
CAPABILITY OF TODAY’S PROGRAM VERIFICATION: A PRACTICAL APPROACH

FOR BETTER QUALITY AND RELIABILITY IN INDUSTRIAL APPLICATIONS

Michael Bogner
 (a)

, Johannes Schiller
 (b)

, Franz Wiesinger
 (c)

(a, b, c)
University of Applied Sciences Upper Austria – Embedded Systems Design,

Softwarepark 11, A-4232 Hagenberg, AUSTRIA

(a)

 michael.bogner@fh-hagenberg.at,
(b)

 johannes.schiller@fh-hagenberg.at,
(c)

 franz.wiesinger@fh-hagenberg.at

ABSTRACT

Software programs are an essential part of our

everyday’s life. Starting with large software programs

on the PC, via complex control systems for the

industrial area, to safety-critical software solutions for

the automotive and aerospace industry; software is

almost everywhere. Especially nowadays a high degree

of reliability and security is essential. But due to the

constantly growing size and complexity of such

software programs the verification effort is increasing

too. For this reasons, beneath dynamic testing and

manual reviews, automatic verification methods became

more and more popular. This paper deals with the

expected benefits and the effectiveness of static code

analysis and especially shows the limitations of this

technique. Empirical tests have been developed and

various code analysis tools employed. The paper

discusses the obtained results. It becomes apparent that

current code analysis tools can already find a variety of

potential errors and weaknesses while critical cases are

still undetected.

Keywords: static code analysis, software, testing,

verification, Goanna Studio, PC-lint, Yasca, C++

1. INTRODUCTION

Current software programs become more complex from

year to year. The test and verification effort for these

software programs is constantly increasing and it

becomes increasingly intricate to maintain these

systems properly. Therefore, automatic static code

verification became more and more popular in the last

few years. Beneath dynamic testing methods and

manual code reviews, static code analysis is another

instrument to ensure the safety and reliability of future

software programs. Even before the actual execution of

the software program, the program code is checked

against weaknesses and errors by a strict set of rules.

Therefore static code analysis can already be used

in early stages of development to detect critical errors in

software programs and eliminate them. This paper

provides a brief introduction to the topic of static code

analysis and shows the current state of the art

respectively the power of technology in this area.

 Static code analysis is a method for quality

assurance of software programs. The underlying

program code is statically checked for weaknesses and

errors. At automatic static code analysis the analysis of

the program code is performed using special software

programs. To analyze the program code as effective as

possible, these code analysis tools use a large number of

different kinds of analysis methods and software

metrics. The respective program code must neither be

complete nor executable (Hoffmann 2008, Liggesmeyer

2009).

Static code analysis can be used everywhere where

software is developed. Especially for large software

projects or for safety critical applications the use of

static code analysis is recommended. Some

programming conventions, like MISRA-C++ (MISRA

2008) or the UK Defence Standard 00-55 (German

2003), explicit stipulate the use of static code analysis

for safety-critical software. At the same time static code

analysis cannot replace ordinary, dynamic testing

methods.

The aim of this study was to determine the

practical benefits of static code analysis and the current

state of the art in this area. Therefore it was attempted to

use real life examples and analysis tools which are

preferably different.

2. RELATED WORK

Static code analysis has become increasingly important

in the last years. For this reason there are many works

which deal with the investigation of static code analysis

(Muchnick 1981, Hoffmann 2008, Liggesmeyer 2009)

and other with the evaluation and comparison of static

analysis tools (Emanuelsson 2008, Hofer 2010,

Almossawi 2006). Many works in this field are more

specialized in the theoretical operating principles

(Fehnker 2007, Miller 2007) or concentrate on a very

specific area of computer programming (Cong 2009,

Cooper 2002).

3. VERIFICATION METHODOLOGIES

In the context of software development, verification

means to ensure that a given program code or algorithm

meets its formal specification. In the case of static code

analysis, the instruction set and the syntax of the

programming language form the formal specification.

Static code analysis tools use a variety of different

methods to verify the correctness of the respective

program code. For example dataflow- and controlflow-

analyses are used. Some tools, like Goanna Studio

transform the respective program code into a finite state

machine and use model checking techniques for the

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 115

evaluation. Beneath these hard criteria the tools often

use software metrics to determine the quality of the

respective program code. Therefore the program code

will be converted into different quantifiable values.

Among the most popular metrics are Halstead-,

McCabe-, component- and structural metrics

(Hoffmann 2008, Liggesmeyer 2009, Fehnker 2006,

Fehnker 2007).

Static code analysis can not give any information

about the functional correctness of a program code.

Even if static code analysis couldn't find any errors or

flaws in the program, there is no guarantee that the

examined program delivers the correct result.

4. USED SOFTWARE SOLUTIONS
To determine the current state of the art of static code

analysis, three different code analysis tools have been

evaluated. To get a broad overview of the subject it was

attempted to choose software solutions that are as

different as possible.

 The choice fell on the following software solutions:

Goanna Studio, PC-lint and Yasca.

4.1. Goanna Studio

Goanna Studio is a C++ code analysis tool by the

company Red Lizard Software. It follows the approach

to use model checking for searching the program code

quickly and effectively. Model checking is an

automated process to analyze transition systems.

Therefore, the C++ code needs to be converted into a

context-free grammar. After that it will be analyzed

through the model checker. Especially in large projects

this can lead to performance advantages. Another

advantage of this method is the simple and fast

expandability of the analyzing-rules (Huuk et al. 2008,

Fehnker et al. 2007, Red Lizard Software 2012)

Goanna Studio was used in the version 2.4.1 (trial

version).

4.2. PC-lint

PC-lint is a C / C++ code analysis tool by the company

Gimpel Software. It is one of the well-established code

analysis tools on the market. It is a pure console

application. This has affects on the clarity and usability

of the tool. However there are some plug-ins available

which can add GUI elements to PC-lint. This is

advisable especially for large projects. One of the

biggest advantages of PC-lint is that it supports a

variety of different Compilers and programming

conventions (Gimpel Software 2012).

 PC-lint was used in the version 9.00.

4.3. Yasca

In addition to these two commercial solutions the open

source solution Yasca was added to the evaluation. It is

under the GNU General Public License and may

therefore be used free of charge. Yasca is a simple code

analysis tool which offers far away as much setting

opportunities as the other two solutions. Thereby it

combines several different code analysis tools like

CppCheck, RATS, etc. in it. These analysis tools can be

added to Yasca via plug-ins. It is also possible to add

your own rules (Scovetta 2012, Cppcheck 2011, Fortify

Software 2012).

Yasca was used in the version 2.21.

5. THE TEST CODE

The selected software solutions were evaluated using an

extensive test code. This test code covers the major

areas of the programming language and includes a

broad range of errors typically found in industrial

applications. By combining on the one hand, frequently

occurring errors with on the other hand more complex

errors, the suitability for daily use of static code analysis

should be covered and the limits of the current

technology demonstrated.

5.1. The programming language

C++ was selected as programming language for the test

code. C++ is a very well known and widely used

programming language. Beneath C and Assembler, C++

plays more and more a role in safety-critical areas, such

as Embedded Systems. Especially in these areas a high

degree of safety and reliability is essential. Through the

use of so-called programming conventions, such as

MISRA-C++, the programming language can gain

additional security. However the programming language

is therefore somewhat limited in their functionality. PC-

Lint is the only one of the three software solution that

supports the programming convention MISRA-C++.

5.2. Structure of the test code
The test code was structured in several projects. Each of

them concentrates on a specific area of the

programming language. To analyze the performance of

the different code analysis tools, it was attempted to

build as much errors as possible into the individual

projects. A large part of these errors are typical errors

from the daily practice. To verify the limitations of

static code analysis these errors were supplemented by

some more specific and complicated errors.

Additionally in some cases deliberately messy code was

used, to simulate real conditions and make it more

difficult for the evaluated analysis tools.

 The following sections of the programming

language are covered by the test code:

• Bounds Checking

• Division by Zero

• Memory Leaks

• Over- / Underflows

• Out-of-Scope Errors

• Problems with Classes

• Problems with Threads: Deadlock

• Problems with Threads: Race Condition

5.3. Examples

Below are a few examples of errors which are included

in the test code. The errors in the test code are on the

one hand self-designed. On the other hand a large

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 116

number of errors came out of typical industrial

situations or were inspired by relevant literature.

Therefore, one should refer to the following titles:

(Breymann 2005, Dewhurst 2002, Hoffmann 2008,

Intel 2010, Klein 2003, Wolf 2009).

5.3.1. Example 1

Listing 1: Program code of Example 1.

1 struct Cont{

2 char name[3];

3 int number;

4 };
5

6 int main(){

7 Cont *c = new Cont;
8

9 strcpy(c->name, "Max");
10 c->number = 1234567;
11

12 cout << "name: " << c->name <<
 endl;
13 cout << "number: " << c->number <<
 endl;
14

15 strcat(c->name, "!");

16 cout << "name: " << c->name <<
 endl;
17 cout << "number: " << c->number <<
 endl;
18 delete c; c=0;

19 return 0;

20 }

Listing 1 shows a classical case of an out-of-bounds

error. The code includes a struct Cont which contains a

character array name and an integer value number. The

character array name is limited to three digits.

Within the main statement the word “Max” will be

copied into the character array name. Therefore the

function strcpy is used. This function doesn’t compare

if the length of the committed string matches with the

length of the target string. So in this case “Max” is a

string. Therefore it ends with a terminating null (\0) and

has consequently 4 digits. As a result, a text with 4

digits will be copied in a character array that can hold

only 3 digits.

This error may remain undetected because of the

memory alignment of the compiler. The memory is

usually 4-byte aligned, which is the case on systems

using natural alignment. Therefore between the

character array name and the integer value number is a

so-called padding byte. So instead of overwriting the

integer value number, the padding byte will be

overwritten. This critical side effect gets even worse if

later on the alignment changes and so the number value

gets suddenly modified.

For a better explanation of the problem screenshots

from the Memory Window of Visual Studio have been

added. Figure 1 shows the allocation of the string

“Max”. In Figure 2 the number 1234567 was added to

the memory. Figure 3 shows the attachment of the

exclamation mark behind the string “Max”. The

Memory Window shows that through this attachment

the value of the integer variable number was changed

too. Figure 4 shows a screenshot of the output of the

program.

This function can be compiled and executed in

Visual Studio 2008 without any errors. The analysis

tools PC-lint and Yasca could find this error.

Figure 1: Screenshot of the Memory Window after the

allocation of the string “Max”.

Figure 2: Screenshot of the Memory Window after the

allocation of the number 1234567.

Figure 3: Screenshot of the Memory Window after

adding an exclamation mark behind the string “Max”.

Figure 4: Screenshot of the output after the execution of

the program.

5.3.2. Example 2

Listing 2: Program code of Example 2.

1 int main(){

2 int const n=10;

3 int *pa = new int (n);
4

5 for (int i=0; i<n; i++){
6 pa[i] = i;

7 }
8 delete [] pa; pa=0;

9 return 0;

10 }

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 117

In Listing 2 the programmer intended to create an

integer array pa with the size of n (10). However a

small error crept in. Instead of square brackets the

programmer used round brackets. Therefore, instead of

creating an array with the size of 10, an integer value

with the initial value of 10 will be created. As a

consequence, each access, except of the first one, results

in a violation of the memory area representing a serious

error. Furthermore the allocated memory for the integer

value pa will be freed with the keyword delete []

instead of delete, which normally will not lead to any

serious problems. Anyhow there is no guarantee that it

would cause unwanted side effects on some systems.

5.3.3. Example 3

Listing 3: Program code of Example 3.

1 class Number{

2 public :
3 Number(int val = 0):Num(val){}

4 ~Number(){}
5

6 int getNum(){

7 return Num;

8 }

9 private :
10 int Num;
11 };
12

13 int main(){

14 Number *n1 = new Number(5);

15 Number *n2 = new Number();
16 //…
17 n2 = n1;

18 //…
19 delete n1; n1=0;
20 //…
21 delete n2; n2=0;
22 return 0;

23 }

Listing 3 shows a good example how the default Copy

Constructor respectively Assignment Operator can lead

to problems. The class Number has a member variable

Num. In the main statement two instances of the class

Number were dynamically created, n1 and n2. The

programmer wants to assign the value of n1 to n2 and

uses the Assignment Operator. However, instead of

copying the value of n1 to n2, the memory address will

be copied. Therefore after this assignment both pointer

point to the same memory address. In most of the cases

this is not intended and can lead to unwanted behaviour.

In this case the memory would be freed twice, which

can lead to security flaws and crashes.

5.4. Test Criteria

For reasons of clarity and comprehensibility only faults

with a security level of error or warning were

considered in the evaluation. The code analysis tool

Yasca finds on its own admission only errors which

would not be found by a conventional compiler. The

code analysis tool Goanna Studio is integrated in the

IDE of the MS Visual Studio and shares therefore the

same error-window with the compiler. For this reason,

errors which were already found by the compiler are not

included in the evaluation of Yasca and Goanna Studio.

To have a comparable basis, MS Visual Studio 2008

(SP1) was used as compiler for all test cases. All test

cases could be compiled without any errors.

6. RESULTS OF THE EVALUATION

This Chapter provides a compact overview of the

various kinds of errors found by the individual code

analysis tools. Therefore all found errors of a section are

compared with the expected errors for the same section.

In some cases additional errors were found by the

analysing tools. This additional errors were also added

to the evaluation and it was determined whether these

errors refer to real problems (true positive) or not (false

positive). No code analysis tool can find all faults

without generating some false positives. An analysis

tool can only be called “safe” if it really displays all

found errors and warnings. Although this increases the

number of false positives, but therefore the number of

false negatives is as low as possible (Emanuelsson

2008).

6.1. Overview Goanna Studio

Table 1 shows an overview of the errors found by the

code analysis tool Goanna Studio. Goanna Studio found

42 of 84 errors expected and therefore achieved a

success rate of 50%. Furthermore it found six additional

errors. These errors are indicators for unnecessary

functions or assignments. Five of these additional errors

are real errors (true positives) and one is a false report

(false positive). This results in one false positive of 48

errors found (ca. 2%).

Table 1: Overview of errors found by Goanna Studio.

Results Goanna Studio

Section Expected

errors

Errors

found

Additional

errors

found

Errors

not

found

Bounds

Checking
15 7 0 8

Division by

Zero
4 4 1 0

Memory

Leaks
16 7 1 9

Over- /

Underflows
6 3 0 3

Out-of-

Scope
6 5 1 1

Classes 29 14 0 15

Deadlock 6 2 3 4

Race

Condition
2 0 0 2

Summary 84 42 6 42

6.2. Overview PC-lint

Table 2 shows an overview of the errors found by the

code analysis tool PC-lint. PC-lint found 54 of 85 errors

expected and therefore achieved a success rate of

63,6%. Furthermore it found 42 additional errors. These

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 118

are, however, 30 times the warning 586

refers to an unauthorized function of the MISRA

programming convention. This is mainly to functions

which are used for dynamic memory management, as

new, delete, etc. Admittedly these functions are in

violation of the MISRA guidelines, but cau

errors. For this reason, these errors not considered for

the calculation of the false positives. Therefore there are

six correct errors (true positives) of a total of twelve

additional errors found. This results in six

positives of 96 errors found (ca. 6,25%).

Table 2: Overview of errors found by

Results PC-lint

Section Expected

errors

Errors

found

Additional

errors

found

Bounds

Checking
15 10 7

Division by

Zero
4 2 0

Memory

Leaks
16 13 15

Over- /

Underflows
6 4 0

Out-of-

Scope
6 6 0

Classes 30 14 16

Deadlock 6 3 1

Race

Condition
2 2 3

Summary 85 54 42

6.3. Overview Yasca

Table 3 shows an overview of the errors found by the

code analysis tool Yasca. Yasca found 18 of 78 errors

expected and therefore achieved a success rate of

23,1%. Furthermore it found seven additional errors.

These are, however, rather indications than real error

messages. Therefore a further classification in false

respectively true positives is unnecessary.

Table 3: Overview of errors found by

Results PC-lint

Section Expected

errors

Errors

found

Additional

errors

found

Bounds

Checking
13 5 1

Division by

Zero
3 0 0

Memory

Leaks
16 9 0

Over- /

Underflows
5 1 1

Out-of-

Scope
4 2 1

Classes 29 1 0

Deadlock 6 0 4

Race

Condition
2 0 0

Summary 78 18 7

are, however, 30 times the warning 586. This warning

refers to an unauthorized function of the MISRA

programming convention. This is mainly to functions

which are used for dynamic memory management, as

new, delete, etc. Admittedly these functions are in

violation of the MISRA guidelines, but cause no direct

errors. For this reason, these errors not considered for

the calculation of the false positives. Therefore there are

six correct errors (true positives) of a total of twelve

additional errors found. This results in six false

rors found (ca. 6,25%).

by PC-lint.

Additional

errors

found

Errors

not

found

7 5

0 2

15 3

0 2

0 0

16 16

1 3

3 0

42 31

shows an overview of the errors found by the

Yasca found 18 of 78 errors

expected and therefore achieved a success rate of

Furthermore it found seven additional errors.

are, however, rather indications than real error

messages. Therefore a further classification in false

ue positives is unnecessary.

Overview of errors found by Yasca.

Additional

errors

found

Errors

not

found

1 8

0 3

0 7

1 4

1 2

0 28

4 6

0 2

7 60

6.4. Summary

On average, the three evaluated code analysis tools

found approximately 46% of all in the test code

contained errors. It is striking that there are sometimes

significant differences between the various code

analysis tools. For example, the open source tool

finds with about 23% by far the fewest errors. The two

commercial software solutions find however at least

50% of all included errors. The evaluated code analysis

tools differ not only in the number of detected errors,

but also by the errors found t

evaluated code analysis tools found at least one error,

which none of the other two solutions could find.

Therefore it can be found about 75% of all in the test

code included errors by sequential execution of all three

analysis tools (Figure 5). In consequence it is advisable

to use several different analysis tools for the analysis of

safety-critical systems.

Figure 5: Summary of all 3solutions.

Furthermore, the evaluation has shown that for

small projects, the false positive

below 10%. However for large projects this value can

be in some cases significantly higher. This is largely

because of the increased complexity and the resulting

dependencies in large projects. For this reason the

subsequent evaluation of large projects can be

extremely time-consuming. In such projects it is

therefore advisable to use static code analysis already at

the beginning of the project.

7. CONCLUSION
The evaluation of the three software solutions has

shown that static code analysis is already capable to

find a variety of potential errors and weaknesses within

software programs. It is noticed here that

classes can be found very well, while others can barely

be detected or can’t be detected at all. For example

memory leaks and out-of

recognized very reliable, while errors relating to threads

remain in general unrecognized. Also the context in

which an error occurs plays an important role, whether

this error can be found by static code analysis

The program code that needs to be analyzed doesn’t

have to be completed; neither does it to be executable.

For this reason static code analysis can be used in

software projects very early. Consequently, potential

25%

Summary of all 3 solutions

errors found

On average, the three evaluated code analysis tools

found approximately 46% of all in the test code

contained errors. It is striking that there are sometimes

significant differences between the various code

analysis tools. For example, the open source tool Yasca

finds with about 23% by far the fewest errors. The two

commercial software solutions find however at least

50% of all included errors. The evaluated code analysis

tools differ not only in the number of detected errors,

but also by the errors found themselves. Each of the

evaluated code analysis tools found at least one error,

which none of the other two solutions could find.

Therefore it can be found about 75% of all in the test

code included errors by sequential execution of all three

(Figure 5). In consequence it is advisable

to use several different analysis tools for the analysis of

Figure 5: Summary of all 3solutions.

Furthermore, the evaluation has shown that for

small projects, the false positive rate is already well

below 10%. However for large projects this value can

be in some cases significantly higher. This is largely

because of the increased complexity and the resulting

dependencies in large projects. For this reason the

of large projects can be

consuming. In such projects it is

therefore advisable to use static code analysis already at

The evaluation of the three software solutions has

analysis is already capable to

find a variety of potential errors and weaknesses within

It is noticed here that certain error

classes can be found very well, while others can barely

be detected or can’t be detected at all. For example

of-bounds errors can be

recognized very reliable, while errors relating to threads

remain in general unrecognized. Also the context in

which an error occurs plays an important role, whether

this error can be found by static code analysis or not.

The program code that needs to be analyzed doesn’t

have to be completed; neither does it to be executable.

For this reason static code analysis can be used in

software projects very early. Consequently, potential

75%

Summary of all 3 solutions

errors not found

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 119

errors and weaknesses can be identified and corrected as

soon as possible. This can save time and money. At the

same time the number of new errors can be reduced to a

minimum and therefore the analysis can be kept

manageable. This approach is advisable, especially for

large projects.

Furthermore, it is advisable to invest enough time

for the configuration of the code analysis tools and for

the selection of the right programming conventions in

such projects. The selection of the highest security level

is in many software projects unnecessary and only leads

to increased effort. The same applies to programming

conventions such as MISRA-C++. In safety-critical

software such conventions are essential, but in normal

projects a subset of these rules is often more than

sufficient.

Static code analysis can not replace dynamic

testing. While dynamic testing methods are especially

checking the correct function of the program code,

static code analysis mainly ensures the correct and safe

use of the respective programming language.

All in all, static code analysis is a simple and fast

way to improve the quality of software programs

without stealing too much of the developers time. Static

code analysis can not replace traditional testing

methods, but it provides a solid addition to these, which

can already be used in very early stages of a software

project. In addition static code analysis can find kinds of

errors, which can’t be found by other testing methods,

like e.g. dead code.

Static code analysis offers a cheap and easy

method to increase the security and reliability of

software programs and should therefore be used in

software development as common as conventional

testing methods like dynamic testing or code reviews.

REFERENCES

The Motor Industry Software Reliability Association,

2008. Guidelines for the Use of the C++

Language in Critical Systems.

 Emanuelsson, P. and Nilsson, U., 2008. A Comperative

Study of Industrial Static Analysis Tools. Techn.

Ber., Linköping University: Dep. of Computer and

Information Science.

Hoffmann, D. W., 2008. Software-Qualität. Heidelberg:

Springer-Verlag.

Liggesmeyer,P., 2009. Software-Qualität: Testen,

Analysieren und Verifizieren von Software.

Heidelberg: Spektrum-Verlag.

Breymann, U., 2005. C++ - Einführung und

professionelle Programmierung. München: Carl

Hanser Verlag.

Dewhurst, S., 2002. C++ Gotchas: Avoiding Common

Problems in Coding and Design. Boston:

Addision-Wesley.

Intel Corporation, 2010. About Static Security Analysis

Error Detection. Available from:

http://software.intel.com [accessed 10 April 2012].

Wolf, J., 2009. C++ von A bis Z. Bonn: Galileo

Computing.

Klein, T., 2003. Buffer Overflows und Format-String-

Schwachstellen. Heidelberg: Dpunkt.Verlag.

German, A., 2003. Software Static Code Analysis

Lessons Learnt. Techn. Ber., QinetiQ Ltd.

Fehnker et al., 2007. Model Checking Software at

Compile Time. Proceedings of the First Joint

IEEE/IFIP Symposium on Theoretical Aspects of

Software Engineering. pp. 45-56. Washington,

D.C. (USA)

Huuk et al., 2008. Goanna: Syntactic Software Model

Checking. Proceedings of the 6th International

Symposium on Automated Technology for

Verification and Analysis. pp. 216-221.

Heidelberg: Springer-Verlag.

Red Lizard Software, 2012. Goanna Studio. Available

from: http://redlizards.com/index.php [accessed 10

April 2012].

Gimpel Software, 2012 PC-lint. Available from:

http://www.gimpel.com/html/index.htm [accessed

10 April 2012].

Scovetta, M. V., 2012. Yasca. Available from:

http://www.scovetta.com/yasca.html.http://www.s

covetta.com/yasca.html. [accessed 10 April 2012].

Cppcheck, 2012. A tool for static C/C++ code analysis.

Available from:

http://sourceforge.net/apps/mediawiki/cppcheck/in

dex.php. [accessed 10 April 2012].

Fortify Software, 2012. RATS - Rough Auditing Tool for

Security. Available from:

https://www.fortify.com/ssa-elements/threat-

intelligence/rats.html. [accessed 10 April 2012].

Fehnker et al., 2006. Goanna - A Static Model Checker.

Available from:

http://www.ssrg.nicta.com.au/publications/papers/

Fehnker_HJLR_06.pdf [accessed 5 July 2012]

Hofer, T., 2010. Evaluating Static Source Code

Analysis Tools. Available from:

http://infoscience.epfl.ch/record/153107/files/ESS

CAT-report.pdf [accessed 10 April 2012].

Almossawi et al., 2006. Analysis Tool Evaluation:

 Coverity Prevent. Carnegie Mellon University,

Pittsburgh, PA, USA.

Muchnick, S and Jones, N., 1981. Program Flow

Analysis: Theory and Applications. Prentice-Hall,

Inc., Englewood Cliffs, New Jersey.

Cong et al., 2009. Evaluation of Static Analysis

Techniques for Fixed-Point Precision

Optimization. Proceedings of the 2009 17th IEEE

Symposium on Field Programmable Custom

Computing Machines. Pp. 231-234. Washington,

D.C. (USA).

Cooper, K. and Xu Li, 2002, An Efficient Static

Analysis Algorithm to Detect Redundant Memory

Operations. Dep. of Computer Science Rice

University Houston, Texas, USA.

Miller, D., 2007, A Proof-Theoretic Approach to the

Static Analysis of Logic Programs. Dep. of

Computer Science Rice University Houston,

Texas, USA.

Proceedings of the European Modeling and Simulation Symposium, 2012
978-88-97999-09-6; Breitenecker, Bruzzone, Jimenez, Longo, Merkuryev, Sokolov Eds. 120

