the functional correctness of a program code. 

Even if static code analysis couldn't find any errors or 

flaws in the program, there is no guarantee that the 

examined program delivers the correct result.  

 

4. USED SOFTWARE SOLUTIONS 
To determine the current state of the art of static code 

analysis, three different code analysis tools have been 

evaluated. To get a broad overview of the subject it was 

attempted to choose software solutions that are as 

different as possible. 

 The choice fell on the following software solutions: 

Goanna Studio, PC-lint and Yasca. 

 

4.1. Goanna Studio 

Goanna Studio is a C++ code analysis tool by the 

company Red Lizard Software. It  follows the approach 

to use model checking for searching the program code 

quickly and effectively. Model checking is an 

automated process to analyze transition systems. 

Therefore, the C++ code needs to be converted into a 

context-free grammar. After that it will be analyzed 

through the model checker. Especially in large projects 

this can lead to performance advantages. Another 

advantage of this method is the simple and fast 

expandability of the analyzing-rules (Huuk et al. 2008, 

Fehnker et al. 2007, Red Lizard Software 2012)  

Goanna Studio was used in the version 2.4.1 (trial 

version).  

 

4.2. PC-lint 

PC-lint is a C / C++ code analysis tool by the company 

Gimpel Software. It is one of the well-established code 

analysis tools on the market. It is a pure console 

application. This has affects on the clarity and usability 

of the tool. However there are some plug-ins available 

which can add GUI elements to PC-lint. This is 

advisable especially for large projects. One of the 

biggest advantages of PC-lint is that it supports a 

variety of different Compilers and programming 

conventions (Gimpel Software 2012).  

   PC-lint was used in the version 9.00. 

 

4.3. Yasca 

In addition to these two commercial solutions the open 

source solution Yasca was added to the evaluation. It is 

under the GNU General Public License and may 

therefore be used free of charge. Yasca is a simple code 

analysis tool which offers far away as much setting 

opportunities as the other two solutions. Thereby it 

combines several different code analysis tools like 

CppCheck, RATS, etc. in it. These analysis tools can be 

added to Yasca via plug-ins. It is also possible to add 

your own rules (Scovetta 2012, Cppcheck 2011, Fortify 

Software 2012). 

Yasca was used in the version 2.21. 

 

5. THE TEST CODE  

The selected software solutions were evaluated using an 

extensive test code. This test code covers the major 

areas of the programming language and includes a 

broad range of errors typically found in industrial 

applications. By combining on the one hand, frequently 

occurring errors with on the other hand more complex 

errors, the suitability for daily use of static code analysis 

should be covered and the limits of the current 

technology demonstrated. 

 

5.1. The programming language 

C++ was selected as programming language for the test 

code. C++ is a very well known and widely used 

programming language. Beneath C and Assembler, C++ 

plays more and more a role in safety-critical areas, such 

as Embedded Systems. Especially in these areas a high 

degree of safety and reliability is essential. Through the 

use of so-called programming conventions, such as 

MISRA-C++, the programming language can gain 

additional security. However the programming language 

is therefore somewhat limited in their functionality. PC-

Lint is the only one of the three software solution that 

supports the programming convention MISRA-C++.   

 

5.2. Structure of the test code 
The test code was structured in several projects. Each of 

them concentrates on a specific area of the 

programming language. To analyze the performance of 

the different code analysis tools, it was attempted to 

build as much errors as possible into the individual 

projects. A large part of these errors are typical errors 

from the daily practice. To verify the limitations of 

static code analysis these errors were supplemented by 

some more specific and complicated errors. 

Additionally in some cases deliberately messy code was 

used, to simulate real conditions and make it more 

difficult for the evaluated analysis tools. 

 The following sections of the programming 

language are covered by the test code: 

 

• Bounds Checking 

• Division by Zero 

• Memory Leaks 

• Over- / Underflows 

• Out-of-Scope Errors 

• Problems with Classes 

• Problems with Threads: Deadlock 

• Problems with Threads: Race Condition 

 

5.3. Examples 

Below are a few examples of errors which are included 

in the test code. The errors in the test code are on the 

one hand self-designed. On the other hand a large 
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number of errors came out of typical industrial 

situations or were inspired by relevant literature. 

Therefore, one should refer to the following titles: 

(Breymann 2005, Dewhurst 2002, Hoffmann 2008,  

Intel 2010, Klein 2003, Wolf 2009).  

 

5.3.1. Example 1 

 

Listing 1: Program code of Example 1. 
 

1  struct Cont{  

2  char name[3];  

3  int number;  

4  };  
5 

6  int main(){  

7   Cont *c = new Cont;  
8 

9  strcpy(c->name, "Max" );  
10  c->number = 1234567;  
11  

12 cout << "name: " << c->name << 
 endl; 
13 cout << "number: " << c->number << 
 endl; 
14 

15 strcat(c->name, "!" );  

16 cout << "name: " << c->name << 
 endl; 
17 cout << "number: " << c->number << 
 endl; 
18  delete c; c=0;  

19 return 0;  

20  }  

 

Listing 1 shows a classical case of an out-of-bounds 

error. The code includes a struct Cont which contains a 

character array name and an integer value number. The 

character array name is limited to three digits.  

Within the main statement the word “Max” will be 

copied into the character array name. Therefore the 

function strcpy is used. This function doesn’t compare 

if the length of the committed string matches with the 

length of the target string. So in this case “Max” is a 

string. Therefore it ends with a terminating null (\0) and 

has consequently 4 digits. As a result, a text with 4 

digits will be copied in a character array that can hold 

only 3 digits.  

This error may remain undetected because of the 

memory alignment of the compiler. The memory is 

usually 4-byte aligned, which is the case on systems 

using natural alignment. Therefore between the 

character array name and the integer value number is a 

so-called padding byte. So instead of overwriting the 

integer value number, the padding byte will be 

overwritten. This critical side effect gets even worse if 

later on the alignment changes and so the number value 

gets suddenly modified. 

For a better explanation of the problem screenshots 

from the Memory Window of Visual Studio have been 

added. Figure 1 shows the allocation of the string 

“Max”.  In Figure 2 the number 1234567 was added to 

the memory. Figure 3 shows the attachment of the 

exclamation mark behind the string “Max”. The 

Memory Window shows that through this attachment 

the value of the integer  variable number was changed 

too. Figure 4 shows a screenshot of the output of the 

program.  

This function can be compiled and executed in 

Visual Studio 2008 without any errors. The analysis 

tools PC-lint and Yasca could find this error. 

 

 
Figure 1: Screenshot of the Memory Window after the 

allocation of the string  “Max”. 

 

 
Figure 2: Screenshot of the Memory Window after the 

allocation of the number 1234567. 

 

 
Figure 3: Screenshot of the Memory Window after 

adding an exclamation mark behind the string “Max”. 

 

 
Figure 4: Screenshot of the output after the execution of 

the program. 

 

5.3.2. Example 2 

 

Listing 2: Program code of Example 2. 
 

1  int main(){  

2  int const n=10;  

3  int *pa = new int (n);  
4 

5   for ( int i=0; i<n; i++){  
6    pa[i] = i;  

7 } 
8  delete [] pa; pa=0;  

9 return 0;  

10  }  
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In Listing 2 the programmer intended to create an 

integer array pa with the size of n (10). However a 

small error crept in. Instead of square brackets the 

programmer used round brackets. Therefore, instead of 

creating an array with the size of 10, an integer value 

with the initial value of 10 will be created. As a 

consequence, each access, except of the first one, results 

in a violation of the memory area representing a serious 

error. Furthermore the allocated memory for the integer 

value pa will be freed with the keyword delete [] 

instead of delete, which normally will not lead to any 

serious problems. Anyhow there is no guarantee that it 

would cause unwanted side effects on some systems. 

5.3.3. Example 3 

 

Listing 3: Program code of Example 3. 
 

1  class Number{  

2  public :  
3   Number( int val = 0):Num(val){}  

4   ~Number(){}  
5   

6   int getNum(){  

7    return  Num;  

8   }  

9  private : 
10  int Num; 
11  };  
12 

13  int main(){  

14 Number *n1 = new Number(5);  

15 Number *n2 = new Number(); 
16 //… 
17   n2 = n1;  

18 //… 
19  delete n1; n1=0; 
20 //… 
21  delete n2; n2=0; 
22 return 0;  

23  }  

 

Listing 3 shows a good example how the default Copy 

Constructor respectively Assignment Operator can lead 

to problems. The class Number has a member variable 

Num. In the main statement two instances of the class 

Number were dynamically created, n1 and n2. The 

programmer wants to assign the value of n1 to n2 and 

uses the Assignment Operator. However, instead of 

copying the value of n1 to n2, the memory address will 

be copied. Therefore after this assignment both pointer 

point to the same memory address. In most of the cases 

this is not intended and can lead to unwanted behaviour. 

In this case the memory would be freed twice, which 

can lead to security flaws and crashes.    

 

5.4. Test Criteria 

For reasons of clarity and comprehensibility only faults 

with a security level of error or warning were 

considered in the evaluation. The code analysis tool 

Yasca finds on its own admission only errors which 

would not be found by a conventional compiler. The 

code analysis tool Goanna Studio is integrated in the 

IDE of the MS Visual Studio and shares therefore the 

same error-window with the compiler. For this reason, 

errors which were already found by the compiler are not 

included in the evaluation of Yasca and Goanna Studio. 

To have a comparable basis, MS Visual Studio 2008 

(SP1) was used as compiler for all test cases. All test 

cases could be compiled without any errors. 

 

6. RESULTS OF THE EVALUATION 

This Chapter provides a compact overview of the 

various kinds of errors found by the individual code 

analysis tools. Therefore all found errors of a section are 

compared with the expected errors for the same section. 

In some cases additional errors were found by the 

analysing tools. This additional errors were also added 

to the evaluation and it was determined whether these 

errors refer to real problems (true positive) or not (false 

positive). No code analysis tool can find all faults 

without generating some false positives. An analysis 

tool can only be called “safe” if it really displays all 

found errors and warnings. Although this increases the 

number of false positives, but therefore the number of 

false negatives is as low as possible (Emanuelsson 

2008). 

 

6.1. Overview Goanna Studio 

Table 1 shows an overview of the errors found by the 

code analysis tool Goanna Studio. Goanna Studio found 

42 of 84 errors expected and therefore achieved a 

success rate of 50%. Furthermore it found six additional 

errors. These errors are indicators for unnecessary 

functions or assignments. Five of these additional errors 

are real errors (true positives) and one is a false report 

(false positive). This results in one false positive of 48 

errors found (ca. 2%). 

 

Table 1: Overview of errors found by Goanna Studio. 

Results Goanna Studio 

Section Expected 

errors 

Errors 

found 

Additional 

errors 

found 

Errors 

not 

found 

Bounds 

Checking 
15 7 0 8 

Division by 

Zero 
4 4 1 0 

Memory 

Leaks 
16 7 1 9 

Over- / 

Underflows 
6 3 0 3 

Out-of-

Scope 
6 5 1 1 

Classes 29 14 0 15 

Deadlock 6 2 3 4 

Race 

Condition 
2 0 0 2 

Summary 84 42 6 42 

 

6.2. Overview PC-lint 

Table 2 shows an overview of the errors found by the 

code analysis tool PC-lint. PC-lint found 54 of 85 errors 

expected and therefore achieved a success rate of 

63,6%. Furthermore it found 42 additional errors. These 
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are, however, 30 times the warning 586

refers to an unauthorized function of the MISRA 

programming convention. This is mainly to functions 

which are used for dynamic memory management, as 

new, delete, etc. Admittedly these functions are in 

violation of the MISRA guidelines, but cau

errors. For this reason, these errors not considered for 

the calculation of the false positives. Therefore there are 

six correct errors (true positives) of a total of twelve 

additional errors found. This results in six 

positives of 96 errors found (ca. 6,25%).

 

Table 2: Overview of errors found by 

Results PC-lint 

Section Expected 

errors 

Errors 

found 

Additional 

errors 

found

Bounds 

Checking 
15 10 7

Division by 

Zero 
4 2 0

Memory 

Leaks 
16 13 15

Over- / 

Underflows 
6 4 0

Out-of-

Scope 
6 6 0

Classes 30 14 16

Deadlock 6 3 1

Race 

Condition 
2 2 3

Summary 85 54 42

 

6.3. Overview Yasca 

Table 3 shows an overview of the errors found by the 

code analysis tool Yasca. Yasca found 18 of 78 errors 

expected and therefore achieved a success rate of 

23,1%. Furthermore it found seven additional errors. 

These are, however, rather indications than real error 

messages. Therefore a further classification in false 

respectively true positives is unnecessary. 

 

Table 3: Overview of errors found by 

Results PC-lint 

Section Expected 

errors 

Errors 

found 

Additional 

errors 

found

Bounds 

Checking 
13 5 1

Division by 

Zero 
3 0 0

Memory 

Leaks 
16 9 0

Over- / 

Underflows 
5 1 1

Out-of-

Scope 
4 2 1

Classes 29 1 0

Deadlock 6 0 4

Race 

Condition 
2 0 0

Summary 78 18 7

are, however, 30 times the warning 586. This warning 

refers to an unauthorized function of the MISRA 

programming convention. This is mainly to functions 

which are used for dynamic memory management, as 

new, delete, etc. Admittedly these functions are in 

violation of the MISRA guidelines, but cause no direct 

errors. For this reason, these errors not considered for 

the calculation of the false positives. Therefore there are 

six correct errors (true positives) of a total of twelve 

additional errors found. This results in six false 

rors found (ca. 6,25%). 

by PC-lint. 

Additional 

errors 

found 

Errors 

not 

found 

7 5 

0 2 

15 3 

0 2 

0 0 

16 16 

1 3 

3 0 

42 31 

shows an overview of the errors found by the 

Yasca found 18 of 78 errors 

expected and therefore achieved a success rate of 

Furthermore it found seven additional errors. 

are, however, rather indications than real error 

messages. Therefore a further classification in false 

ue positives is unnecessary.  

Overview of errors found by Yasca. 

Additional 

errors 

found 

Errors 

not 

found 

1 8 

0 3 

0 7 

1 4 

1 2 

0 28 

4 6 

0 2 

7 60 

6.4. Summary 

On average, the three evaluated code analysis tools 

found approximately 46% of all in the test code 

contained errors. It is striking that there are sometimes 

significant differences between the various code 

analysis tools. For example, the open source tool

finds with about 23% by far the fewest errors. The two 

commercial software solutions find however at least 

50% of all included errors. The evaluated code analysis 

tools differ not only in the number of detected errors, 

but also by the errors found t

evaluated code analysis tools found at least one error, 

which none of the other two solutions could find. 

Therefore it can be found about 75% of all in the test 

code included errors by sequential execution of all three 

analysis tools (Figure 5). In consequence it is advisable 

to use several different analysis tools for the analysis of 

safety-critical systems.  

 

Figure 5: Summary of all 3solutions.

 

Furthermore, the evaluation has shown that for 

small projects, the false positive 

below 10%. However for large projects this value can 

be in some cases significantly higher. This is largely 

because of the increased complexity and the resulting 

dependencies in large projects. For this reason the 

subsequent evaluation of large projects can be 

extremely time-consuming. In such projects it is 

therefore advisable to use static code analysis already at 

the beginning of the project. 

 

7. CONCLUSION 
The evaluation of the three software solutions has 

shown that static code analysis is already capable to 

find a variety of potential errors and weaknesses within 

software programs. It is noticed here that

classes can be found very well, while others can barely 

be detected or can’t be detected at all. For example 

memory leaks and out-of

recognized very reliable, while errors relating to threads 

remain in general unrecognized. Also the context in 

which an error occurs plays an important role, whether 

this error can be found by static code analysis

The program code that needs to be analyzed doesn’t 

have to be completed; neither does it to be executable. 

For this reason static code analysis can be used in 

software projects very early. Consequently, potential 

25%

Summary of all 3 solutions

errors found

On average, the three evaluated code analysis tools 

found approximately 46% of all in the test code 

contained errors. It is striking that there are sometimes 

significant differences between the various code 

analysis tools. For example, the open source tool Yasca 

finds with about 23% by far the fewest errors. The two 

commercial software solutions find however at least 

50% of all included errors. The evaluated code analysis 

tools differ not only in the number of detected errors, 

but also by the errors found themselves. Each of the 

evaluated code analysis tools found at least one error, 

which none of the other two solutions could find. 

Therefore it can be found about 75% of all in the test 

code included errors by sequential execution of all three 

(Figure 5). In consequence it is advisable 

to use several different analysis tools for the analysis of 

 

Figure 5: Summary of all 3solutions. 

Furthermore, the evaluation has shown that for 

small projects, the false positive rate is already well 

below 10%. However for large projects this value can 

be in some cases significantly higher. This is largely 

because of the increased complexity and the resulting 

dependencies in large projects. For this reason the 

of large projects can be 

consuming. In such projects it is 

therefore advisable to use static code analysis already at 

 

The evaluation of the three software solutions has 

analysis is already capable to 

find a variety of potential errors and weaknesses within 

It is noticed here that certain error 

classes can be found very well, while others can barely 

be detected or can’t be detected at all. For example 

of-bounds errors can be 

recognized very reliable, while errors relating to threads 

remain in general unrecognized. Also the context in 

which an error occurs plays an important role, whether 

this error can be found by static code analysis or not.  

The program code that needs to be analyzed doesn’t 

have to be completed; neither does it to be executable. 

For this reason static code analysis can be used in 

software projects very early. Consequently, potential 

75%

Summary of all 3 solutions

errors not found
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errors and weaknesses can be identified and corrected as 

soon as possible. This can save time and money. At the 

same time the number of new errors can be reduced to a 

minimum and therefore the analysis can be kept 

manageable. This approach is advisable, especially for 

large projects.  

Furthermore, it is advisable to invest enough time 

for the configuration of the code analysis tools and for 

the selection of the right programming conventions in 

such projects. The selection of the highest security level 

is in many software projects unnecessary and only leads 

to increased effort. The same applies to programming 

conventions such as MISRA-C++. In safety-critical 

software such conventions are essential, but in normal 

projects a subset of these rules is often more than 

sufficient. 

Static code analysis can not replace dynamic 

testing. While dynamic testing methods are especially 

checking the correct function of the program code, 

static code analysis mainly ensures the correct and safe 

use of the respective programming language. 

All in all, static code analysis is a simple and fast 

way to improve the quality of software programs 

without stealing too much of the developers time. Static 

code analysis can not replace traditional testing 

methods, but it provides a solid addition to these, which 

can already be used in very early stages of a software 

project. In addition static code analysis can find kinds of 

errors, which can’t be found by other testing methods, 

like e.g. dead code.  

Static code analysis offers a cheap and easy 

method to increase the security and reliability of 

software programs and should therefore be used in 

software development as common as conventional 

testing methods like dynamic testing or code reviews.  
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